Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
    Clear
  • Source
    Clear
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
44 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • IN
  • CM
  • Recent Patents on Nanotechnology

  • Authors: Harish Dureja; Mandeep Dahiya; Nidhi Saiwal;

    Ultrasound (US) has the ever-rising role in the delivery of therapeutic agents that includes chemotherapeutic agents, proteins, and genetic material. The microbubbles are the cavitating gas bodies that act as the mediators through which the energy of relatively non-interactive pressure waves is accumulated to produce forces that can permeabilize cell membranes and disrupt the vesicles that carry the therapeutic agent. This shows that the microbubbles greatly enhance the delivery of smaller chemical agents, proteins and genetic material.Various databases of online literature and patented reports based on sonication were reviewed.The literature reveals that US-assisted drug delivery is used in the delivery of therapeutic agents into various tissues including vascular, cardiac, tumor, skeletal muscle and fetal tissue. US-assisted delivery of proteins has been studied in the application in transdermal delivery of insulin, hormones and small proteins. Cavitation effect occurring during the sonication reversibly disrupts the stratum corneum structure to allow the transport of the large molecules. Cavitation disrupts the structure of the carrier vesicle and releases the drug. But there still remains a need for better understanding the physics of cavitation of microbubbles and the impact of cavitation on drug-carrying vesicles and cells. Ultrasonic technology has been proven effective at creating encapsulating particles and droplets with specific physical and functional properties. This article provides an overview of the factors influencing ultrasonication and various nanosystems formulated by using this technology.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Prasun Patra; Swaralipi Choudhury;

    Abstract:Diabetes mellitus (DM) is a life-threatening metabolic syndrome, but patient compliance is poor due to the pain and inconvenience caused by the subcutaneous injection of insulin and other macromolecular diabetic therapies. Current challenges in DM management are to optimize the use of available therapies and reduce complications. For clinical improvements, future therapies need to be easier to use, achieving tighter glycemic control, better safety profiles, and reduced manufacturing costs. The medical applications of nanotechnology are enormous and have been proven to be the best approach to improve compliance and clinical efficacy by overturning biopharmaceutical obstacles. Nanoformulations enhance the properties of conventional drugs and are specific to the targeted delivery site. The aim of the present review is to provide an overview of the application of nano-formulations in diabetes management. We analyze the current state of most of the available approaches which are in various stages of research and development. Herein, we review the developing role of nanotechnology in diabetes management and focus on the technologies that we feel are most likely to have an impact.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Narahari N, Palei; S Navaneetha, Krishnan; R, Jayaraman; S Hemanth, Reddy; +3 Authors

    Background: Green syntheses of silver nanoparticles using plant extracts have potential anti- cancer, antimicrobial, and antioxidant properties, among other aspects. The aim of the present study was to synthesize silver nanoparticles (AgNPs) using Vernonia cinerea plant extract. Methods: The AgNPs were successfully prepared and characterized using UV-Vis Spectrophotometer, particle size, Zeta potential, Transmission electron microscopy (TEM), Energy-dispersive x-ray analysis (EDAX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The in vitro cytotoxicity study was performed using neuroblastoma SHSY-5Y cell lines. Moreover, antimicrobial and antioxidant activity studies were also performed for AgNPs. Results: The size of AgNPs determined through the dynamic light scattering (DLS) technique was 49.5 nm and the zeta potential was -36.8 mV. The synthesized AgNPs were checked using UV-Visible spectroscopy at ƛmax 439 nm. The color was changed from green to dark brown, indicating the formation of AgNPs. The TEM study revealed that the nanoparticles were spherical in shape. The XRD pattern of AgNPs produced in this experiment was apparently crystalline. The results of FTIR study revealed that the majority of the obtained peaks correspond to the polyphenols, triterpenoids, and alkaloids which were abundant in the corresponding to the V. cinerea leaf extract and support to the formation of AgNPs. The cytotoxicity effect of the V. cinerea plant extract and biosynthesized AgNPs was found to be dosedependent. From the results of antimicrobial studies, it was reported that the gram negative bacteria were found to be more susceptible compared to the gram positive bacteria. Moreover, the results of antioxidant study revealed that the AgNPs showed good antioxidant activity (77.21%) in comparison to the V. cinerea plant extract (56.13%). Conclusion: Based on the results, it could be concluded that the green synthesized silver nanoparticles showed promising anticancer, antioxidant, and anti-bacterial activities as compared to the plain V. cineria plant extract.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Dilpreet, Singh; Balak Das, Kurmi; Amrinder, Singh;

    Graphene oxide, a derivative of graphene, has recently emerged as a promising nanomaterial in the biomedical field due to its unique properties. Its potential as a nanocarrier in the treatment of Alzheimer's disease represents a significant advancement. This abstract outlines a study focused on utilizing graphene oxide to reduce the toxicity of Alzheimer's proteins, marking a revolutionary approach in treatment strategies. The pathological features of Alzheimer’s disease, primarily focusing on the accumulation and toxicity of amyloid-beta proteins, have been described in this review. These proteins are known to form plaques in the brain, leading to neuronal damage and the progression of Alzheimer's disease. The current therapeutic strategies and their limitations are briefly reviewed, highlighting the need for innovative approaches. Graphene oxide, with its high surface area, biocompatibility, and ability to cross the blood-brain barrier, is introduced as a novel nanocarrier. The methodology involves functionalizing graphene oxide sheets with specific ligands that target amyloid-beta proteins. This functionalization facilitates the binding and removal of these toxic proteins from the brain, potentially alleviating the symptoms of Alzheimer's disease. Preliminary findings indicate a significant reduction in amyloid-beta toxicity in neuronal cell cultures treated with graphene oxide nanocarriers. The study also explores the biocompatibility and safety profile of graphene oxide in biological systems, ensuring its suitability for clinical applications. It calls for further research and filing patents for its translational potential and benefits of this nanotechnology paying the way for a new era in neurodegenerative therapy.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Harish Dureja; Sunil Khatak;

    The various approaches have been utilized in the treatment of a variety of diseases by applying drug delivery system such as polymeric nanoparticles, self-emulsifying delivery systems, liposomes, microemulsions and micellar solutions. Recently, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) and lipid-drug conjugates (LDCs) have been exploited as a carrier of lipophilic and hydrophilic/amphiphilic substances for invasive and non-invasive routes of delivery. SLNs are colloidal drug carrier system and are like nanoemulsion, however, the lipid content in SLNs is solid in nature. These novel type of lipid nanoparticles with solid matrix offers to develop new prototype therapeutics in drug delivery, which could be used for controlled release, drug targeting, gene therapy, physical and chemical stability and site-specific drug delivery and thereby attracted the research groups worldwide. This manuscript overviews the recent patents, advantages, formulation techniques, stability aspects and applications of SLNs.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Anuradha, Mishra; Rabiya, Ahsan; Anas, Islam; Rohit Kumar, Tiwari; +1 Authors

    Background: Around 1.5 billion people in the world are affected by complex neurological disorders, and the figure is increasing alarmingly due to unsatisfactory clinical outcomes. To date, no conventional formulation can show a promising effect on the control or prevention of neurodegeneration. However, Nano delivery tools have shown better penetration and profound action on the targeted area of the brain. Methods: Although existing Nano therapeutic approaches are abundant but would not reach the clinic due to their improper bioavailability, BBB restricts its entry and causes improper biodistribution, so it is a challenge to use certain bioactive as a potential therapy in neurodegenerative disorders. Hybrid nanocarriers are nano-vesicular transported systems which could be utilized as carriers for the delivery of both hydrophilic and hydrophobic compounds. Available patents on nanodelivery for therapeutic approaches will also include in this review. Results: Hybrid Nano delivery system may provide good stability to polar and nonpolar compounds and improve their stability. Conclusion: This manuscript updates the available findings on the Nano vesicular system to deliver drugs for neurodegenerative disorders.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Riya Patel; Bindu Kumari Yadav; Gayatri Patel;

    Background: The most common vaginal disorders are within the uterus. According to the latest statistics, vaginal disorders occur in 50% to 60% of females. Although curative treatments rely on surgical therapy, still first-line treatment is a noninvasive drug. Conventional therapies are available in the oral and parenteral route, leading to nonspecific targeting, which can cause dose-related side effects. Vaginal disorders are localized uterine disorders in which intrauterine delivery via the vaginal site is deemed the preferable route to mitigate clinical drug delivery limitations. Objective: This study emphasizes the progress of site-specific and controlled delivery of therapeutics in the treatment of vaginal disorders and systemic adverse effects as well as the therapeutic efficacy Methods: Related research reports and patents associated with topics are collected, utilized, and summarized the key findings. Result: The comprehensive literature study and patents like (US 9393216 B2), (JP6672370B2), and (WO2018041268A1) indicated that nanocarriers are effective above traditional treatments and have some significant efficacy with novelty. Conclusion: Nowadays, site-specific and controlled delivery of therapeutics for the treatment of vaginal disorders is essential to prevent systemic adverse effects and therapeutic efficacy would be more effective. Nanocarriers have therefore been used to bypass the problems associated with traditional delivery systems for the vaginal disorder.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Pankaj, Singh Patel; Rajnish, Srivastava; Sunita, Panchawat;

    ABSTRACT: Psoriasis is an inflammatory and proliferative autoimmune dermatological disorder. It is a skin ailment that is defined by particular, drab-red or peach-pink stiff areas with silvery scales patches. Other typical characteristics include the proliferation of epidermal layer, aberrant keratinization, hyperkeratosis, increased micro capillary vascularization, and infiltration of inflammatory mediator loaded cells. Conventional pharmacotherapies currently available can only provide minor advantages. Nanomedicines based on nanotechnology can potentially improve the efficacy and safety of psoriasis medications. Apoptosis plays an important pathogenetic role in many chronic inflammatory diseases, including those of dermatological interest, in particular, regarding psoriasis. In this regard, treatments with antioxidant properties could be appropriate therapeutic options. We reviewed the available studies on the efficacy of antiapoptotic therapies in psoriasis. We'll look at phytochemicals in this review, which are natural components found in plants with antiapoptotic activity that are frequently used to treat psoriasis. For improved topical treatment, we also take into consideration the advantages of loading phytoconstituents as medicines into lipid based nanocarriers. The utilization of herbal nanomedicines in psoriasis, as well as nano delivery carrier system for phytoconstituents with improved therapeutic profiles and decreased toxicity, are the subjects of this review. The study's purpose is to find more effective herbal nanomedicines for treating psoriasis. In the treatment of psoriasis, phytoconstituents that have shown antipsoriatic potential in recent years, as well as phytoconstituents loaded based nanomedicines, have a lot of promising roles to be explored. Furthermore, very few patents have been found in the field of nanotechnology utilizing lipid-based nanocarrier system for the treatment of psoriasis. Therefore, this review greatly compels the researcher to validate the process development of lipid-based drug delivery system for the patentability of the product. This should be in a view of shifting in the applicability of the drug delivery system for general public health as a potential treatment option in psoriasis.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Sonia Singh; Ashima Ahuja;

    Abstract: Tuberculosis (TB) is considered a significant health problem caused by Mycobacterium tuberculosis. It is one of the second-deadly infectious diseases right after AIDS. Several factors such as poor patient compliance, high dose intake, low drug bioavailability and prolonged treatment of disease are responsible for the prevalence of multi-drug resistance tuberculosis and extensively drug-resistant tuberculosis cases. Therefore, developing such drug-resistant bacterial strains has created a robust and efficient system that can improve the therapeutic effectiveness of anti-tubercular drugs. This review manuscript highlights the therapeutic outcomes of a nanotechnology-based drug delivery system in treating TB. Various novel nanoformulations for anti-mycobacterial drugs have been explored. Such novel approaches would have shown several advantages such as sustained/controlled drug release, reduced dose frequency, and resolved poor patient compliance over many free anti-tubercular drugs. This framework will provide valuable information on various nanoparticle-based technology employed in treating TB infectious disease. Patent data were searched in google patent and nanoformulations outcomes for TB management improves health of patients.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Upama, Das; Nikhil Kumar, Daimari; Khairul, Islam; Rajib, Biswas;

    Background: Milk contamination has been a longstanding global concern, with Heavy Metals (HM) like lead (Pb), mercury (Hg), arsenic (As), and cadmium (Cd) posing significant risks. These contaminants often infiltrate milk through contaminated water sources or during pasteurization. This petent introduces a novel approach to detecting milk contaminants by analyzing the current– voltage (I-V) characteristics of copper (Cu) electrodes modified with gold nanoparticle (AuNPs). Methods: Leveraging the exceptional conductivity of metal nanoparticles, electrons freely traverse the surface, facilitating electron movement across the copper substrate. Additionally, the nanoparticles serve as binding agents, aiding in the comparative detection of contaminants. This method enables the preliminary detection of two HM (As, Cd) by evaluating their current gains in milk supernatant samples at varying concentrations. Results: AuNPs deposited on Cu electrodes exhibited a linear I-V trend, with a significant increase in current compared to bare electrodes. Spiked milk supernatant drop cast on the electrode system displayed a current gain, which was evaluated towards sensing application of HM ions in milk. The synthesized AuNPs underwent initial characterization using a UV-Vis spectrophotometer, revealing a prominent plasmonic peak around 520 nm, confirming nanoparticle formation. X-Ray Diffraction (XRD) analysis confirmed the Face-Centred Cubic (FCC) crystal structure. Conclusion: Notably, different concentrations (1 and 10 ppm) and types of HM (As, Cd, Hg, and Pb) in milk supernatant yielded varying current gains, providing insights specifically targeting As and Cd contamination.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
44 Research products
  • Authors: Harish Dureja; Mandeep Dahiya; Nidhi Saiwal;

    Ultrasound (US) has the ever-rising role in the delivery of therapeutic agents that includes chemotherapeutic agents, proteins, and genetic material. The microbubbles are the cavitating gas bodies that act as the mediators through which the energy of relatively non-interactive pressure waves is accumulated to produce forces that can permeabilize cell membranes and disrupt the vesicles that carry the therapeutic agent. This shows that the microbubbles greatly enhance the delivery of smaller chemical agents, proteins and genetic material.Various databases of online literature and patented reports based on sonication were reviewed.The literature reveals that US-assisted drug delivery is used in the delivery of therapeutic agents into various tissues including vascular, cardiac, tumor, skeletal muscle and fetal tissue. US-assisted delivery of proteins has been studied in the application in transdermal delivery of insulin, hormones and small proteins. Cavitation effect occurring during the sonication reversibly disrupts the stratum corneum structure to allow the transport of the large molecules. Cavitation disrupts the structure of the carrier vesicle and releases the drug. But there still remains a need for better understanding the physics of cavitation of microbubbles and the impact of cavitation on drug-carrying vesicles and cells. Ultrasonic technology has been proven effective at creating encapsulating particles and droplets with specific physical and functional properties. This article provides an overview of the factors influencing ultrasonication and various nanosystems formulated by using this technology.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Prasun Patra; Swaralipi Choudhury;

    Abstract:Diabetes mellitus (DM) is a life-threatening metabolic syndrome, but patient compliance is poor due to the pain and inconvenience caused by the subcutaneous injection of insulin and other macromolecular diabetic therapies. Current challenges in DM management are to optimize the use of available therapies and reduce complications. For clinical improvements, future therapies need to be easier to use, achieving tighter glycemic control, better safety profiles, and reduced manufacturing costs. The medical applications of nanotechnology are enormous and have been proven to be the best approach to improve compliance and clinical efficacy by overturning biopharmaceutical obstacles. Nanoformulations enhance the properties of conventional drugs and are specific to the targeted delivery site. The aim of the present review is to provide an overview of the application of nano-formulations in diabetes management. We analyze the current state of most of the available approaches which are in various stages of research and development. Herein, we review the developing role of nanotechnology in diabetes management and focus on the technologies that we feel are most likely to have an impact.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Narahari N, Palei; S Navaneetha, Krishnan; R, Jayaraman; S Hemanth, Reddy; +3 Authors

    Background: Green syntheses of silver nanoparticles using plant extracts have potential anti- cancer, antimicrobial, and antioxidant properties, among other aspects. The aim of the present study was to synthesize silver nanoparticles (AgNPs) using Vernonia cinerea plant extract. Methods: The AgNPs were successfully prepared and characterized using UV-Vis Spectrophotometer, particle size, Zeta potential, Transmission electron microscopy (TEM), Energy-dispersive x-ray analysis (EDAX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The in vitro cytotoxicity study was performed using neuroblastoma SHSY-5Y cell lines. Moreover, antimicrobial and antioxidant activity studies were also performed for AgNPs. Results: The size of AgNPs determined through the dynamic light scattering (DLS) technique was 49.5 nm and the zeta potential was -36.8 mV. The synthesized AgNPs were checked using UV-Visible spectroscopy at ƛmax 439 nm. The color was changed from green to dark brown, indicating the formation of AgNPs. The TEM study revealed that the nanoparticles were spherical in shape. The XRD pattern of AgNPs produced in this experiment was apparently crystalline. The results of FTIR study revealed that the majority of the obtained peaks correspond to the polyphenols, triterpenoids, and alkaloids which were abundant in the corresponding to the V. cinerea leaf extract and support to the formation of AgNPs. The cytotoxicity effect of the V. cinerea plant extract and biosynthesized AgNPs was found to be dosedependent. From the results of antimicrobial studies, it was reported that the gram negative bacteria were found to be more susceptible compared to the gram positive bacteria. Moreover, the results of antioxidant study revealed that the AgNPs showed good antioxidant activity (77.21%) in comparison to the V. cinerea plant extract (56.13%). Conclusion: Based on the results, it could be concluded that the green synthesized silver nanoparticles showed promising anticancer, antioxidant, and anti-bacterial activities as compared to the plain V. cineria plant extract.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Dilpreet, Singh; Balak Das, Kurmi; Amrinder, Singh;

    Graphene oxide, a derivative of graphene, has recently emerged as a promising nanomaterial in the biomedical field due to its unique properties. Its potential as a nanocarrier in the treatment of Alzheimer's disease represents a significant advancement. This abstract outlines a study focused on utilizing graphene oxide to reduce the toxicity of Alzheimer's proteins, marking a revolutionary approach in treatment strategies. The pathological features of Alzheimer’s disease, primarily focusing on the accumulation and toxicity of amyloid-beta proteins, have been described in this review. These proteins are known to form plaques in the brain, leading to neuronal damage and the progression of Alzheimer's disease. The current therapeutic strategies and their limitations are briefly reviewed, highlighting the need for innovative approaches. Graphene oxide, with its high surface area, biocompatibility, and ability to cross the blood-brain barrier, is introduced as a novel nanocarrier. The methodology involves functionalizing graphene oxide sheets with specific ligands that target amyloid-beta proteins. This functionalization facilitates the binding and removal of these toxic proteins from the brain, potentially alleviating the symptoms of Alzheimer's disease. Preliminary findings indicate a significant reduction in amyloid-beta toxicity in neuronal cell cultures treated with graphene oxide nanocarriers. The study also explores the biocompatibility and safety profile of graphene oxide in biological systems, ensuring its suitability for clinical applications. It calls for further research and filing patents for its translational potential and benefits of this nanotechnology paying the way for a new era in neurodegenerative therapy.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Harish Dureja; Sunil Khatak;

    The various approaches have been utilized in the treatment of a variety of diseases by applying drug delivery system such as polymeric nanoparticles, self-emulsifying delivery systems, liposomes, microemulsions and micellar solutions. Recently, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) and lipid-drug conjugates (LDCs) have been exploited as a carrier of lipophilic and hydrophilic/amphiphilic substances for invasive and non-invasive routes of delivery. SLNs are colloidal drug carrier system and are like nanoemulsion, however, the lipid content in SLNs is solid in nature. These novel type of lipid nanoparticles with solid matrix offers to develop new prototype therapeutics in drug delivery, which could be used for controlled release, drug targeting, gene therapy, physical and chemical stability and site-specific drug delivery and thereby attracted the research groups worldwide. This manuscript overviews the recent patents, advantages, formulation techniques, stability aspects and applications of SLNs.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Anuradha, Mishra; Rabiya, Ahsan; Anas, Islam; Rohit Kumar, Tiwari; +1 Authors

    Background: Around 1.5 billion people in the world are affected by complex neurological disorders, and the figure is increasing alarmingly due to unsatisfactory clinical outcomes. To date, no conventional formulation can show a promising effect on the control or prevention of neurodegeneration. However, Nano delivery tools have shown better penetration and profound action on the targeted area of the brain. Methods: Although existing Nano therapeutic approaches are abundant but would not reach the clinic due to their improper bioavailability, BBB restricts its entry and causes improper biodistribution, so it is a challenge to use certain bioactive as a potential therapy in neurodegenerative disorders. Hybrid nanocarriers are nano-vesicular transported systems which could be utilized as carriers for the delivery of both hydrophilic and hydrophobic compounds. Available patents on nanodelivery for therapeutic approaches will also include in this review. Results: Hybrid Nano delivery system may provide good stability to polar and nonpolar compounds and improve their stability. Conclusion: This manuscript updates the available findings on the Nano vesicular system to deliver drugs for neurodegenerative disorders.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Riya Patel; Bindu Kumari Yadav; Gayatri Patel;

    Background: The most common vaginal disorders are within the uterus. According to the latest statistics, vaginal disorders occur in 50% to 60% of females. Although curative treatments rely on surgical therapy, still first-line treatment is a noninvasive drug. Conventional therapies are available in the oral and parenteral route, leading to nonspecific targeting, which can cause dose-related side effects. Vaginal disorders are localized uterine disorders in which intrauterine delivery via the vaginal site is deemed the preferable route to mitigate clinical drug delivery limitations. Objective: This study emphasizes the progress of site-specific and controlled delivery of therapeutics in the treatment of vaginal disorders and systemic adverse effects as well as the therapeutic efficacy Methods: Related research reports and patents associated with topics are collected, utilized, and summarized the key findings. Result: The comprehensive literature study and patents like (US 9393216 B2), (JP6672370B2), and (WO2018041268A1) indicated that nanocarriers are effective above traditional treatments and have some significant efficacy with novelty. Conclusion: Nowadays, site-specific and controlled delivery of therapeutics for the treatment of vaginal disorders is essential to prevent systemic adverse effects and therapeutic efficacy would be more effective. Nanocarriers have therefore been used to bypass the problems associated with traditional delivery systems for the vaginal disorder.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Pankaj, Singh Patel; Rajnish, Srivastava; Sunita, Panchawat;

    ABSTRACT: Psoriasis is an inflammatory and proliferative autoimmune dermatological disorder. It is a skin ailment that is defined by particular, drab-red or peach-pink stiff areas with silvery scales patches. Other typical characteristics include the proliferation of epidermal layer, aberrant keratinization, hyperkeratosis, increased micro capillary vascularization, and infiltration of inflammatory mediator loaded cells. Conventional pharmacotherapies currently available can only provide minor advantages. Nanomedicines based on nanotechnology can potentially improve the efficacy and safety of psoriasis medications. Apoptosis plays an important pathogenetic role in many chronic inflammatory diseases, including those of dermatological interest, in particular, regarding psoriasis. In this regard, treatments with antioxidant properties could be appropriate therapeutic options. We reviewed the available studies on the efficacy of antiapoptotic therapies in psoriasis. We'll look at phytochemicals in this review, which are natural components found in plants with antiapoptotic activity that are frequently used to treat psoriasis. For improved topical treatment, we also take into consideration the advantages of loading phytoconstituents as medicines into lipid based nanocarriers. The utilization of herbal nanomedicines in psoriasis, as well as nano delivery carrier system for phytoconstituents with improved therapeutic profiles and decreased toxicity, are the subjects of this review. The study's purpose is to find more effective herbal nanomedicines for treating psoriasis. In the treatment of psoriasis, phytoconstituents that have shown antipsoriatic potential in recent years, as well as phytoconstituents loaded based nanomedicines, have a lot of promising roles to be explored. Furthermore, very few patents have been found in the field of nanotechnology utilizing lipid-based nanocarrier system for the treatment of psoriasis. Therefore, this review greatly compels the researcher to validate the process development of lipid-based drug delivery system for the patentability of the product. This should be in a view of shifting in the applicability of the drug delivery system for general public health as a potential treatment option in psoriasis.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Sonia Singh; Ashima Ahuja;

    Abstract: Tuberculosis (TB) is considered a significant health problem caused by Mycobacterium tuberculosis. It is one of the second-deadly infectious diseases right after AIDS. Several factors such as poor patient compliance, high dose intake, low drug bioavailability and prolonged treatment of disease are responsible for the prevalence of multi-drug resistance tuberculosis and extensively drug-resistant tuberculosis cases. Therefore, developing such drug-resistant bacterial strains has created a robust and efficient system that can improve the therapeutic effectiveness of anti-tubercular drugs. This review manuscript highlights the therapeutic outcomes of a nanotechnology-based drug delivery system in treating TB. Various novel nanoformulations for anti-mycobacterial drugs have been explored. Such novel approaches would have shown several advantages such as sustained/controlled drug release, reduced dose frequency, and resolved poor patient compliance over many free anti-tubercular drugs. This framework will provide valuable information on various nanoparticle-based technology employed in treating TB infectious disease. Patent data were searched in google patent and nanoformulations outcomes for TB management improves health of patients.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Upama, Das; Nikhil Kumar, Daimari; Khairul, Islam; Rajib, Biswas;

    Background: Milk contamination has been a longstanding global concern, with Heavy Metals (HM) like lead (Pb), mercury (Hg), arsenic (As), and cadmium (Cd) posing significant risks. These contaminants often infiltrate milk through contaminated water sources or during pasteurization. This petent introduces a novel approach to detecting milk contaminants by analyzing the current– voltage (I-V) characteristics of copper (Cu) electrodes modified with gold nanoparticle (AuNPs). Methods: Leveraging the exceptional conductivity of metal nanoparticles, electrons freely traverse the surface, facilitating electron movement across the copper substrate. Additionally, the nanoparticles serve as binding agents, aiding in the comparative detection of contaminants. This method enables the preliminary detection of two HM (As, Cd) by evaluating their current gains in milk supernatant samples at varying concentrations. Results: AuNPs deposited on Cu electrodes exhibited a linear I-V trend, with a significant increase in current compared to bare electrodes. Spiked milk supernatant drop cast on the electrode system displayed a current gain, which was evaluated towards sensing application of HM ions in milk. The synthesized AuNPs underwent initial characterization using a UV-Vis spectrophotometer, revealing a prominent plasmonic peak around 520 nm, confirming nanoparticle formation. X-Ray Diffraction (XRD) analysis confirmed the Face-Centred Cubic (FCC) crystal structure. Conclusion: Notably, different concentrations (1 and 10 ppm) and types of HM (As, Cd, Hg, and Pb) in milk supernatant yielded varying current gains, providing insights specifically targeting As and Cd contamination.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph