- home
- Advanced Search
- Energy Research
- CH
- Energy Research
- CH
description Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 SwitzerlandPublisher:Wiley Funded by:, SNSF | Can forest expansion in m..., DFG | Ecosystem Nutrition: Fore... +1 projects[no funder available] ,SNSF| Can forest expansion in mountain ecosystems generate a positive feedback to climate change: the unseen role of symbiotic mycorrhizae ,DFG| Ecosystem Nutrition: Forest Strategies for Limited Phosphorus Resources ,SNSF| The leak in the phosphorus cycle . exploring the mechanisms and controls of phos-phorus leaching in soils of acquiring and recycling forest ecosystemsJasmin Fetzer; Pavel Moiseev; Emmanuel Frossard; Klaus Kaiser; Mathias Mayer; Konstantin Gavazov; Frank Hagedorn;pmid: 38433308
AbstractTreelines advance due to climate warming. The impacts of this vegetation shift on plant–soil nutrient cycling are still uncertain, yet highly relevant as nutrient availability stimulates tree growth. Here, we investigated nitrogen (N) and phosphorus (P) in plant and soil pools along two tundra–forest transects on Kola Peninsula, Russia, with a documented elevation shift of birch‐dominated treeline by 70 m during the last 50 years. Results show that although total N and P stocks in the soil–plant system did not change with elevation, their distribution was significantly altered. With the transition from high‐elevation tundra to low‐elevation forest, P stocks in stones decreased, possibly reflecting enhanced weathering. In contrast, N and P stocks in plant biomass approximately tripled and available P and N in the soil increased fivefold toward the forest. This was paralleled by decreasing carbon (C)‐to‐nutrient ratios in foliage and litter, smaller C:N:P ratios in microbial biomass, and lower enzymatic activities related to N and P acquisition in forest soils. An incubation experiment further demonstrated manifold higher N and P net mineralization rates in litter and soil in forest compared to tundra, likely due to smaller C:N:P ratios in decomposing organic matter. Overall, our results show that forest expansion increases the mobilization of available nutrients through enhanced weathering and positive plant–soil feedback, with nutrient‐rich forest litter releasing greater amounts of N and P upon decomposition. While the low N and P availability in tundra may retard treeline advances, its improvement toward the forest likely promotes tree growth and forest development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 01 Jan 2017 SwitzerlandPublisher:Springer Science and Business Media LLC Solly, Emily F; Djukic, Ika; Moiseev, Pavel A; Andreyashkina, Nelly I; Devi, Nadezhda M; Göransson, Hans; Mazepa, Valeriy S; Shiyatov, Stepan G; Trubina, Marina R; Schweingruber, Fritz H; Wilmking, Martin; Hagedorn, Frank;pmid: 27904966
Climate warming is shifting the elevational boundary between forests and tundra upwards, but the related belowground responses are poorly understood. In the pristine South and Polar Urals with shifts of the treeline ecotone documented by historical photographs, we investigated fine root dynamics and production of extramatrical mycorrhizal mycelia (EMM) along four elevational transects reaching from the closed forest to the treeless tundra. In addition, we analysed elevational differences in climate and vegetation structure, and excavated trees to estimate related changes in the partitioning between below- and aboveground biomass. Fine root biomass of trees (<2 mm) increased by 13-79% with elevation, paralleled by a 35-72% increase in ground vegetation fine roots from the closed forest to the tundra. During the first year of decomposition, mass loss of fine root litter from different vegetation types was greater at lower elevations in the forest-tundra ecotone. The ratio between fine roots of trees and stem biomass largely increased with elevation in both regions, but these increases were not accompanied by a distinct production of EMM. Production of EMM, however, increased with the presence of ectomycorrhizal trees at the transition from the tundra to the forest. Our results imply that the recorded upward expansion of forest into former tundra in the Ural Mountains by 4-8 m per decade is decreasing the partitioning of plant biomass to fine roots. They further suggest that climate-driven forest advances will alter EMM production rates with potential feedbacks on soil carbon and nutrient cycling in these ecosystems.
Oecologia arrow_drop_down Zurich Open Repository and ArchiveArticle . 2017 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3785-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down Zurich Open Repository and ArchiveArticle . 2017 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3785-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Russian FederationPublisher:Wiley Hagedorn, F.; Shiyatov, S. G.; Mazepa, V. S.; Devi, N. M.; Grigorev, A. A.; Bartysh, A. A.; Fomin, V. V.; Kapralov, D. S.; Terent'ev, M.; Bugman, H.; Rigling, A.; Moiseev, P. A.;doi: 10.1111/gcb.12613
pmid: 24756980
AbstractHigh‐altitude treelines are temperature‐limited vegetation boundaries, but little quantitative evidence exists about the impact of climate change on treelines in untouched areas of Russia. Here, we estimated how forest‐tundra ecotones have changed during the last century along the Ural mountains. In the South, North, Sub‐Polar, and Polar Urals, we compared 450 historical and recent photographs and determined the ages of 11 100 trees along 16 altitudinal gradients. In these four regions, boundaries of open and closed forests (crown covers above 20% and 40%) expanded upwards by 4 to 8 m in altitude per decade. Results strongly suggest that snow was an important driver for these forest advances: (i) Winter precipitation has increased substantially throughout the Urals (~7 mm decade−1), which corresponds to almost a doubling in the Polar Urals, while summer temperatures have only changed slightly (~0.05 °C decade−1). (ii) There was a positive correlation between canopy cover, snow height and soil temperatures, suggesting that an increasing canopy cover promotes snow accumulation and, hence, a more favorable microclimate. (iii) Tree age analysis showed that forest expansion mainly began around the year 1900 on concave wind‐sheltered slopes with thick snow covers, while it started in the 1950s and 1970s on slopes with shallower snow covers. (iv) During the 20th century, dominant growth forms of trees have changed from multistemmed trees, resulting from harsh winter conditions, to single‐stemmed trees. While 87%, 31%, and 93% of stems appearing before 1950 were from multistemmed trees in the South, North and Polar Urals, more than 95% of the younger trees had a single stem. Currently, there is a high density of seedlings and saplings in the forest‐tundra ecotone, indicating that forest expansion is ongoing and that alpine tundra vegetation will disappear from most mountains of the South and North Urals where treeline is already close to the highest peaks.
Electronic archive o... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 141 citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Electronic archive o... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, Italy, ItalyPublisher:Wiley Mihai Pușcaș; Siegrun Ertl; Thomas Kudernatsch; Ottar Michelsen; Harald Pauli; Tudor Ursu; Michael Suen; Michael Gottfried; George Kazakis; Angela Stanisci; Ulf Molau; Robert Kanka; Jan Dick; Joaquín Molero Mesa; Frank T. Breiner; Frank T. Breiner; Doris Huber; Anne O. Syverhuset; Pascal Vittoz; Brigitta Erschbamer; Philippe Choler; Philippe Choler; Christian Bay; Luis Villar; Emmanuel Corcket; Karl Hülber; Rosario G. Gavilán; Jozef Kollár; Martina Petey; Per Larsson; Laszlo Nagy; Andrea Lamprecht; Klaus Steinbauer; Martin Klipp; Jean-Paul Theurillat; Alba Gutiérrez Girón; Maria Laura Carranza; Pavel Moiseev; Manuela Winkler; Maia Akhalkatsi; Peter Unterluggauer; Christian Rixen; Dmitry Moiseev; Rosa Fernández Calzado; Khatuna Gigauri; Umberto Morra di Cella; Martin Mallaun; Graziano Rossi; Anna Maria Fosaa; Dany Ghosn; José Luis Benito Alonso; Tomas Bergström; Marcello Tomaselli;doi: 10.1111/jbi.12835
handle: 11571/1132263 , 11381/2839701
AbstractAimIn the alpine life zone, plant diversity is strongly determined by local topography and microclimate. We assessed the extent to which aspect and its relatedness to temperature affect plant species diversity, and the colonization and disappearance of species on alpine summits on a pan‐European scale.LocationMountain summits in Europe's alpine life zone.MethodsVascular plant species and their percentage cover were recorded in permanent plots in each cardinal direction on 123 summits in 32 regions across Europe. For a subset from 17 regions, resurvey data and 6‐year soil temperature series were available. Differences in temperature sum and Shannon index as well as species richness, colonization and disappearance of species among cardinal directions were analysed using linear mixed‐effects and generalised mixed‐effects models, respectively.ResultsTemperature sums were higher in east‐ and south‐facing aspects than in the north‐facing ones, while the west‐facing ones were intermediate; differences were smallest in northern Europe. The patterns of temperature sums among aspects were consistent among years. In temperate regions, thermal differences were reflected by plant diversity, whereas this relationship was weaker or absent on Mediterranean and boreal mountains. Colonization of species was positively related to temperature on Mediterranean and temperate mountains, whereas disappearance of species was not related to temperature.Main conclusionsThermal differences caused by solar radiation determine plant species diversity on temperate mountains. Advantages for plants on eastern slopes may result from the combined effects of a longer diurnal period of radiation due to convection cloud effects in the afternoon and the sheltered position against the prevailing westerly winds. In northern Europe, long summer days and low sun angles can even out differences among aspects. On Mediterranean summits, summer drought may limit species numbers on the warmer slopes. Warmer aspects support a higher number of colonization events. Hence, aspect can be a principal determinant of the pace of climate‐induced migration processes.
Hyper Article en Lig... arrow_drop_down Journal of BiogeographyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.12835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 10visibility views 10 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Journal of BiogeographyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.12835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Russian FederationPublisher:Wiley Kammer, A.; Hagedorn, F.; Shevchenko, I. G.; Leifeld, J.; Guggenberger, G.; Goryacheva, T.; Rigling, A.; Moiseev, P.;AbstractHistorical photographs document that during the last century, forests have expanded upwards by 60–80 m into former tundra of the pristine Ural mountains. We assessed how the shift of the high‐altitude treeline ecotone might affect soil organic matter (SOM) dynamics. On the gentle slopes of Mali Iremel in the Southern Urals, we (1) determined the differences in SOM stocks and properties from the tundra at 1360 m above sea level (a.s.l.) to the subalpine forest at 1260 m a.s.l., and (2) measured carbon (C) and nitrogen (N) mineralization from tundra and forest soils at 7 and 20 °C in a 6‐month incubation experiment. C stocks of organic layers were 3.6±0.3 kg C m−2 in the tundra and 1.9±0.2 kg C m−2 in the forest. Mineral soils down to the bedrock stored significantly more C in the forest, and thus, total soil C stocks were slightly but insignificantly greater in the forest (+3 kg C m−2). Assuming a space for time approach based on tree ages suggests that the soil C sink due to the forest expansion during the last century was at most 30 g C m−2 yr−1. Diffuse reflective infrared spectroscopy and scanning calorimetry revealed that SOM under forest was less humified in both organic and mineral horizons and, therefore, contained more available substrate. Consistent with this result, C mineralization rates of organic layers and A horizons of the forest were two to four times greater than those of tundra soils. This difference was similar in magnitude to the effect of increasing the incubation temperature from 7 to 20 °C. Hence, indirect climate change effects through an upward expansion of forests can be much larger than direct warming effects (Δ0.3 K across the treeline). Net N mineralization was 2.5 to six times greater in forest than in tundra soils, suggesting that an advancing treeline likely increases N availability. This may provide a nutritional basis for the fivefold increase in plant biomass and a tripling in productivity from the tundra to the forest. In summary, our results suggest that an upward expansion of forest has small net effects on C storage in soils but leads to changes in SOM quality, accelerates C cycling and increases net N mineralization, which in turn might stimulate plant growth and thus C sequestration in tree biomass.
Electronic archive o... arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2009.01856.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 85 citations 85 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electronic archive o... arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2009.01856.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Embargo end date: 01 Jan 2022 Germany, United Kingdom, Qatar, Denmark, Germany, Spain, United Kingdom, United Kingdom, Switzerland, Italy, Italy, Italy, United Kingdom, Italy, Norway, Spain, Norway, Netherlands, Qatar, Spain, France, Italy, United States, Norway, United Kingdom, GermanyPublisher:Wiley Funded by:UKRI | UK Status, Change and Pro..., AKA | Atmosphere and Climate Co..., DFG | EarthShape: Earth Surface... +28 projectsUKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,AKA| Atmosphere and Climate Competence Center (ACCC) ,DFG| EarthShape: Earth Surface Shaping by Biota ,EC| AfricanBioServices ,NSF| Integrating species traits into species pools: A multi-scale approach to understanding community assembly ,EC| ECLAIRE ,SNSF| ICOS-CH Phase 2 ,EC| SUPER-G ,NWO| Specialists at work: how decomposers break down plant litter ,EC| SustainSAHEL ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100570 ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,EC| FORMICA ,RCN| Effects of herbivory and warming on tundra plant communities ,EC| PERMTHAW ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ARC| Discovery Early Career Researcher Award - Grant ID: DE140101611 ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,RCN| The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics and Biodiversity of alpine ecosystems ,ANR| ODYSSEE ,ANR| IMPRINT ,RCN| The effect of snow depth and snow melt timing on arctic terrestrial ecosystems. ,ANR| ASICS ,EC| ICOS ,EC| NICH ,EC| LEAP-AGRI ,EC| AIAS ,EC| DESIRA ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,NSERC ,EC| eLTER PLUSLembrechts, Jonas J; Van Den Hoogen, Johan; Aalto, Juha; Ashcroft, Michael B; De Frenne, Pieter; Kemppinen, Julia; Kopecký, Martin; Luoto, Miska; Maclean, Ilya MD; Crowther, Thomas W; Bailey, Joseph J; Haesen, Stef; Klinges, David H; Niittynen, Pekka; Scheffers, Brett R; Van Meerbeek, Koenraad; Aartsma, Peter; Abdalaze, Otar; Abedi, Mehdi; Aerts, Rien; Ahmadian, Negar; Ahrends, Antje; Alatalo, Juha M; Alexander, Jake M; Allonsius, Camille Nina; Altman, Jan; Ammann, Christof; Andres, Christian; Andrews, Christopher; Ardö, Jonas; Arriga, Nicola; Arzac, Alberto; Aschero, Valeria; Assis, Rafael L; Assmann, Jakob Johann; Bader, Maaike Y; Bahalkeh, Khadijeh; Barančok, Peter; Barrio, Isabel C; Barros, Agustina; Barthel, Matti; Basham, Edmund W; Bauters, Marijn; Bazzichetto, Manuele; Marchesini, Luca Belelli; Bell, Michael C; Benavides, Juan C; Benito Alonso, José Luis; Berauer, Bernd J; Bjerke, Jarle W; Björk, Robert G; Björkman, Mats P; Björnsdóttir, Katrin; Blonder, Benjamin; Boeckx, Pascal; Boike, Julia; Bokhorst, Stef; Brum, Bárbara NS; Brůna, Josef; Buchmann, Nina; Buysse, Pauline; Camargo, José Luís; Campoe, Otávio C; Candan, Onur; Canessa, Rafaella; Cannone, Nicoletta; Carbognani, Michele; Carnicer, Jofre; Casanova-Katny, Angélica; Cesarz, Simone; Chojnicki, Bogdan; Choler, Philippe; Chown, Steven L; Cifuentes, Edgar F; Čiliak, Marek; Contador, Tamara; Convey, Peter; Cooper, Elisabeth J; Cremonese, Edoardo; Curasi, Salvatore R; Curtis, Robin; Cutini, Maurizio; Dahlberg, C Johan; Daskalova, Gergana N; De Pablo, Miguel Angel; Della Chiesa, Stefano; Dengler, Jürgen; Deronde, Bart; Descombes, Patrice; Di Cecco, Valter; Di Musciano, Michele; Dick, Jan; Dimarco, Romina D; Dolezal, Jiri; Dorrepaal, Ellen; Dušek, Jiří; Eisenhauer, Nico; Eklundh, Lars; Erickson, Todd E; Erschbamer, Brigitta; Eugster, Werner; Ewers, Robert M; Exton, Dan A; Fanin, Nicolas; Fazlioglu, Fatih; Feigenwinter, Iris; Fenu, Giuseppe; Ferlian, Olga; Fernández Calzado, M Rosa; Fernández-Pascual, Eduardo; Finckh, Manfred; Higgens, Rebecca Finger; Forte, T'ai GW; Freeman, Erika C; Frei, Esther R; Fuentes-Lillo, Eduardo; García, Rafael A; García, María B; Géron, Charly; Gharun, Mana; Ghosn, Dany; Gigauri, Khatuna; Gobin, Anne; Goded, Ignacio; Goeckede, Mathias; Gottschall, Felix; Goulding, Keith; Govaert, Sanne; Graae, Bente Jessen; Greenwood, Sarah; Greiser, Caroline; Grelle, Achim; Guénard, Benoit; Guglielmin, Mauro; Guillemot, Joannès; Haase, Peter; Haider, Sylvia; Halbritter, Aud H; Hamid, Maroof; Hammerle, Albin; Hampe, Arndt; Haugum, Siri V; Hederová, Lucia; Heinesch, Bernard; Helfter, Carole; Hepenstrick, Daniel; Herberich, Maximiliane; Herbst, Mathias; Hermanutz, Luise; Hik, David S; Hoffrén, Raúl; Homeier, Jürgen; Hörtnagl, Lukas; Høye, Toke T; Hrbacek, Filip; Hylander, Kristoffer; Iwata, Hiroki; Jackowicz-Korczynski, Marcin Antoni; Jactel, Hervé; Järveoja, Järvi; Jastrzębowski, Szymon; Jentsch, Anke; Jiménez, Juan J; Jónsdóttir, Ingibjörg S; Jucker, Tommaso; Jump, Alistair S; Juszczak, Radoslaw; Kanka, Róbert; Kašpar, Vít; Kazakis, George; Kelly, Julia; Khuroo, Anzar A; Klemedtsson, Leif; Klisz, Marcin; Kljun, Natascha; Knohl, Alexander; Kobler, Johannes; Kollár, Jozef; Kotowska, Martyna M; Kovács, Bence; Kreyling, Juergen; Lamprecht, Andrea; Lang, Simone I; Larson, Christian; Larson, Keith; Laska, Kamil; Le Maire, Guerric; Leihy, Rachel I; Lens, Luc; Liljebladh, Bengt; Lohila, Annalea; Lorite, Juan; Loubet, Benjamin; Lynn, Joshua; Macek, Martin; Mackenzie, Roy; Magliulo, Enzo; Maier, Regine; Malfasi, Francesco; Máliš, František;doi: 10.1111/gcb.16060 , 10.32942/osf.io/pksqw , 10.3929/ethz-b-000523670 , 10.5445/ir/1000143688 , 10.21256/zhaw-24832 , 10.17863/cam.81331
pmc: PMC9303923
AbstractResearch in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1‐km2resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1‐km2pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse‐grained air temperature estimates from ERA5‐Land (an atmospheric reanalysis by the European Centre for Medium‐Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome‐specific offsets emphasize that the projected impacts of climate and climate change on near‐surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil‐related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
CORE arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://urn.nb.no/URN:NBN:no-94234Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NCData sources: idUS. Depósito de Investigación Universidad de SevillaWageningen Staff PublicationsArticle . 2022License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 159 citations 159 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 485visibility views 485 download downloads 334 Powered bymore_vert CORE arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://urn.nb.no/URN:NBN:no-94234Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NCData sources: idUS. Depósito de Investigación Universidad de SevillaWageningen Staff PublicationsArticle . 2022License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 SwitzerlandPublisher:Wiley Funded by:, SNSF | Can forest expansion in m..., DFG | Ecosystem Nutrition: Fore... +1 projects[no funder available] ,SNSF| Can forest expansion in mountain ecosystems generate a positive feedback to climate change: the unseen role of symbiotic mycorrhizae ,DFG| Ecosystem Nutrition: Forest Strategies for Limited Phosphorus Resources ,SNSF| The leak in the phosphorus cycle . exploring the mechanisms and controls of phos-phorus leaching in soils of acquiring and recycling forest ecosystemsJasmin Fetzer; Pavel Moiseev; Emmanuel Frossard; Klaus Kaiser; Mathias Mayer; Konstantin Gavazov; Frank Hagedorn;pmid: 38433308
AbstractTreelines advance due to climate warming. The impacts of this vegetation shift on plant–soil nutrient cycling are still uncertain, yet highly relevant as nutrient availability stimulates tree growth. Here, we investigated nitrogen (N) and phosphorus (P) in plant and soil pools along two tundra–forest transects on Kola Peninsula, Russia, with a documented elevation shift of birch‐dominated treeline by 70 m during the last 50 years. Results show that although total N and P stocks in the soil–plant system did not change with elevation, their distribution was significantly altered. With the transition from high‐elevation tundra to low‐elevation forest, P stocks in stones decreased, possibly reflecting enhanced weathering. In contrast, N and P stocks in plant biomass approximately tripled and available P and N in the soil increased fivefold toward the forest. This was paralleled by decreasing carbon (C)‐to‐nutrient ratios in foliage and litter, smaller C:N:P ratios in microbial biomass, and lower enzymatic activities related to N and P acquisition in forest soils. An incubation experiment further demonstrated manifold higher N and P net mineralization rates in litter and soil in forest compared to tundra, likely due to smaller C:N:P ratios in decomposing organic matter. Overall, our results show that forest expansion increases the mobilization of available nutrients through enhanced weathering and positive plant–soil feedback, with nutrient‐rich forest litter releasing greater amounts of N and P upon decomposition. While the low N and P availability in tundra may retard treeline advances, its improvement toward the forest likely promotes tree growth and forest development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 01 Jan 2017 SwitzerlandPublisher:Springer Science and Business Media LLC Solly, Emily F; Djukic, Ika; Moiseev, Pavel A; Andreyashkina, Nelly I; Devi, Nadezhda M; Göransson, Hans; Mazepa, Valeriy S; Shiyatov, Stepan G; Trubina, Marina R; Schweingruber, Fritz H; Wilmking, Martin; Hagedorn, Frank;pmid: 27904966
Climate warming is shifting the elevational boundary between forests and tundra upwards, but the related belowground responses are poorly understood. In the pristine South and Polar Urals with shifts of the treeline ecotone documented by historical photographs, we investigated fine root dynamics and production of extramatrical mycorrhizal mycelia (EMM) along four elevational transects reaching from the closed forest to the treeless tundra. In addition, we analysed elevational differences in climate and vegetation structure, and excavated trees to estimate related changes in the partitioning between below- and aboveground biomass. Fine root biomass of trees (<2 mm) increased by 13-79% with elevation, paralleled by a 35-72% increase in ground vegetation fine roots from the closed forest to the tundra. During the first year of decomposition, mass loss of fine root litter from different vegetation types was greater at lower elevations in the forest-tundra ecotone. The ratio between fine roots of trees and stem biomass largely increased with elevation in both regions, but these increases were not accompanied by a distinct production of EMM. Production of EMM, however, increased with the presence of ectomycorrhizal trees at the transition from the tundra to the forest. Our results imply that the recorded upward expansion of forest into former tundra in the Ural Mountains by 4-8 m per decade is decreasing the partitioning of plant biomass to fine roots. They further suggest that climate-driven forest advances will alter EMM production rates with potential feedbacks on soil carbon and nutrient cycling in these ecosystems.
Oecologia arrow_drop_down Zurich Open Repository and ArchiveArticle . 2017 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3785-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down Zurich Open Repository and ArchiveArticle . 2017 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3785-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Russian FederationPublisher:Wiley Hagedorn, F.; Shiyatov, S. G.; Mazepa, V. S.; Devi, N. M.; Grigorev, A. A.; Bartysh, A. A.; Fomin, V. V.; Kapralov, D. S.; Terent'ev, M.; Bugman, H.; Rigling, A.; Moiseev, P. A.;doi: 10.1111/gcb.12613
pmid: 24756980
AbstractHigh‐altitude treelines are temperature‐limited vegetation boundaries, but little quantitative evidence exists about the impact of climate change on treelines in untouched areas of Russia. Here, we estimated how forest‐tundra ecotones have changed during the last century along the Ural mountains. In the South, North, Sub‐Polar, and Polar Urals, we compared 450 historical and recent photographs and determined the ages of 11 100 trees along 16 altitudinal gradients. In these four regions, boundaries of open and closed forests (crown covers above 20% and 40%) expanded upwards by 4 to 8 m in altitude per decade. Results strongly suggest that snow was an important driver for these forest advances: (i) Winter precipitation has increased substantially throughout the Urals (~7 mm decade−1), which corresponds to almost a doubling in the Polar Urals, while summer temperatures have only changed slightly (~0.05 °C decade−1). (ii) There was a positive correlation between canopy cover, snow height and soil temperatures, suggesting that an increasing canopy cover promotes snow accumulation and, hence, a more favorable microclimate. (iii) Tree age analysis showed that forest expansion mainly began around the year 1900 on concave wind‐sheltered slopes with thick snow covers, while it started in the 1950s and 1970s on slopes with shallower snow covers. (iv) During the 20th century, dominant growth forms of trees have changed from multistemmed trees, resulting from harsh winter conditions, to single‐stemmed trees. While 87%, 31%, and 93% of stems appearing before 1950 were from multistemmed trees in the South, North and Polar Urals, more than 95% of the younger trees had a single stem. Currently, there is a high density of seedlings and saplings in the forest‐tundra ecotone, indicating that forest expansion is ongoing and that alpine tundra vegetation will disappear from most mountains of the South and North Urals where treeline is already close to the highest peaks.
Electronic archive o... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 141 citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Electronic archive o... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, Italy, ItalyPublisher:Wiley Mihai Pușcaș; Siegrun Ertl; Thomas Kudernatsch; Ottar Michelsen; Harald Pauli; Tudor Ursu; Michael Suen; Michael Gottfried; George Kazakis; Angela Stanisci; Ulf Molau; Robert Kanka; Jan Dick; Joaquín Molero Mesa; Frank T. Breiner; Frank T. Breiner; Doris Huber; Anne O. Syverhuset; Pascal Vittoz; Brigitta Erschbamer; Philippe Choler; Philippe Choler; Christian Bay; Luis Villar; Emmanuel Corcket; Karl Hülber; Rosario G. Gavilán; Jozef Kollár; Martina Petey; Per Larsson; Laszlo Nagy; Andrea Lamprecht; Klaus Steinbauer; Martin Klipp; Jean-Paul Theurillat; Alba Gutiérrez Girón; Maria Laura Carranza; Pavel Moiseev; Manuela Winkler; Maia Akhalkatsi; Peter Unterluggauer; Christian Rixen; Dmitry Moiseev; Rosa Fernández Calzado; Khatuna Gigauri; Umberto Morra di Cella; Martin Mallaun; Graziano Rossi; Anna Maria Fosaa; Dany Ghosn; José Luis Benito Alonso; Tomas Bergström; Marcello Tomaselli;doi: 10.1111/jbi.12835
handle: 11571/1132263 , 11381/2839701
AbstractAimIn the alpine life zone, plant diversity is strongly determined by local topography and microclimate. We assessed the extent to which aspect and its relatedness to temperature affect plant species diversity, and the colonization and disappearance of species on alpine summits on a pan‐European scale.LocationMountain summits in Europe's alpine life zone.MethodsVascular plant species and their percentage cover were recorded in permanent plots in each cardinal direction on 123 summits in 32 regions across Europe. For a subset from 17 regions, resurvey data and 6‐year soil temperature series were available. Differences in temperature sum and Shannon index as well as species richness, colonization and disappearance of species among cardinal directions were analysed using linear mixed‐effects and generalised mixed‐effects models, respectively.ResultsTemperature sums were higher in east‐ and south‐facing aspects than in the north‐facing ones, while the west‐facing ones were intermediate; differences were smallest in northern Europe. The patterns of temperature sums among aspects were consistent among years. In temperate regions, thermal differences were reflected by plant diversity, whereas this relationship was weaker or absent on Mediterranean and boreal mountains. Colonization of species was positively related to temperature on Mediterranean and temperate mountains, whereas disappearance of species was not related to temperature.Main conclusionsThermal differences caused by solar radiation determine plant species diversity on temperate mountains. Advantages for plants on eastern slopes may result from the combined effects of a longer diurnal period of radiation due to convection cloud effects in the afternoon and the sheltered position against the prevailing westerly winds. In northern Europe, long summer days and low sun angles can even out differences among aspects. On Mediterranean summits, summer drought may limit species numbers on the warmer slopes. Warmer aspects support a higher number of colonization events. Hence, aspect can be a principal determinant of the pace of climate‐induced migration processes.
Hyper Article en Lig... arrow_drop_down Journal of BiogeographyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.12835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 10visibility views 10 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Journal of BiogeographyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIRIS UNIPV (Università degli studi di Pavia)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.12835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Russian FederationPublisher:Wiley Kammer, A.; Hagedorn, F.; Shevchenko, I. G.; Leifeld, J.; Guggenberger, G.; Goryacheva, T.; Rigling, A.; Moiseev, P.;AbstractHistorical photographs document that during the last century, forests have expanded upwards by 60–80 m into former tundra of the pristine Ural mountains. We assessed how the shift of the high‐altitude treeline ecotone might affect soil organic matter (SOM) dynamics. On the gentle slopes of Mali Iremel in the Southern Urals, we (1) determined the differences in SOM stocks and properties from the tundra at 1360 m above sea level (a.s.l.) to the subalpine forest at 1260 m a.s.l., and (2) measured carbon (C) and nitrogen (N) mineralization from tundra and forest soils at 7 and 20 °C in a 6‐month incubation experiment. C stocks of organic layers were 3.6±0.3 kg C m−2 in the tundra and 1.9±0.2 kg C m−2 in the forest. Mineral soils down to the bedrock stored significantly more C in the forest, and thus, total soil C stocks were slightly but insignificantly greater in the forest (+3 kg C m−2). Assuming a space for time approach based on tree ages suggests that the soil C sink due to the forest expansion during the last century was at most 30 g C m−2 yr−1. Diffuse reflective infrared spectroscopy and scanning calorimetry revealed that SOM under forest was less humified in both organic and mineral horizons and, therefore, contained more available substrate. Consistent with this result, C mineralization rates of organic layers and A horizons of the forest were two to four times greater than those of tundra soils. This difference was similar in magnitude to the effect of increasing the incubation temperature from 7 to 20 °C. Hence, indirect climate change effects through an upward expansion of forests can be much larger than direct warming effects (Δ0.3 K across the treeline). Net N mineralization was 2.5 to six times greater in forest than in tundra soils, suggesting that an advancing treeline likely increases N availability. This may provide a nutritional basis for the fivefold increase in plant biomass and a tripling in productivity from the tundra to the forest. In summary, our results suggest that an upward expansion of forest has small net effects on C storage in soils but leads to changes in SOM quality, accelerates C cycling and increases net N mineralization, which in turn might stimulate plant growth and thus C sequestration in tree biomass.
Electronic archive o... arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2009.01856.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 85 citations 85 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electronic archive o... arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2009.01856.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Embargo end date: 01 Jan 2022 Germany, United Kingdom, Qatar, Denmark, Germany, Spain, United Kingdom, United Kingdom, Switzerland, Italy, Italy, Italy, United Kingdom, Italy, Norway, Spain, Norway, Netherlands, Qatar, Spain, France, Italy, United States, Norway, United Kingdom, GermanyPublisher:Wiley Funded by:UKRI | UK Status, Change and Pro..., AKA | Atmosphere and Climate Co..., DFG | EarthShape: Earth Surface... +28 projectsUKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,AKA| Atmosphere and Climate Competence Center (ACCC) ,DFG| EarthShape: Earth Surface Shaping by Biota ,EC| AfricanBioServices ,NSF| Integrating species traits into species pools: A multi-scale approach to understanding community assembly ,EC| ECLAIRE ,SNSF| ICOS-CH Phase 2 ,EC| SUPER-G ,NWO| Specialists at work: how decomposers break down plant litter ,EC| SustainSAHEL ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100570 ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,EC| FORMICA ,RCN| Effects of herbivory and warming on tundra plant communities ,EC| PERMTHAW ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ARC| Discovery Early Career Researcher Award - Grant ID: DE140101611 ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,RCN| The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics and Biodiversity of alpine ecosystems ,ANR| ODYSSEE ,ANR| IMPRINT ,RCN| The effect of snow depth and snow melt timing on arctic terrestrial ecosystems. ,ANR| ASICS ,EC| ICOS ,EC| NICH ,EC| LEAP-AGRI ,EC| AIAS ,EC| DESIRA ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,NSERC ,EC| eLTER PLUSLembrechts, Jonas J; Van Den Hoogen, Johan; Aalto, Juha; Ashcroft, Michael B; De Frenne, Pieter; Kemppinen, Julia; Kopecký, Martin; Luoto, Miska; Maclean, Ilya MD; Crowther, Thomas W; Bailey, Joseph J; Haesen, Stef; Klinges, David H; Niittynen, Pekka; Scheffers, Brett R; Van Meerbeek, Koenraad; Aartsma, Peter; Abdalaze, Otar; Abedi, Mehdi; Aerts, Rien; Ahmadian, Negar; Ahrends, Antje; Alatalo, Juha M; Alexander, Jake M; Allonsius, Camille Nina; Altman, Jan; Ammann, Christof; Andres, Christian; Andrews, Christopher; Ardö, Jonas; Arriga, Nicola; Arzac, Alberto; Aschero, Valeria; Assis, Rafael L; Assmann, Jakob Johann; Bader, Maaike Y; Bahalkeh, Khadijeh; Barančok, Peter; Barrio, Isabel C; Barros, Agustina; Barthel, Matti; Basham, Edmund W; Bauters, Marijn; Bazzichetto, Manuele; Marchesini, Luca Belelli; Bell, Michael C; Benavides, Juan C; Benito Alonso, José Luis; Berauer, Bernd J; Bjerke, Jarle W; Björk, Robert G; Björkman, Mats P; Björnsdóttir, Katrin; Blonder, Benjamin; Boeckx, Pascal; Boike, Julia; Bokhorst, Stef; Brum, Bárbara NS; Brůna, Josef; Buchmann, Nina; Buysse, Pauline; Camargo, José Luís; Campoe, Otávio C; Candan, Onur; Canessa, Rafaella; Cannone, Nicoletta; Carbognani, Michele; Carnicer, Jofre; Casanova-Katny, Angélica; Cesarz, Simone; Chojnicki, Bogdan; Choler, Philippe; Chown, Steven L; Cifuentes, Edgar F; Čiliak, Marek; Contador, Tamara; Convey, Peter; Cooper, Elisabeth J; Cremonese, Edoardo; Curasi, Salvatore R; Curtis, Robin; Cutini, Maurizio; Dahlberg, C Johan; Daskalova, Gergana N; De Pablo, Miguel Angel; Della Chiesa, Stefano; Dengler, Jürgen; Deronde, Bart; Descombes, Patrice; Di Cecco, Valter; Di Musciano, Michele; Dick, Jan; Dimarco, Romina D; Dolezal, Jiri; Dorrepaal, Ellen; Dušek, Jiří; Eisenhauer, Nico; Eklundh, Lars; Erickson, Todd E; Erschbamer, Brigitta; Eugster, Werner; Ewers, Robert M; Exton, Dan A; Fanin, Nicolas; Fazlioglu, Fatih; Feigenwinter, Iris; Fenu, Giuseppe; Ferlian, Olga; Fernández Calzado, M Rosa; Fernández-Pascual, Eduardo; Finckh, Manfred; Higgens, Rebecca Finger; Forte, T'ai GW; Freeman, Erika C; Frei, Esther R; Fuentes-Lillo, Eduardo; García, Rafael A; García, María B; Géron, Charly; Gharun, Mana; Ghosn, Dany; Gigauri, Khatuna; Gobin, Anne; Goded, Ignacio; Goeckede, Mathias; Gottschall, Felix; Goulding, Keith; Govaert, Sanne; Graae, Bente Jessen; Greenwood, Sarah; Greiser, Caroline; Grelle, Achim; Guénard, Benoit; Guglielmin, Mauro; Guillemot, Joannès; Haase, Peter; Haider, Sylvia; Halbritter, Aud H; Hamid, Maroof; Hammerle, Albin; Hampe, Arndt; Haugum, Siri V; Hederová, Lucia; Heinesch, Bernard; Helfter, Carole; Hepenstrick, Daniel; Herberich, Maximiliane; Herbst, Mathias; Hermanutz, Luise; Hik, David S; Hoffrén, Raúl; Homeier, Jürgen; Hörtnagl, Lukas; Høye, Toke T; Hrbacek, Filip; Hylander, Kristoffer; Iwata, Hiroki; Jackowicz-Korczynski, Marcin Antoni; Jactel, Hervé; Järveoja, Järvi; Jastrzębowski, Szymon; Jentsch, Anke; Jiménez, Juan J; Jónsdóttir, Ingibjörg S; Jucker, Tommaso; Jump, Alistair S; Juszczak, Radoslaw; Kanka, Róbert; Kašpar, Vít; Kazakis, George; Kelly, Julia; Khuroo, Anzar A; Klemedtsson, Leif; Klisz, Marcin; Kljun, Natascha; Knohl, Alexander; Kobler, Johannes; Kollár, Jozef; Kotowska, Martyna M; Kovács, Bence; Kreyling, Juergen; Lamprecht, Andrea; Lang, Simone I; Larson, Christian; Larson, Keith; Laska, Kamil; Le Maire, Guerric; Leihy, Rachel I; Lens, Luc; Liljebladh, Bengt; Lohila, Annalea; Lorite, Juan; Loubet, Benjamin; Lynn, Joshua; Macek, Martin; Mackenzie, Roy; Magliulo, Enzo; Maier, Regine; Malfasi, Francesco; Máliš, František;doi: 10.1111/gcb.16060 , 10.32942/osf.io/pksqw , 10.3929/ethz-b-000523670 , 10.5445/ir/1000143688 , 10.21256/zhaw-24832 , 10.17863/cam.81331
pmc: PMC9303923
AbstractResearch in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1‐km2resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1‐km2pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse‐grained air temperature estimates from ERA5‐Land (an atmospheric reanalysis by the European Centre for Medium‐Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome‐specific offsets emphasize that the projected impacts of climate and climate change on near‐surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil‐related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
CORE arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://urn.nb.no/URN:NBN:no-94234Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NCData sources: idUS. Depósito de Investigación Universidad de SevillaWageningen Staff PublicationsArticle . 2022License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 159 citations 159 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 485visibility views 485 download downloads 334 Powered bymore_vert CORE arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://urn.nb.no/URN:NBN:no-94234Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NCData sources: idUS. Depósito de Investigación Universidad de SevillaWageningen Staff PublicationsArticle . 2022License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu