- home
- Advanced Search
- Energy Research
- 2021-2025
- other engineering and technologies
- DE
- CH
- Energy Research
- 2021-2025
- other engineering and technologies
- DE
- CH
description Publicationkeyboard_double_arrow_right Article , Conference object 2022 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | EASY-RESEC| EASY-RESStocker, Armin; Alshawish, Ali; Bor, Martin; Vidler, John; Gouglidis, Antonios; Scott, Andrew; Marnerides, Angelos; De Meer, Hermann; Hutchison, David;AbstractSmart Grids are electrical grids that require a decentralised way of controlling electric power conditioning and thereby control the production and distribution of energy. Yet, the integration of Distributed Renewable Energy Sources (DRESs) in the Smart Grid introduces new challenges with regards to electrical grid balancing and storing of electrical energy, as well as additional monetary costs. Furthermore, the future smart grid also has to take over the provision of Ancillary Services (ASs). In this paper, a distributed ICT infrastructure to solve such challenges, specifically related to ASs in future Smart Grids, is described. The proposed infrastructure is developed on the basis of the Smart Grid Architecture Model (SGAM) framework, which is defined by the European Commission in Smart Grid Mandate M/490. A testbed that provides a flexible, secure, and low-cost version of this architecture, illustrating the separation of systems and responsibilities, and supporting both emulated DRESs and real hardware has been developed. The resulting system supports the integration of a variety of DRESs with a secure two-way communication channel between the monitoring and controlling components. It assists in the analysis of various inter-operabilities and in the verification of eventual system designs. To validate the system design, the mapping of the proposed architecture to the testbed is presented. Further work will help improve the architecture in two directions; first, by investigating specific-purpose use cases, instantiated using this more generic framework; and second, by investigating the effects a realistic number and variety of connected devices within different grid configurations has on the testbed infrastructure.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | EASY-RESEC| EASY-RESStocker, Armin; Alshawish, Ali; Bor, Martin; Vidler, John; Gouglidis, Antonios; Scott, Andrew; Marnerides, Angelos; De Meer, Hermann; Hutchison, David;AbstractSmart Grids are electrical grids that require a decentralised way of controlling electric power conditioning and thereby control the production and distribution of energy. Yet, the integration of Distributed Renewable Energy Sources (DRESs) in the Smart Grid introduces new challenges with regards to electrical grid balancing and storing of electrical energy, as well as additional monetary costs. Furthermore, the future smart grid also has to take over the provision of Ancillary Services (ASs). In this paper, a distributed ICT infrastructure to solve such challenges, specifically related to ASs in future Smart Grids, is described. The proposed infrastructure is developed on the basis of the Smart Grid Architecture Model (SGAM) framework, which is defined by the European Commission in Smart Grid Mandate M/490. A testbed that provides a flexible, secure, and low-cost version of this architecture, illustrating the separation of systems and responsibilities, and supporting both emulated DRESs and real hardware has been developed. The resulting system supports the integration of a variety of DRESs with a secure two-way communication channel between the monitoring and controlling components. It assists in the analysis of various inter-operabilities and in the verification of eventual system designs. To validate the system design, the mapping of the proposed architecture to the testbed is presented. Further work will help improve the architecture in two directions; first, by investigating specific-purpose use cases, instantiated using this more generic framework; and second, by investigating the effects a realistic number and variety of connected devices within different grid configurations has on the testbed infrastructure.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020 GermanyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Karl Schwenk; Stefan Meisenbacher; Benjamin Briegel; Tim Harr; Veit Hagenmeyer; Ralf Mikut;Smart charging of Electric Vehicles (EVs) reduces operating cost, allows more sustainable battery usage, and promotes the rise of electric mobility. In addition, bidirectional charging and improved connectivity enable efficient power grid support. Today, however, uncoordinated charging, e.g., governed by users’ habits, is still the norm. Thus, the impact of upcoming smart charging applications is mostly unexplored. We aim to estimate the expenses inherent with smart charging, e.g., battery aging costs, and give suggestions for further research. Using typical onboard sensor data we concisely model and validate an EV battery. We then integrate the battery model into a realistic smart charging use case and compare it with measurements of real EV charging. The results show that i) the temperature dependence of battery aging calls for precise thermal models for charging power greater than 7 kW, ii) disregarding battery aging underestimates EVs’ operating cost by approx. 30%, and iii) the profitability of Vehicle-to-Grid (V2G) services based on bidirectional power flow, e.g., energy arbitrage , depends on battery aging costs and the electricity price spread.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3099206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3099206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020 GermanyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Karl Schwenk; Stefan Meisenbacher; Benjamin Briegel; Tim Harr; Veit Hagenmeyer; Ralf Mikut;Smart charging of Electric Vehicles (EVs) reduces operating cost, allows more sustainable battery usage, and promotes the rise of electric mobility. In addition, bidirectional charging and improved connectivity enable efficient power grid support. Today, however, uncoordinated charging, e.g., governed by users’ habits, is still the norm. Thus, the impact of upcoming smart charging applications is mostly unexplored. We aim to estimate the expenses inherent with smart charging, e.g., battery aging costs, and give suggestions for further research. Using typical onboard sensor data we concisely model and validate an EV battery. We then integrate the battery model into a realistic smart charging use case and compare it with measurements of real EV charging. The results show that i) the temperature dependence of battery aging calls for precise thermal models for charging power greater than 7 kW, ii) disregarding battery aging underestimates EVs’ operating cost by approx. 30%, and iii) the profitability of Vehicle-to-Grid (V2G) services based on bidirectional power flow, e.g., energy arbitrage , depends on battery aging costs and the electricity price spread.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3099206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3099206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 SwedenPublisher:MDPI AG Saurav Kalita; Hanna Karlsson Potter; Martin Weih; Christel Baum; Åke Nordberg; Per-Anders Hansson;doi: 10.3390/f12111529
Short-rotation coppice (SRC) Salix plantations have the potential to provide fast-growing biomass feedstock with significant soil and climate mitigation benefits. Salix varieties exhibit significant variation in their physiological traits, growth patterns and soil ecology—but the effects of these variations have rarely been studied from a systems perspective. This study analyses the influence of variety on soil organic carbon (SOC) dynamics and climate impacts from Salix cultivation for heat production for a Swedish site with specific conditions. Soil carbon modelling was combined with a life cycle assessment (LCA) approach to quantify SOC sequestration and climate impacts over a 50-year period. The analysis used data from a Swedish field trial of six Salix varieties grown under fertilized and unfertilized treatments on Vertic Cambisols during 2001–2018. The Salix systems were compared with a reference case where heat is produced from natural gas and green fallow was the land use alternative. Climate impacts were determined using time-dependent LCA methodology—on a land-use (per hectare) and delivered energy unit (per MJheat) basis. All Salix varieties and treatments increased SOC, but the magnitude depended on the variety. Fertilization led to lower carbon sequestration than the equivalent unfertilized case. There was no clear relationship between biomass yield and SOC increase. In comparison with reference cases, all Salix varieties had significant potential for climate change mitigation. From a land-use perspective, high yield was the most important determining factor, followed by SOC sequestration, therefore high-yielding fertilized varieties such as ‘Tordis’, ‘Tora’ and ‘Björn’ performed best. On an energy-delivered basis, SOC sequestration potential was the determining factor for the climate change mitigation effect, with unfertilized ‘Jorr’ and ‘Loden’ outperforming the other varieties. These results show that Salix variety has a strong influence on SOC sequestration potential, biomass yield, growth pattern, response to fertilization and, ultimately, climate impact.
Forests arrow_drop_down ForestsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/11/1529/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12111529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/11/1529/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12111529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 SwedenPublisher:MDPI AG Saurav Kalita; Hanna Karlsson Potter; Martin Weih; Christel Baum; Åke Nordberg; Per-Anders Hansson;doi: 10.3390/f12111529
Short-rotation coppice (SRC) Salix plantations have the potential to provide fast-growing biomass feedstock with significant soil and climate mitigation benefits. Salix varieties exhibit significant variation in their physiological traits, growth patterns and soil ecology—but the effects of these variations have rarely been studied from a systems perspective. This study analyses the influence of variety on soil organic carbon (SOC) dynamics and climate impacts from Salix cultivation for heat production for a Swedish site with specific conditions. Soil carbon modelling was combined with a life cycle assessment (LCA) approach to quantify SOC sequestration and climate impacts over a 50-year period. The analysis used data from a Swedish field trial of six Salix varieties grown under fertilized and unfertilized treatments on Vertic Cambisols during 2001–2018. The Salix systems were compared with a reference case where heat is produced from natural gas and green fallow was the land use alternative. Climate impacts were determined using time-dependent LCA methodology—on a land-use (per hectare) and delivered energy unit (per MJheat) basis. All Salix varieties and treatments increased SOC, but the magnitude depended on the variety. Fertilization led to lower carbon sequestration than the equivalent unfertilized case. There was no clear relationship between biomass yield and SOC increase. In comparison with reference cases, all Salix varieties had significant potential for climate change mitigation. From a land-use perspective, high yield was the most important determining factor, followed by SOC sequestration, therefore high-yielding fertilized varieties such as ‘Tordis’, ‘Tora’ and ‘Björn’ performed best. On an energy-delivered basis, SOC sequestration potential was the determining factor for the climate change mitigation effect, with unfertilized ‘Jorr’ and ‘Loden’ outperforming the other varieties. These results show that Salix variety has a strong influence on SOC sequestration potential, biomass yield, growth pattern, response to fertilization and, ultimately, climate impact.
Forests arrow_drop_down ForestsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/11/1529/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12111529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/11/1529/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12111529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 IrelandPublisher:MDPI AG Publicly fundedAuthors: Zhehan Zhao; Alireza Soroudi;doi: 10.3390/en15113878
handle: 10197/24575
With the rapid development of the renewable energy source (RES), network congestion management is increasingly important for transmission system operators (TSOs). The limited transmission network capacity and traditional intervention methods result in high RES curtailment. The near-term, powerful, and flexible solutions, such as advanced flexible AC transmission systems (FACTS), are considered to mitigate the risks. The mobile modular static synchronous series compensator (MSSSC) is one of the grid-enhancing solutions. The mobility of the solution allows it to offer fast deployment and seasonal redeployability with limited cost. The demonstration of the mobile MSSSC solution has shown significant benefits for RES curtailment reduction, network congestion alleviation, and facilitating the demand and RES connection. For unlocking the true value of the mobile solution, they should be optimally allocated in the transmission networks. This paper develops a security-constrained DCOPF-based optimisation tool to investigate the optimal allocation of the mobile MSSSC solution in transmission networks. A linear mobile MSSSC model with the operation dead-band was introduced that can be used in large-scale realistic power system planning. The proposed model was implemented in the IEEE 118-bus system to assess the performance of the mobile MSSSC.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/11/3878/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/11/3878/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 IrelandPublisher:MDPI AG Publicly fundedAuthors: Zhehan Zhao; Alireza Soroudi;doi: 10.3390/en15113878
handle: 10197/24575
With the rapid development of the renewable energy source (RES), network congestion management is increasingly important for transmission system operators (TSOs). The limited transmission network capacity and traditional intervention methods result in high RES curtailment. The near-term, powerful, and flexible solutions, such as advanced flexible AC transmission systems (FACTS), are considered to mitigate the risks. The mobile modular static synchronous series compensator (MSSSC) is one of the grid-enhancing solutions. The mobility of the solution allows it to offer fast deployment and seasonal redeployability with limited cost. The demonstration of the mobile MSSSC solution has shown significant benefits for RES curtailment reduction, network congestion alleviation, and facilitating the demand and RES connection. For unlocking the true value of the mobile solution, they should be optimally allocated in the transmission networks. This paper develops a security-constrained DCOPF-based optimisation tool to investigate the optimal allocation of the mobile MSSSC solution in transmission networks. A linear mobile MSSSC model with the operation dead-band was introduced that can be used in large-scale realistic power system planning. The proposed model was implemented in the IEEE 118-bus system to assess the performance of the mobile MSSSC.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/11/3878/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/11/3878/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SwitzerlandPublisher:Elsevier BV Authors: Massimiliano Capezzali; M. Fesefeldt; M. de Lapparent; M. Bozorg;Abstract The consumption of buildings for the production of heat is expected to decrease in Switzerland in the coming years, in particular following policies encouraging the refurbishment of buildings. This will notably have an impact on the natural gas network, in parallel with the penetration of electric-driven heat pumps. Through a detailed optimization scheme, the evolution of the natural gas (NG) distribution network is studied over a future period of forty years, i.e. up to 2050, on the territory of a large Swiss canton. By way of installing large shares of co-generation units, it is shown that the NG network does not lose its meshed structure, while continuing to play a central role in the production of heat and the generation of part of the additional electricity demand associated with the concomitant penetration of heat pumps. As a novel result, the developed optimization framework allows a detailed, geographically precise view of both the evolution of the NG network, as well as of the optimal location of selected technologies. The adoption of energy networks convergence in urban zones therefore can lead to relevant synergies, avoiding over-investments, increasing system resilience and fostering the use of efficient technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SwitzerlandPublisher:Elsevier BV Authors: Massimiliano Capezzali; M. Fesefeldt; M. de Lapparent; M. Bozorg;Abstract The consumption of buildings for the production of heat is expected to decrease in Switzerland in the coming years, in particular following policies encouraging the refurbishment of buildings. This will notably have an impact on the natural gas network, in parallel with the penetration of electric-driven heat pumps. Through a detailed optimization scheme, the evolution of the natural gas (NG) distribution network is studied over a future period of forty years, i.e. up to 2050, on the territory of a large Swiss canton. By way of installing large shares of co-generation units, it is shown that the NG network does not lose its meshed structure, while continuing to play a central role in the production of heat and the generation of part of the additional electricity demand associated with the concomitant penetration of heat pumps. As a novel result, the developed optimization framework allows a detailed, geographically precise view of both the evolution of the NG network, as well as of the optimal location of selected technologies. The adoption of energy networks convergence in urban zones therefore can lead to relevant synergies, avoiding over-investments, increasing system resilience and fostering the use of efficient technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwitzerlandPublisher:Elsevier BV Authors: L.E. Olmedo; J. Schiffmann;A hybrid-twin for gas-bearing supported, high-speed turbocompressor is suggested to be an aide to increase the operational reliability and to provide valuable insights to improve its design. The bearing clearances of a few micrometers imply that excessive thermal or mechanical deformations can result in machine failure due to mechanical seizure or rotor-dynamic instabilities. The high centrifugal forces and thermal gradients may induce material fracture or the lift-off of press-fitted assemblies. The mentioned phenomena and interactions depend strongly on the operating conditions and imply a risk of hitting critical operating zones potentially unscreened during the design phase. The developed twin asset involves 1D multi-domain models that are accurate enough to provide useful information regarding the most critical interactions and are computationally viable for real-time applications suggesting a run-to-real time ratio of 2 per cent. A case study in which a turbocompressor touchdown is analyzed a posteriori using the twin asset to highlight the possible insights to be gained by using the virtual twin to predict data that cannot be readily measured such as the thrust bearing axial clearance under the impeller thrust force. Finally, the generation of signals by the twin asset providing a degree of redundancy with sensor values is highlighted as an opportunity to increase confidence in monitoring tasks, paving the way to extension into control strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwitzerlandPublisher:Elsevier BV Authors: L.E. Olmedo; J. Schiffmann;A hybrid-twin for gas-bearing supported, high-speed turbocompressor is suggested to be an aide to increase the operational reliability and to provide valuable insights to improve its design. The bearing clearances of a few micrometers imply that excessive thermal or mechanical deformations can result in machine failure due to mechanical seizure or rotor-dynamic instabilities. The high centrifugal forces and thermal gradients may induce material fracture or the lift-off of press-fitted assemblies. The mentioned phenomena and interactions depend strongly on the operating conditions and imply a risk of hitting critical operating zones potentially unscreened during the design phase. The developed twin asset involves 1D multi-domain models that are accurate enough to provide useful information regarding the most critical interactions and are computationally viable for real-time applications suggesting a run-to-real time ratio of 2 per cent. A case study in which a turbocompressor touchdown is analyzed a posteriori using the twin asset to highlight the possible insights to be gained by using the virtual twin to predict data that cannot be readily measured such as the thrust bearing axial clearance under the impeller thrust force. Finally, the generation of signals by the twin asset providing a degree of redundancy with sensor values is highlighted as an opportunity to increase confidence in monitoring tasks, paving the way to extension into control strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Switzerland, SwitzerlandPublisher:Elsevier BV Authors: Nicolas Kirchner-Bossi; Fernando Porté-Agel;This work studies the power density (PD) optimization in wind farms, and its sensitivity to the available area size. A novel genetic algorithm (PDGA) is introduced, which optimizes PD and the turbine layout, by self-adapting to the PD and to the solutions diversity. PDGA uses the levelized cost of energy (LCOE) as cost function, which in turn employs the EPFL analytical wake model to derive the power output. For the baseline area size, PDGA reduces 2.25% the original LCOE, 2.6 times more than optimizing with constant PD. PDGA-driven solutions provide 11% and 6% LCOE reductions against the default layout for the smallest (6.4 km2) and largest (386 km2) scaled wind farm areas, respectively. Specially relevant for the industry, PDGA solutions depict convex fronts for area vs. LCOE or vs. PD, which allows determining the required area or turbine number given a target LCOE. Unlike default layouts, optimized ones reveal a linear relationship between LCOE and PD. The mean turbine spacing tends to 8-9D for very large areas. The economics-optimized PDs are below the estimated PD available in the atmosphere. This work is limited to a simplified, offshore wind climatology, a specific wind turbine model, and the LCOE specifications used herein.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Switzerland, SwitzerlandPublisher:Elsevier BV Authors: Nicolas Kirchner-Bossi; Fernando Porté-Agel;This work studies the power density (PD) optimization in wind farms, and its sensitivity to the available area size. A novel genetic algorithm (PDGA) is introduced, which optimizes PD and the turbine layout, by self-adapting to the PD and to the solutions diversity. PDGA uses the levelized cost of energy (LCOE) as cost function, which in turn employs the EPFL analytical wake model to derive the power output. For the baseline area size, PDGA reduces 2.25% the original LCOE, 2.6 times more than optimizing with constant PD. PDGA-driven solutions provide 11% and 6% LCOE reductions against the default layout for the smallest (6.4 km2) and largest (386 km2) scaled wind farm areas, respectively. Specially relevant for the industry, PDGA solutions depict convex fronts for area vs. LCOE or vs. PD, which allows determining the required area or turbine number given a target LCOE. Unlike default layouts, optimized ones reveal a linear relationship between LCOE and PD. The mean turbine spacing tends to 8-9D for very large areas. The economics-optimized PDs are below the estimated PD available in the atmosphere. This work is limited to a simplified, offshore wind climatology, a specific wind turbine model, and the LCOE specifications used herein.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, SwitzerlandPublisher:Wiley Funded by:SNSF | NCCR Automation (phase I)SNSF| NCCR Automation (phase I)Authors: La Bella A.; Klaus P.; Ferrari-Trecate G.; Scattolini R.;doi: 10.1002/oca.2725
handle: 11311/1205332 , 11571/1515227
AbstractThis article describes a control approach for large‐scale electricity networks, with the goal of efficiently coordinating distributed generators to balance unexpected load variations with respect to nominal forecasts. To mitigate the difficulties due to the size of the problem, the proposed methodology is divided in two steps. First, the network is partitioned into clusters, composed of several dispatchable and nondispatchable generators, storage systems, and loads. A clustering algorithm is designed with the aim of obtaining clusters with the following characteristics: (i) they must be compact, keeping the distance between generators and loads as small as possible; (ii) they must be able to internally balance load variations to the maximum possible extent. Once the network clustering has been completed, a two layer control system is designed. At the lower layer, a local model predictive controller is associated to each cluster for managing the available generation and storage elements to compensate local load variations. If the local sources are not sufficient to balance the cluster's load variations, a power request is sent to the supervisory layer, which optimally distributes additional resources available from the other clusters of the network. To enhance the scalability of the approach, the supervisor is implemented relying on a fully distributed optimization algorithm. The IEEE 118‐bus system is used to test the proposed design procedure in a nontrivial scenario.
RE.PUBLIC@POLIMI Res... arrow_drop_down Optimal Control Applications and MethodsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/oca.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Optimal Control Applications and MethodsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/oca.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, SwitzerlandPublisher:Wiley Funded by:SNSF | NCCR Automation (phase I)SNSF| NCCR Automation (phase I)Authors: La Bella A.; Klaus P.; Ferrari-Trecate G.; Scattolini R.;doi: 10.1002/oca.2725
handle: 11311/1205332 , 11571/1515227
AbstractThis article describes a control approach for large‐scale electricity networks, with the goal of efficiently coordinating distributed generators to balance unexpected load variations with respect to nominal forecasts. To mitigate the difficulties due to the size of the problem, the proposed methodology is divided in two steps. First, the network is partitioned into clusters, composed of several dispatchable and nondispatchable generators, storage systems, and loads. A clustering algorithm is designed with the aim of obtaining clusters with the following characteristics: (i) they must be compact, keeping the distance between generators and loads as small as possible; (ii) they must be able to internally balance load variations to the maximum possible extent. Once the network clustering has been completed, a two layer control system is designed. At the lower layer, a local model predictive controller is associated to each cluster for managing the available generation and storage elements to compensate local load variations. If the local sources are not sufficient to balance the cluster's load variations, a power request is sent to the supervisory layer, which optimally distributes additional resources available from the other clusters of the network. To enhance the scalability of the approach, the supervisor is implemented relying on a fully distributed optimization algorithm. The IEEE 118‐bus system is used to test the proposed design procedure in a nontrivial scenario.
RE.PUBLIC@POLIMI Res... arrow_drop_down Optimal Control Applications and MethodsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/oca.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Optimal Control Applications and MethodsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/oca.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Felix Endriss; Daniel Kuptz; Hans Hartmann; Stefan Brauer; Rainer Kirchhof; Andreas Kappler; Harald Thorwarth;AbstractFuel properties of solid biofuels are essential aspects for the energy‐efficient and low‐emission operation of biomass heat and power plants. Hence, fuel quality parameters are often defined and used for pricing in supply contracts. To simplify and accelerate analytical approaches, rapid analysis devices are required to determine fuel properties such as water‐ and ash content, calorific value, and chemical composition on‐site. This article gives an overview about available technologies and, if applicable, their current state of use as rapid analysis devices for solid biofuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.202200214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.202200214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Felix Endriss; Daniel Kuptz; Hans Hartmann; Stefan Brauer; Rainer Kirchhof; Andreas Kappler; Harald Thorwarth;AbstractFuel properties of solid biofuels are essential aspects for the energy‐efficient and low‐emission operation of biomass heat and power plants. Hence, fuel quality parameters are often defined and used for pricing in supply contracts. To simplify and accelerate analytical approaches, rapid analysis devices are required to determine fuel properties such as water‐ and ash content, calorific value, and chemical composition on‐site. This article gives an overview about available technologies and, if applicable, their current state of use as rapid analysis devices for solid biofuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.202200214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.202200214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Lena Tholen; Anna Leipprand; Dagmar Kiyar; Sarah Maier; Malte Küper; Thomas Adisorn; Andreas Fischer;doi: 10.3390/su132212626
Green hydrogen will play a key role in building a climate-neutral energy-intensive industry, as key technologies for defossilising the production of steel and basic chemicals depend on it. Thus, policy-making needs to support the creation of a market for green hydrogen and its use in industry. However, it is unclear how appropriate policies should be designed, and a number of challenges need to be addressed. Based on an analysis of the ongoing German debate on hydrogen policies, this paper analyses how policy-making for green hydrogen development may support industry defossilisation. For the assessment of policy instruments, a simplified multi-criteria analysis (MCA) is used with an innovative approach that derives criteria from specific challenges. Four challenges and seven relevant policy instruments are identified. The results of the MCA reveal the potential of each of the selected instruments to address the challenges. The paper furthermore outlines how instruments might be combined in a policy package that supports industry defossilisation, creates synergies and avoids trade-offs. The paper’s impact may reach beyond the German case, as the challenges are not specific to the country. The results are relevant for policy-makers in other countries with energy-intensive industries aiming to set the course towards a hydrogen future.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Lena Tholen; Anna Leipprand; Dagmar Kiyar; Sarah Maier; Malte Küper; Thomas Adisorn; Andreas Fischer;doi: 10.3390/su132212626
Green hydrogen will play a key role in building a climate-neutral energy-intensive industry, as key technologies for defossilising the production of steel and basic chemicals depend on it. Thus, policy-making needs to support the creation of a market for green hydrogen and its use in industry. However, it is unclear how appropriate policies should be designed, and a number of challenges need to be addressed. Based on an analysis of the ongoing German debate on hydrogen policies, this paper analyses how policy-making for green hydrogen development may support industry defossilisation. For the assessment of policy instruments, a simplified multi-criteria analysis (MCA) is used with an innovative approach that derives criteria from specific challenges. Four challenges and seven relevant policy instruments are identified. The results of the MCA reveal the potential of each of the selected instruments to address the challenges. The paper furthermore outlines how instruments might be combined in a policy package that supports industry defossilisation, creates synergies and avoids trade-offs. The paper’s impact may reach beyond the German case, as the challenges are not specific to the country. The results are relevant for policy-makers in other countries with energy-intensive industries aiming to set the course towards a hydrogen future.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object 2022 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | EASY-RESEC| EASY-RESStocker, Armin; Alshawish, Ali; Bor, Martin; Vidler, John; Gouglidis, Antonios; Scott, Andrew; Marnerides, Angelos; De Meer, Hermann; Hutchison, David;AbstractSmart Grids are electrical grids that require a decentralised way of controlling electric power conditioning and thereby control the production and distribution of energy. Yet, the integration of Distributed Renewable Energy Sources (DRESs) in the Smart Grid introduces new challenges with regards to electrical grid balancing and storing of electrical energy, as well as additional monetary costs. Furthermore, the future smart grid also has to take over the provision of Ancillary Services (ASs). In this paper, a distributed ICT infrastructure to solve such challenges, specifically related to ASs in future Smart Grids, is described. The proposed infrastructure is developed on the basis of the Smart Grid Architecture Model (SGAM) framework, which is defined by the European Commission in Smart Grid Mandate M/490. A testbed that provides a flexible, secure, and low-cost version of this architecture, illustrating the separation of systems and responsibilities, and supporting both emulated DRESs and real hardware has been developed. The resulting system supports the integration of a variety of DRESs with a secure two-way communication channel between the monitoring and controlling components. It assists in the analysis of various inter-operabilities and in the verification of eventual system designs. To validate the system design, the mapping of the proposed architecture to the testbed is presented. Further work will help improve the architecture in two directions; first, by investigating specific-purpose use cases, instantiated using this more generic framework; and second, by investigating the effects a realistic number and variety of connected devices within different grid configurations has on the testbed infrastructure.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | EASY-RESEC| EASY-RESStocker, Armin; Alshawish, Ali; Bor, Martin; Vidler, John; Gouglidis, Antonios; Scott, Andrew; Marnerides, Angelos; De Meer, Hermann; Hutchison, David;AbstractSmart Grids are electrical grids that require a decentralised way of controlling electric power conditioning and thereby control the production and distribution of energy. Yet, the integration of Distributed Renewable Energy Sources (DRESs) in the Smart Grid introduces new challenges with regards to electrical grid balancing and storing of electrical energy, as well as additional monetary costs. Furthermore, the future smart grid also has to take over the provision of Ancillary Services (ASs). In this paper, a distributed ICT infrastructure to solve such challenges, specifically related to ASs in future Smart Grids, is described. The proposed infrastructure is developed on the basis of the Smart Grid Architecture Model (SGAM) framework, which is defined by the European Commission in Smart Grid Mandate M/490. A testbed that provides a flexible, secure, and low-cost version of this architecture, illustrating the separation of systems and responsibilities, and supporting both emulated DRESs and real hardware has been developed. The resulting system supports the integration of a variety of DRESs with a secure two-way communication channel between the monitoring and controlling components. It assists in the analysis of various inter-operabilities and in the verification of eventual system designs. To validate the system design, the mapping of the proposed architecture to the testbed is presented. Further work will help improve the architecture in two directions; first, by investigating specific-purpose use cases, instantiated using this more generic framework; and second, by investigating the effects a realistic number and variety of connected devices within different grid configurations has on the testbed infrastructure.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020 GermanyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Karl Schwenk; Stefan Meisenbacher; Benjamin Briegel; Tim Harr; Veit Hagenmeyer; Ralf Mikut;Smart charging of Electric Vehicles (EVs) reduces operating cost, allows more sustainable battery usage, and promotes the rise of electric mobility. In addition, bidirectional charging and improved connectivity enable efficient power grid support. Today, however, uncoordinated charging, e.g., governed by users’ habits, is still the norm. Thus, the impact of upcoming smart charging applications is mostly unexplored. We aim to estimate the expenses inherent with smart charging, e.g., battery aging costs, and give suggestions for further research. Using typical onboard sensor data we concisely model and validate an EV battery. We then integrate the battery model into a realistic smart charging use case and compare it with measurements of real EV charging. The results show that i) the temperature dependence of battery aging calls for precise thermal models for charging power greater than 7 kW, ii) disregarding battery aging underestimates EVs’ operating cost by approx. 30%, and iii) the profitability of Vehicle-to-Grid (V2G) services based on bidirectional power flow, e.g., energy arbitrage , depends on battery aging costs and the electricity price spread.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3099206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3099206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020 GermanyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Karl Schwenk; Stefan Meisenbacher; Benjamin Briegel; Tim Harr; Veit Hagenmeyer; Ralf Mikut;Smart charging of Electric Vehicles (EVs) reduces operating cost, allows more sustainable battery usage, and promotes the rise of electric mobility. In addition, bidirectional charging and improved connectivity enable efficient power grid support. Today, however, uncoordinated charging, e.g., governed by users’ habits, is still the norm. Thus, the impact of upcoming smart charging applications is mostly unexplored. We aim to estimate the expenses inherent with smart charging, e.g., battery aging costs, and give suggestions for further research. Using typical onboard sensor data we concisely model and validate an EV battery. We then integrate the battery model into a realistic smart charging use case and compare it with measurements of real EV charging. The results show that i) the temperature dependence of battery aging calls for precise thermal models for charging power greater than 7 kW, ii) disregarding battery aging underestimates EVs’ operating cost by approx. 30%, and iii) the profitability of Vehicle-to-Grid (V2G) services based on bidirectional power flow, e.g., energy arbitrage , depends on battery aging costs and the electricity price spread.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3099206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3099206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 SwedenPublisher:MDPI AG Saurav Kalita; Hanna Karlsson Potter; Martin Weih; Christel Baum; Åke Nordberg; Per-Anders Hansson;doi: 10.3390/f12111529
Short-rotation coppice (SRC) Salix plantations have the potential to provide fast-growing biomass feedstock with significant soil and climate mitigation benefits. Salix varieties exhibit significant variation in their physiological traits, growth patterns and soil ecology—but the effects of these variations have rarely been studied from a systems perspective. This study analyses the influence of variety on soil organic carbon (SOC) dynamics and climate impacts from Salix cultivation for heat production for a Swedish site with specific conditions. Soil carbon modelling was combined with a life cycle assessment (LCA) approach to quantify SOC sequestration and climate impacts over a 50-year period. The analysis used data from a Swedish field trial of six Salix varieties grown under fertilized and unfertilized treatments on Vertic Cambisols during 2001–2018. The Salix systems were compared with a reference case where heat is produced from natural gas and green fallow was the land use alternative. Climate impacts were determined using time-dependent LCA methodology—on a land-use (per hectare) and delivered energy unit (per MJheat) basis. All Salix varieties and treatments increased SOC, but the magnitude depended on the variety. Fertilization led to lower carbon sequestration than the equivalent unfertilized case. There was no clear relationship between biomass yield and SOC increase. In comparison with reference cases, all Salix varieties had significant potential for climate change mitigation. From a land-use perspective, high yield was the most important determining factor, followed by SOC sequestration, therefore high-yielding fertilized varieties such as ‘Tordis’, ‘Tora’ and ‘Björn’ performed best. On an energy-delivered basis, SOC sequestration potential was the determining factor for the climate change mitigation effect, with unfertilized ‘Jorr’ and ‘Loden’ outperforming the other varieties. These results show that Salix variety has a strong influence on SOC sequestration potential, biomass yield, growth pattern, response to fertilization and, ultimately, climate impact.
Forests arrow_drop_down ForestsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/11/1529/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12111529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/11/1529/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12111529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 SwedenPublisher:MDPI AG Saurav Kalita; Hanna Karlsson Potter; Martin Weih; Christel Baum; Åke Nordberg; Per-Anders Hansson;doi: 10.3390/f12111529
Short-rotation coppice (SRC) Salix plantations have the potential to provide fast-growing biomass feedstock with significant soil and climate mitigation benefits. Salix varieties exhibit significant variation in their physiological traits, growth patterns and soil ecology—but the effects of these variations have rarely been studied from a systems perspective. This study analyses the influence of variety on soil organic carbon (SOC) dynamics and climate impacts from Salix cultivation for heat production for a Swedish site with specific conditions. Soil carbon modelling was combined with a life cycle assessment (LCA) approach to quantify SOC sequestration and climate impacts over a 50-year period. The analysis used data from a Swedish field trial of six Salix varieties grown under fertilized and unfertilized treatments on Vertic Cambisols during 2001–2018. The Salix systems were compared with a reference case where heat is produced from natural gas and green fallow was the land use alternative. Climate impacts were determined using time-dependent LCA methodology—on a land-use (per hectare) and delivered energy unit (per MJheat) basis. All Salix varieties and treatments increased SOC, but the magnitude depended on the variety. Fertilization led to lower carbon sequestration than the equivalent unfertilized case. There was no clear relationship between biomass yield and SOC increase. In comparison with reference cases, all Salix varieties had significant potential for climate change mitigation. From a land-use perspective, high yield was the most important determining factor, followed by SOC sequestration, therefore high-yielding fertilized varieties such as ‘Tordis’, ‘Tora’ and ‘Björn’ performed best. On an energy-delivered basis, SOC sequestration potential was the determining factor for the climate change mitigation effect, with unfertilized ‘Jorr’ and ‘Loden’ outperforming the other varieties. These results show that Salix variety has a strong influence on SOC sequestration potential, biomass yield, growth pattern, response to fertilization and, ultimately, climate impact.
Forests arrow_drop_down ForestsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/11/1529/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12111529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/11/1529/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12111529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 IrelandPublisher:MDPI AG Publicly fundedAuthors: Zhehan Zhao; Alireza Soroudi;doi: 10.3390/en15113878
handle: 10197/24575
With the rapid development of the renewable energy source (RES), network congestion management is increasingly important for transmission system operators (TSOs). The limited transmission network capacity and traditional intervention methods result in high RES curtailment. The near-term, powerful, and flexible solutions, such as advanced flexible AC transmission systems (FACTS), are considered to mitigate the risks. The mobile modular static synchronous series compensator (MSSSC) is one of the grid-enhancing solutions. The mobility of the solution allows it to offer fast deployment and seasonal redeployability with limited cost. The demonstration of the mobile MSSSC solution has shown significant benefits for RES curtailment reduction, network congestion alleviation, and facilitating the demand and RES connection. For unlocking the true value of the mobile solution, they should be optimally allocated in the transmission networks. This paper develops a security-constrained DCOPF-based optimisation tool to investigate the optimal allocation of the mobile MSSSC solution in transmission networks. A linear mobile MSSSC model with the operation dead-band was introduced that can be used in large-scale realistic power system planning. The proposed model was implemented in the IEEE 118-bus system to assess the performance of the mobile MSSSC.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/11/3878/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/11/3878/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 IrelandPublisher:MDPI AG Publicly fundedAuthors: Zhehan Zhao; Alireza Soroudi;doi: 10.3390/en15113878
handle: 10197/24575
With the rapid development of the renewable energy source (RES), network congestion management is increasingly important for transmission system operators (TSOs). The limited transmission network capacity and traditional intervention methods result in high RES curtailment. The near-term, powerful, and flexible solutions, such as advanced flexible AC transmission systems (FACTS), are considered to mitigate the risks. The mobile modular static synchronous series compensator (MSSSC) is one of the grid-enhancing solutions. The mobility of the solution allows it to offer fast deployment and seasonal redeployability with limited cost. The demonstration of the mobile MSSSC solution has shown significant benefits for RES curtailment reduction, network congestion alleviation, and facilitating the demand and RES connection. For unlocking the true value of the mobile solution, they should be optimally allocated in the transmission networks. This paper develops a security-constrained DCOPF-based optimisation tool to investigate the optimal allocation of the mobile MSSSC solution in transmission networks. A linear mobile MSSSC model with the operation dead-band was introduced that can be used in large-scale realistic power system planning. The proposed model was implemented in the IEEE 118-bus system to assess the performance of the mobile MSSSC.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/11/3878/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/11/3878/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SwitzerlandPublisher:Elsevier BV Authors: Massimiliano Capezzali; M. Fesefeldt; M. de Lapparent; M. Bozorg;Abstract The consumption of buildings for the production of heat is expected to decrease in Switzerland in the coming years, in particular following policies encouraging the refurbishment of buildings. This will notably have an impact on the natural gas network, in parallel with the penetration of electric-driven heat pumps. Through a detailed optimization scheme, the evolution of the natural gas (NG) distribution network is studied over a future period of forty years, i.e. up to 2050, on the territory of a large Swiss canton. By way of installing large shares of co-generation units, it is shown that the NG network does not lose its meshed structure, while continuing to play a central role in the production of heat and the generation of part of the additional electricity demand associated with the concomitant penetration of heat pumps. As a novel result, the developed optimization framework allows a detailed, geographically precise view of both the evolution of the NG network, as well as of the optimal location of selected technologies. The adoption of energy networks convergence in urban zones therefore can lead to relevant synergies, avoiding over-investments, increasing system resilience and fostering the use of efficient technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SwitzerlandPublisher:Elsevier BV Authors: Massimiliano Capezzali; M. Fesefeldt; M. de Lapparent; M. Bozorg;Abstract The consumption of buildings for the production of heat is expected to decrease in Switzerland in the coming years, in particular following policies encouraging the refurbishment of buildings. This will notably have an impact on the natural gas network, in parallel with the penetration of electric-driven heat pumps. Through a detailed optimization scheme, the evolution of the natural gas (NG) distribution network is studied over a future period of forty years, i.e. up to 2050, on the territory of a large Swiss canton. By way of installing large shares of co-generation units, it is shown that the NG network does not lose its meshed structure, while continuing to play a central role in the production of heat and the generation of part of the additional electricity demand associated with the concomitant penetration of heat pumps. As a novel result, the developed optimization framework allows a detailed, geographically precise view of both the evolution of the NG network, as well as of the optimal location of selected technologies. The adoption of energy networks convergence in urban zones therefore can lead to relevant synergies, avoiding over-investments, increasing system resilience and fostering the use of efficient technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwitzerlandPublisher:Elsevier BV Authors: L.E. Olmedo; J. Schiffmann;A hybrid-twin for gas-bearing supported, high-speed turbocompressor is suggested to be an aide to increase the operational reliability and to provide valuable insights to improve its design. The bearing clearances of a few micrometers imply that excessive thermal or mechanical deformations can result in machine failure due to mechanical seizure or rotor-dynamic instabilities. The high centrifugal forces and thermal gradients may induce material fracture or the lift-off of press-fitted assemblies. The mentioned phenomena and interactions depend strongly on the operating conditions and imply a risk of hitting critical operating zones potentially unscreened during the design phase. The developed twin asset involves 1D multi-domain models that are accurate enough to provide useful information regarding the most critical interactions and are computationally viable for real-time applications suggesting a run-to-real time ratio of 2 per cent. A case study in which a turbocompressor touchdown is analyzed a posteriori using the twin asset to highlight the possible insights to be gained by using the virtual twin to predict data that cannot be readily measured such as the thrust bearing axial clearance under the impeller thrust force. Finally, the generation of signals by the twin asset providing a degree of redundancy with sensor values is highlighted as an opportunity to increase confidence in monitoring tasks, paving the way to extension into control strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwitzerlandPublisher:Elsevier BV Authors: L.E. Olmedo; J. Schiffmann;A hybrid-twin for gas-bearing supported, high-speed turbocompressor is suggested to be an aide to increase the operational reliability and to provide valuable insights to improve its design. The bearing clearances of a few micrometers imply that excessive thermal or mechanical deformations can result in machine failure due to mechanical seizure or rotor-dynamic instabilities. The high centrifugal forces and thermal gradients may induce material fracture or the lift-off of press-fitted assemblies. The mentioned phenomena and interactions depend strongly on the operating conditions and imply a risk of hitting critical operating zones potentially unscreened during the design phase. The developed twin asset involves 1D multi-domain models that are accurate enough to provide useful information regarding the most critical interactions and are computationally viable for real-time applications suggesting a run-to-real time ratio of 2 per cent. A case study in which a turbocompressor touchdown is analyzed a posteriori using the twin asset to highlight the possible insights to be gained by using the virtual twin to predict data that cannot be readily measured such as the thrust bearing axial clearance under the impeller thrust force. Finally, the generation of signals by the twin asset providing a degree of redundancy with sensor values is highlighted as an opportunity to increase confidence in monitoring tasks, paving the way to extension into control strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Switzerland, SwitzerlandPublisher:Elsevier BV Authors: Nicolas Kirchner-Bossi; Fernando Porté-Agel;This work studies the power density (PD) optimization in wind farms, and its sensitivity to the available area size. A novel genetic algorithm (PDGA) is introduced, which optimizes PD and the turbine layout, by self-adapting to the PD and to the solutions diversity. PDGA uses the levelized cost of energy (LCOE) as cost function, which in turn employs the EPFL analytical wake model to derive the power output. For the baseline area size, PDGA reduces 2.25% the original LCOE, 2.6 times more than optimizing with constant PD. PDGA-driven solutions provide 11% and 6% LCOE reductions against the default layout for the smallest (6.4 km2) and largest (386 km2) scaled wind farm areas, respectively. Specially relevant for the industry, PDGA solutions depict convex fronts for area vs. LCOE or vs. PD, which allows determining the required area or turbine number given a target LCOE. Unlike default layouts, optimized ones reveal a linear relationship between LCOE and PD. The mean turbine spacing tends to 8-9D for very large areas. The economics-optimized PDs are below the estimated PD available in the atmosphere. This work is limited to a simplified, offshore wind climatology, a specific wind turbine model, and the LCOE specifications used herein.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Switzerland, SwitzerlandPublisher:Elsevier BV Authors: Nicolas Kirchner-Bossi; Fernando Porté-Agel;This work studies the power density (PD) optimization in wind farms, and its sensitivity to the available area size. A novel genetic algorithm (PDGA) is introduced, which optimizes PD and the turbine layout, by self-adapting to the PD and to the solutions diversity. PDGA uses the levelized cost of energy (LCOE) as cost function, which in turn employs the EPFL analytical wake model to derive the power output. For the baseline area size, PDGA reduces 2.25% the original LCOE, 2.6 times more than optimizing with constant PD. PDGA-driven solutions provide 11% and 6% LCOE reductions against the default layout for the smallest (6.4 km2) and largest (386 km2) scaled wind farm areas, respectively. Specially relevant for the industry, PDGA solutions depict convex fronts for area vs. LCOE or vs. PD, which allows determining the required area or turbine number given a target LCOE. Unlike default layouts, optimized ones reveal a linear relationship between LCOE and PD. The mean turbine spacing tends to 8-9D for very large areas. The economics-optimized PDs are below the estimated PD available in the atmosphere. This work is limited to a simplified, offshore wind climatology, a specific wind turbine model, and the LCOE specifications used herein.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, SwitzerlandPublisher:Wiley Funded by:SNSF | NCCR Automation (phase I)SNSF| NCCR Automation (phase I)Authors: La Bella A.; Klaus P.; Ferrari-Trecate G.; Scattolini R.;doi: 10.1002/oca.2725
handle: 11311/1205332 , 11571/1515227
AbstractThis article describes a control approach for large‐scale electricity networks, with the goal of efficiently coordinating distributed generators to balance unexpected load variations with respect to nominal forecasts. To mitigate the difficulties due to the size of the problem, the proposed methodology is divided in two steps. First, the network is partitioned into clusters, composed of several dispatchable and nondispatchable generators, storage systems, and loads. A clustering algorithm is designed with the aim of obtaining clusters with the following characteristics: (i) they must be compact, keeping the distance between generators and loads as small as possible; (ii) they must be able to internally balance load variations to the maximum possible extent. Once the network clustering has been completed, a two layer control system is designed. At the lower layer, a local model predictive controller is associated to each cluster for managing the available generation and storage elements to compensate local load variations. If the local sources are not sufficient to balance the cluster's load variations, a power request is sent to the supervisory layer, which optimally distributes additional resources available from the other clusters of the network. To enhance the scalability of the approach, the supervisor is implemented relying on a fully distributed optimization algorithm. The IEEE 118‐bus system is used to test the proposed design procedure in a nontrivial scenario.
RE.PUBLIC@POLIMI Res... arrow_drop_down Optimal Control Applications and MethodsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/oca.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Optimal Control Applications and MethodsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/oca.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, SwitzerlandPublisher:Wiley Funded by:SNSF | NCCR Automation (phase I)SNSF| NCCR Automation (phase I)Authors: La Bella A.; Klaus P.; Ferrari-Trecate G.; Scattolini R.;doi: 10.1002/oca.2725
handle: 11311/1205332 , 11571/1515227
AbstractThis article describes a control approach for large‐scale electricity networks, with the goal of efficiently coordinating distributed generators to balance unexpected load variations with respect to nominal forecasts. To mitigate the difficulties due to the size of the problem, the proposed methodology is divided in two steps. First, the network is partitioned into clusters, composed of several dispatchable and nondispatchable generators, storage systems, and loads. A clustering algorithm is designed with the aim of obtaining clusters with the following characteristics: (i) they must be compact, keeping the distance between generators and loads as small as possible; (ii) they must be able to internally balance load variations to the maximum possible extent. Once the network clustering has been completed, a two layer control system is designed. At the lower layer, a local model predictive controller is associated to each cluster for managing the available generation and storage elements to compensate local load variations. If the local sources are not sufficient to balance the cluster's load variations, a power request is sent to the supervisory layer, which optimally distributes additional resources available from the other clusters of the network. To enhance the scalability of the approach, the supervisor is implemented relying on a fully distributed optimization algorithm. The IEEE 118‐bus system is used to test the proposed design procedure in a nontrivial scenario.
RE.PUBLIC@POLIMI Res... arrow_drop_down Optimal Control Applications and MethodsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/oca.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Optimal Control Applications and MethodsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/oca.2725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Felix Endriss; Daniel Kuptz; Hans Hartmann; Stefan Brauer; Rainer Kirchhof; Andreas Kappler; Harald Thorwarth;AbstractFuel properties of solid biofuels are essential aspects for the energy‐efficient and low‐emission operation of biomass heat and power plants. Hence, fuel quality parameters are often defined and used for pricing in supply contracts. To simplify and accelerate analytical approaches, rapid analysis devices are required to determine fuel properties such as water‐ and ash content, calorific value, and chemical composition on‐site. This article gives an overview about available technologies and, if applicable, their current state of use as rapid analysis devices for solid biofuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.202200214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.202200214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Felix Endriss; Daniel Kuptz; Hans Hartmann; Stefan Brauer; Rainer Kirchhof; Andreas Kappler; Harald Thorwarth;AbstractFuel properties of solid biofuels are essential aspects for the energy‐efficient and low‐emission operation of biomass heat and power plants. Hence, fuel quality parameters are often defined and used for pricing in supply contracts. To simplify and accelerate analytical approaches, rapid analysis devices are required to determine fuel properties such as water‐ and ash content, calorific value, and chemical composition on‐site. This article gives an overview about available technologies and, if applicable, their current state of use as rapid analysis devices for solid biofuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.202200214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.202200214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Lena Tholen; Anna Leipprand; Dagmar Kiyar; Sarah Maier; Malte Küper; Thomas Adisorn; Andreas Fischer;doi: 10.3390/su132212626
Green hydrogen will play a key role in building a climate-neutral energy-intensive industry, as key technologies for defossilising the production of steel and basic chemicals depend on it. Thus, policy-making needs to support the creation of a market for green hydrogen and its use in industry. However, it is unclear how appropriate policies should be designed, and a number of challenges need to be addressed. Based on an analysis of the ongoing German debate on hydrogen policies, this paper analyses how policy-making for green hydrogen development may support industry defossilisation. For the assessment of policy instruments, a simplified multi-criteria analysis (MCA) is used with an innovative approach that derives criteria from specific challenges. Four challenges and seven relevant policy instruments are identified. The results of the MCA reveal the potential of each of the selected instruments to address the challenges. The paper furthermore outlines how instruments might be combined in a policy package that supports industry defossilisation, creates synergies and avoids trade-offs. The paper’s impact may reach beyond the German case, as the challenges are not specific to the country. The results are relevant for policy-makers in other countries with energy-intensive industries aiming to set the course towards a hydrogen future.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Lena Tholen; Anna Leipprand; Dagmar Kiyar; Sarah Maier; Malte Küper; Thomas Adisorn; Andreas Fischer;doi: 10.3390/su132212626
Green hydrogen will play a key role in building a climate-neutral energy-intensive industry, as key technologies for defossilising the production of steel and basic chemicals depend on it. Thus, policy-making needs to support the creation of a market for green hydrogen and its use in industry. However, it is unclear how appropriate policies should be designed, and a number of challenges need to be addressed. Based on an analysis of the ongoing German debate on hydrogen policies, this paper analyses how policy-making for green hydrogen development may support industry defossilisation. For the assessment of policy instruments, a simplified multi-criteria analysis (MCA) is used with an innovative approach that derives criteria from specific challenges. Four challenges and seven relevant policy instruments are identified. The results of the MCA reveal the potential of each of the selected instruments to address the challenges. The paper furthermore outlines how instruments might be combined in a policy package that supports industry defossilisation, creates synergies and avoids trade-offs. The paper’s impact may reach beyond the German case, as the challenges are not specific to the country. The results are relevant for policy-makers in other countries with energy-intensive industries aiming to set the course towards a hydrogen future.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu