Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recent Patents and Formulation of Nanopharmaceuticals Using Ultrasonication Technique

Authors: Harish Dureja; Mandeep Dahiya; Nidhi Saiwal;

Recent Patents and Formulation of Nanopharmaceuticals Using Ultrasonication Technique

Abstract

Ultrasound (US) has the ever-rising role in the delivery of therapeutic agents that includes chemotherapeutic agents, proteins, and genetic material. The microbubbles are the cavitating gas bodies that act as the mediators through which the energy of relatively non-interactive pressure waves is accumulated to produce forces that can permeabilize cell membranes and disrupt the vesicles that carry the therapeutic agent. This shows that the microbubbles greatly enhance the delivery of smaller chemical agents, proteins and genetic material.Various databases of online literature and patented reports based on sonication were reviewed.The literature reveals that US-assisted drug delivery is used in the delivery of therapeutic agents into various tissues including vascular, cardiac, tumor, skeletal muscle and fetal tissue. US-assisted delivery of proteins has been studied in the application in transdermal delivery of insulin, hormones and small proteins. Cavitation effect occurring during the sonication reversibly disrupts the stratum corneum structure to allow the transport of the large molecules. Cavitation disrupts the structure of the carrier vesicle and releases the drug. But there still remains a need for better understanding the physics of cavitation of microbubbles and the impact of cavitation on drug-carrying vesicles and cells. Ultrasonic technology has been proven effective at creating encapsulating particles and droplets with specific physical and functional properties. This article provides an overview of the factors influencing ultrasonication and various nanosystems formulated by using this technology.

Keywords

Patents as Topic, Sonication, Pharmaceutical Preparations, Biological Availability, Nanoparticles, Catalysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold