- home
- Advanced Search
- Energy Research
- 7. Clean energy
- AU
- CN
- JP
- SG
- English
- Energy Research
- 7. Clean energy
- AU
- CN
- JP
- SG
- English
Research data keyboard_double_arrow_right Dataset 2022Embargo end date: 13 Apr 2022Publisher:Dryad Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; Xie, Shuyu; Gao, Kunshan;The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 17 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Yuan, Wei; Wang, Jie;Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting" Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting"
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02347&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02347&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:International Institute of Refrigeration (IIR) Authors: QI R., H.; LU, L.; HUANG, Y.;By using a liquid desiccant ventilation system for dehumidification and an air-handling unit for cooling, the liquid desiccant cooling system (LDCS) system became a promising alternative for traditional technology. Solar thermal energy is suitable to deal with the heat requirement of LDCS in buildings, especially in the areas with abundant solar radiation. The energy saving of solar-assisted liquid desiccant air-conditioning system is significantly affected by various operation conditions, and multi-parameter optimization was necessary to improve the system applicability. In this paper, we investigated the impact of five main parameters on the system performance via self-developed system modelling, including the solution mass flow rate, concentration, cooling tower flow rate, and solar water flow rate and installation area of solar collector. A typical commercial building in Hong Kong was selected as a case study, which air-conditioning load was obtained by Energy-plus. The results indicated that the installation area of solar collector showed the greatest impact, and the effect of heating water flow rate was also important. The effect of desiccant flow rate was significant, but the influence of solution concentration was slight. Then, the multi-parameter optimization was conducted for obtaining a maximum annual electricity saving rate based on the Multi-Population Genetic Algorithm. The optimized installation area of solar collector was 72 m2, and the heating water flow rate was 0.66 kg/s. The optimized solution flow rate was 0.17 kg/s. The required cooling water flow rate was around 0.8 kg/s.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Qifu, Lin; Longwei, Chen;Owing to the storage and transportation problems of hydrogen fuel, exploring new methods of the realtime hydrogen production from ammonia becomes attractive. In this paper, non-thermal arc plasma (NTAP) combining with NiO/Al2O3 catalyst is developed to produce hydrogen from ammonia with high efficiency and large scale. The effects of ammonia gas flow rate and discharge power on the gas temperature, electron density, the hydrogen production rate, and energy efficiency were investigated. Experimental results show that the optical emission spectrum of NTAP working with pure ammonia medium was dominated by the atom spectrum of Hα, Hβ, and molecular spectrum of NH component. Under the optimum experimental condition of plasma discharge, the highest energy efficiency of hydrogen production reached 783.4 L/kW·h at NH3 gas flow rate of 30 SLM. When the catalyst was added, and heated by the NTAP simultaneously, the energy efficiency further increased to 1080.0 L/kW·h. Owing to the storage and transportation problems of hydrogen fuel, exploring new methods of the realtime hydrogen production from ammonia becomes attractive. In this paper, non-thermal arc plasma (NTAP) combining with NiO/Al2O3 catalyst is developed to produce hydrogen from ammonia with high efficiency and large scale. The effects of ammonia gas flow rate and discharge power on the gas temperature, electron density, the hydrogen production rate, and energy efficiency were investigated. Experimental results show that the optical emission spectrum of NTAP working with pure ammonia medium was dominated by the atom spectrum of Hα, Hβ, and molecular spectrum of NH component. Under the optimum experimental condition of plasma discharge, the highest energy efficiency of hydrogen production reached 783.4 L/kW·h at NH3 gas flow rate of 30 SLM. When the catalyst was added, and heated by the NTAP simultaneously, the energy efficiency further increased to 1080.0 L/kW·h.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.03914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.03914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Xuan, Wang; Lin, Ma;Positive forced aeration is widely used in industrial composting plants to supply sufficient oxygen, accelerating compost maturity. However, this technology results in significant gaseous emission, especially NH3 and GHGs emissions. To reduce gaseous emissions and investigate aeration efficiency, negative pressure aeration was used during cattle manure þ corn stalk composting in 50 L-scale reactors. Composting with negative pressure aeration at three different flow rates (0.25, 0.50 and 0.75 L/min/kg dry weight, named Negative-L, Negative-M and Negative-H treatments) were conducted. Treatment with positive pressure aeration was set as a control (Positive-M, with flow rate at 0.50 L/min/kg dry weight). The results showed that negative pressure aeration changed the temporal distribution of oxygen and temperature. With the same flow rate, the Negative-M treatment maintained a longer thermophilic period, accelerating organic matter degradation (47.6% in treatment Negative-M and 41.4% in Positive-M) and the maturity of feedstock (germination index was 105.9% in Negative-M and 58.5% in Positive-M). Ammonia emissions were significantly reduced by composting with negative pressure aeration. During composting, 36.7%, 15.8%, 16.8% and 16.0% of the initial total nitrogen was lost via NH3 volatilizations in the Positive-M, Negative-L, Negative-M and Negative-H treatments, respectively, indicating NH3 emissions were reduced by ~55% compared to the positive pressure aeration treatment. Even though both CH4 and N2O emission were greater from the negative pressure aeration treatments, the global warming potential was significantly reduced in treatments with negative pressure aeration because of the lower NH3 emission (an indirect N2O source). This indicates the benefit of NH3 emission mitigation was larger than the increase in CH4 and N2O emissions. Positive forced aeration is widely used in industrial composting plants to supply sufficient oxygen, accelerating compost maturity. However, this technology results in significant gaseous emission, especially NH3 and GHGs emissions. To reduce gaseous emissions and investigate aeration efficiency, negative pressure aeration was used during cattle manure þ corn stalk composting in 50 L-scale reactors. Composting with negative pressure aeration at three different flow rates (0.25, 0.50 and 0.75 L/min/kg dry weight, named Negative-L, Negative-M and Negative-H treatments) were conducted. Treatment with positive pressure aeration was set as a control (Positive-M, with flow rate at 0.50 L/min/kg dry weight). The results showed that negative pressure aeration changed the temporal distribution of oxygen and temperature. With the same flow rate, the Negative-M treatment maintained a longer thermophilic period, accelerating organic matter degradation (47.6% in treatment Negative-M and 41.4% in Positive-M) and the maturity of feedstock (germination index was 105.9% in Negative-M and 58.5% in Positive-M). Ammonia emissions were significantly reduced by composting with negative pressure aeration. During composting, 36.7%, 15.8%, 16.8% and 16.0% of the initial total nitrogen was lost via NH3 volatilizations in the Positive-M, Negative-L, Negative-M and Negative-H treatments, respectively, indicating NH3 emissions were reduced by ~55% compared to the positive pressure aeration treatment. Even though both CH4 and N2O emission were greater from the negative pressure aeration treatments, the global warming potential was significantly reduced in treatments with negative pressure aeration because of the lower NH3 emission (an indirect N2O source). This indicates the benefit of NH3 emission mitigation was larger than the increase in CH4 and N2O emissions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:EC | TRANSrisk, EC | PARIS REINFORCEEC| TRANSrisk ,EC| PARIS REINFORCESong, Lei; Lieu, Jenny; Nikas, Alexandros; Arsenopoulos, Apostolos; Vasileiou, George; Doukas, Haris;This dataset contains the underlying data for the following publication: Song, L., Lieu, J., Nikas, A., Arsenopoulos, A., Vasileiou, G., & Doukas, H. (2020). Contested energy futures, conflicted rewards? Examining low-carbon transition risks and governance dynamics in China's built environment. Energy Research & Social Science, 59, 101306., https://doi.org/10.1016/j.erss.2019.101306. Full details of methods used to create the dataset and provided within this publication.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4088568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 40visibility views 40 download downloads 6 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4088568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:International Institute of Refrigeration (IIR) Authors: YABASE, H.; YAMAGUCHI, S.; SAITO, K.; Et Al.;General implementation of air conditioning in buildings and facilities is such that in order to keep room temperature and humidity within predetermined range, heat pump is used to lower the air temperature to achieve desired humidity and then the air is heated to the specified temperature. From energy-saving perspective, this process is inefficient. To overcome such inefficiency, separation of latent heat and sensible heat has been proposed. This is a two-step process in which temperature and humidity are adjusted separately in two steps by combining desiccant dehumidifier and heat pump. Theoretically, the system is known to be effective in reducing energy consumption, but in practical application, this technology can be further improved. For this research, we have chosen liquid desiccant dehumidifier as the desiccant can be regenerated at low temperature. For heat pump system, we have chosen R718 centrifugal as it is suited for increasing efficiency for such combination of desiccant and heat pump. By improving each element of the system and seeking optimization of operating conditions, we aim to develop a high efficiency air-conditioning system. The result is reported here.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.gl.2018.1397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.gl.2018.1397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Guiwen Luo; Zeng, Yi; Li, Yi;Triplet-triplet annihilation (TTA) upconversion has shown promising potentials in the augmentation of solar energy conversion. However, challenging issues exist in improving TTA upconversion efficiencies in solid-states, one of which is the back energy transfer from upconverted singlet annihilators to sensitizers resulting in decreasing upconversion emission. Here we present a light-harvesting molecular wire consisting of dendrons with 9,10-diphenylanthracene derivatives (DPAEH) at the periphery and para-phenylene ethynylene oligomers (PPE) as the wire core. The peripheral DPAEH antenna funnels singlet excitonic energy to the wire on a 12 ps timescale. Incorporating the molecular wire into the TTA upconversion solid consisting of the DPAEH annihilator and the porphyrin sensitizer evidently improves the upconversion quantum yield from 1.5% to 2.7% upon 532 nm excitation by suppressing the back energy transfer from the singlet annihilator to the sensitizer. This finding offers a potential route to use singlet energy light-harvesting architecture for enhancing TTA upconversion. Triplet-triplet annihilation (TTA) upconversion has shown promising potentials in the augmentation of solar energy conversion. However, challenging issues exist in improving TTA upconversion efficiencies in solid-states, one of which is the back energy transfer from upconverted singlet annihilators to sensitizers resulting in decreasing upconversion emission. Here we present a light-harvesting molecular wire consisting of dendrons with 9,10-diphenylanthracene derivatives (DPAEH) at the periphery and para-phenylene ethynylene oligomers (PPE) as the wire core. The peripheral DPAEH antenna funnels singlet excitonic energy to the wire on a 12 ps timescale. Incorporating the molecular wire into the TTA upconversion solid consisting of the DPAEH annihilator and the porphyrin sensitizer evidently improves the upconversion quantum yield from 1.5% to 2.7% upon 532 nm excitation by suppressing the back energy transfer from the singlet annihilator to the sensitizer. This finding offers a potential route to use singlet energy light-harvesting architecture for enhancing TTA upconversion.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Embargo end date: 13 Apr 2022Publisher:Dryad Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; Xie, Shuyu; Gao, Kunshan;The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 17 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Yuan, Wei; Wang, Jie;Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting" Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting"
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02347&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02347&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:International Institute of Refrigeration (IIR) Authors: QI R., H.; LU, L.; HUANG, Y.;By using a liquid desiccant ventilation system for dehumidification and an air-handling unit for cooling, the liquid desiccant cooling system (LDCS) system became a promising alternative for traditional technology. Solar thermal energy is suitable to deal with the heat requirement of LDCS in buildings, especially in the areas with abundant solar radiation. The energy saving of solar-assisted liquid desiccant air-conditioning system is significantly affected by various operation conditions, and multi-parameter optimization was necessary to improve the system applicability. In this paper, we investigated the impact of five main parameters on the system performance via self-developed system modelling, including the solution mass flow rate, concentration, cooling tower flow rate, and solar water flow rate and installation area of solar collector. A typical commercial building in Hong Kong was selected as a case study, which air-conditioning load was obtained by Energy-plus. The results indicated that the installation area of solar collector showed the greatest impact, and the effect of heating water flow rate was also important. The effect of desiccant flow rate was significant, but the influence of solution concentration was slight. Then, the multi-parameter optimization was conducted for obtaining a maximum annual electricity saving rate based on the Multi-Population Genetic Algorithm. The optimized installation area of solar collector was 72 m2, and the heating water flow rate was 0.66 kg/s. The optimized solution flow rate was 0.17 kg/s. The required cooling water flow rate was around 0.8 kg/s.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Qifu, Lin; Longwei, Chen;Owing to the storage and transportation problems of hydrogen fuel, exploring new methods of the realtime hydrogen production from ammonia becomes attractive. In this paper, non-thermal arc plasma (NTAP) combining with NiO/Al2O3 catalyst is developed to produce hydrogen from ammonia with high efficiency and large scale. The effects of ammonia gas flow rate and discharge power on the gas temperature, electron density, the hydrogen production rate, and energy efficiency were investigated. Experimental results show that the optical emission spectrum of NTAP working with pure ammonia medium was dominated by the atom spectrum of Hα, Hβ, and molecular spectrum of NH component. Under the optimum experimental condition of plasma discharge, the highest energy efficiency of hydrogen production reached 783.4 L/kW·h at NH3 gas flow rate of 30 SLM. When the catalyst was added, and heated by the NTAP simultaneously, the energy efficiency further increased to 1080.0 L/kW·h. Owing to the storage and transportation problems of hydrogen fuel, exploring new methods of the realtime hydrogen production from ammonia becomes attractive. In this paper, non-thermal arc plasma (NTAP) combining with NiO/Al2O3 catalyst is developed to produce hydrogen from ammonia with high efficiency and large scale. The effects of ammonia gas flow rate and discharge power on the gas temperature, electron density, the hydrogen production rate, and energy efficiency were investigated. Experimental results show that the optical emission spectrum of NTAP working with pure ammonia medium was dominated by the atom spectrum of Hα, Hβ, and molecular spectrum of NH component. Under the optimum experimental condition of plasma discharge, the highest energy efficiency of hydrogen production reached 783.4 L/kW·h at NH3 gas flow rate of 30 SLM. When the catalyst was added, and heated by the NTAP simultaneously, the energy efficiency further increased to 1080.0 L/kW·h.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.03914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.03914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Xuan, Wang; Lin, Ma;Positive forced aeration is widely used in industrial composting plants to supply sufficient oxygen, accelerating compost maturity. However, this technology results in significant gaseous emission, especially NH3 and GHGs emissions. To reduce gaseous emissions and investigate aeration efficiency, negative pressure aeration was used during cattle manure þ corn stalk composting in 50 L-scale reactors. Composting with negative pressure aeration at three different flow rates (0.25, 0.50 and 0.75 L/min/kg dry weight, named Negative-L, Negative-M and Negative-H treatments) were conducted. Treatment with positive pressure aeration was set as a control (Positive-M, with flow rate at 0.50 L/min/kg dry weight). The results showed that negative pressure aeration changed the temporal distribution of oxygen and temperature. With the same flow rate, the Negative-M treatment maintained a longer thermophilic period, accelerating organic matter degradation (47.6% in treatment Negative-M and 41.4% in Positive-M) and the maturity of feedstock (germination index was 105.9% in Negative-M and 58.5% in Positive-M). Ammonia emissions were significantly reduced by composting with negative pressure aeration. During composting, 36.7%, 15.8%, 16.8% and 16.0% of the initial total nitrogen was lost via NH3 volatilizations in the Positive-M, Negative-L, Negative-M and Negative-H treatments, respectively, indicating NH3 emissions were reduced by ~55% compared to the positive pressure aeration treatment. Even though both CH4 and N2O emission were greater from the negative pressure aeration treatments, the global warming potential was significantly reduced in treatments with negative pressure aeration because of the lower NH3 emission (an indirect N2O source). This indicates the benefit of NH3 emission mitigation was larger than the increase in CH4 and N2O emissions. Positive forced aeration is widely used in industrial composting plants to supply sufficient oxygen, accelerating compost maturity. However, this technology results in significant gaseous emission, especially NH3 and GHGs emissions. To reduce gaseous emissions and investigate aeration efficiency, negative pressure aeration was used during cattle manure þ corn stalk composting in 50 L-scale reactors. Composting with negative pressure aeration at three different flow rates (0.25, 0.50 and 0.75 L/min/kg dry weight, named Negative-L, Negative-M and Negative-H treatments) were conducted. Treatment with positive pressure aeration was set as a control (Positive-M, with flow rate at 0.50 L/min/kg dry weight). The results showed that negative pressure aeration changed the temporal distribution of oxygen and temperature. With the same flow rate, the Negative-M treatment maintained a longer thermophilic period, accelerating organic matter degradation (47.6% in treatment Negative-M and 41.4% in Positive-M) and the maturity of feedstock (germination index was 105.9% in Negative-M and 58.5% in Positive-M). Ammonia emissions were significantly reduced by composting with negative pressure aeration. During composting, 36.7%, 15.8%, 16.8% and 16.0% of the initial total nitrogen was lost via NH3 volatilizations in the Positive-M, Negative-L, Negative-M and Negative-H treatments, respectively, indicating NH3 emissions were reduced by ~55% compared to the positive pressure aeration treatment. Even though both CH4 and N2O emission were greater from the negative pressure aeration treatments, the global warming potential was significantly reduced in treatments with negative pressure aeration because of the lower NH3 emission (an indirect N2O source). This indicates the benefit of NH3 emission mitigation was larger than the increase in CH4 and N2O emissions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:EC | TRANSrisk, EC | PARIS REINFORCEEC| TRANSrisk ,EC| PARIS REINFORCESong, Lei; Lieu, Jenny; Nikas, Alexandros; Arsenopoulos, Apostolos; Vasileiou, George; Doukas, Haris;This dataset contains the underlying data for the following publication: Song, L., Lieu, J., Nikas, A., Arsenopoulos, A., Vasileiou, G., & Doukas, H. (2020). Contested energy futures, conflicted rewards? Examining low-carbon transition risks and governance dynamics in China's built environment. Energy Research & Social Science, 59, 101306., https://doi.org/10.1016/j.erss.2019.101306. Full details of methods used to create the dataset and provided within this publication.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4088568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 40visibility views 40 download downloads 6 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4088568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:International Institute of Refrigeration (IIR) Authors: YABASE, H.; YAMAGUCHI, S.; SAITO, K.; Et Al.;General implementation of air conditioning in buildings and facilities is such that in order to keep room temperature and humidity within predetermined range, heat pump is used to lower the air temperature to achieve desired humidity and then the air is heated to the specified temperature. From energy-saving perspective, this process is inefficient. To overcome such inefficiency, separation of latent heat and sensible heat has been proposed. This is a two-step process in which temperature and humidity are adjusted separately in two steps by combining desiccant dehumidifier and heat pump. Theoretically, the system is known to be effective in reducing energy consumption, but in practical application, this technology can be further improved. For this research, we have chosen liquid desiccant dehumidifier as the desiccant can be regenerated at low temperature. For heat pump system, we have chosen R718 centrifugal as it is suited for increasing efficiency for such combination of desiccant and heat pump. By improving each element of the system and seeking optimization of operating conditions, we aim to develop a high efficiency air-conditioning system. The result is reported here.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.gl.2018.1397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.gl.2018.1397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Guiwen Luo; Zeng, Yi; Li, Yi;Triplet-triplet annihilation (TTA) upconversion has shown promising potentials in the augmentation of solar energy conversion. However, challenging issues exist in improving TTA upconversion efficiencies in solid-states, one of which is the back energy transfer from upconverted singlet annihilators to sensitizers resulting in decreasing upconversion emission. Here we present a light-harvesting molecular wire consisting of dendrons with 9,10-diphenylanthracene derivatives (DPAEH) at the periphery and para-phenylene ethynylene oligomers (PPE) as the wire core. The peripheral DPAEH antenna funnels singlet excitonic energy to the wire on a 12 ps timescale. Incorporating the molecular wire into the TTA upconversion solid consisting of the DPAEH annihilator and the porphyrin sensitizer evidently improves the upconversion quantum yield from 1.5% to 2.7% upon 532 nm excitation by suppressing the back energy transfer from the singlet annihilator to the sensitizer. This finding offers a potential route to use singlet energy light-harvesting architecture for enhancing TTA upconversion. Triplet-triplet annihilation (TTA) upconversion has shown promising potentials in the augmentation of solar energy conversion. However, challenging issues exist in improving TTA upconversion efficiencies in solid-states, one of which is the back energy transfer from upconverted singlet annihilators to sensitizers resulting in decreasing upconversion emission. Here we present a light-harvesting molecular wire consisting of dendrons with 9,10-diphenylanthracene derivatives (DPAEH) at the periphery and para-phenylene ethynylene oligomers (PPE) as the wire core. The peripheral DPAEH antenna funnels singlet excitonic energy to the wire on a 12 ps timescale. Incorporating the molecular wire into the TTA upconversion solid consisting of the DPAEH annihilator and the porphyrin sensitizer evidently improves the upconversion quantum yield from 1.5% to 2.7% upon 532 nm excitation by suppressing the back energy transfer from the singlet annihilator to the sensitizer. This finding offers a potential route to use singlet energy light-harvesting architecture for enhancing TTA upconversion.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu