- home
- Advanced Search
Filters
Clear All- Energy Research
- 3. Good health
- CN
- CA
- GB
- Journal of Power Sources
- Energy Research
- 3. Good health
- CN
- CA
- GB
- Journal of Power Sources
description Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Ruiqiang Yan; Jianfeng Gao; Guangyao Meng; Jianjun Ma; Qianli Ma; Sa Zhou;Abstract Ammonia is a possible candidate as the fuel for solid oxide fuel cells (SOFCs). In this work, an anode-supported SOFC based on yttrium-stabled zircite (YSZ) thin-film electrolyte was fabricated by a simple dry-pressing process. Directly fueled by commercial liquefied ammonia, the single cell was tested at temperatures from 650 to 850 °C. The maximum power densities were 299 and 526 mW cm −2 at 750 and 850 °C, respectively, only slightly lower than that fueled by hydrogen. Analysis of open current voltages (OCVs) of the cell indicated the oxidation of ammonia within a SOFC is a two-stage process. Impedance spectra showed the cell fueled by ammonia had the same electrolyte resistances as that fueled by hydrogen, but a little larger interfacial polarization resistances. Further, the performances of the cell were essentially determined by the interfacial resistances under 750 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2006.09.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu146 citations 146 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2006.09.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Ruiqiang Yan; Jianfeng Gao; Guangyao Meng; Jianjun Ma; Qianli Ma; Sa Zhou;Abstract Ammonia is a possible candidate as the fuel for solid oxide fuel cells (SOFCs). In this work, an anode-supported SOFC based on yttrium-stabled zircite (YSZ) thin-film electrolyte was fabricated by a simple dry-pressing process. Directly fueled by commercial liquefied ammonia, the single cell was tested at temperatures from 650 to 850 °C. The maximum power densities were 299 and 526 mW cm −2 at 750 and 850 °C, respectively, only slightly lower than that fueled by hydrogen. Analysis of open current voltages (OCVs) of the cell indicated the oxidation of ammonia within a SOFC is a two-stage process. Impedance spectra showed the cell fueled by ammonia had the same electrolyte resistances as that fueled by hydrogen, but a little larger interfacial polarization resistances. Further, the performances of the cell were essentially determined by the interfacial resistances under 750 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2006.09.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu146 citations 146 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2006.09.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:NSERCNSERCLin Ma; Julian Self; Mengyun Nie; Stephen Glazier; David Yaohui Wang; Yong-Shou Lin; J.R. Dahn;Abstract Li[Ni 1/3 Mn 1/3 Co 1/3 ]O 2 /graphite, Li[Ni 0.5 Mn 0.3 Co 0.2 ]O 2 /graphite and Li[Ni 0.6 Mn 0.2 Co 0.2 O 2 ]/graphite pouch cells were examined with and without electrolyte additives using the ultra high precision charger at Dalhousie University, electrochemical impedance spectroscopy, gas evolution measurements and “cycle-store” tests. The electrolyte additives tested were vinylene carbonate (VC), prop-1-ene-1,3-sultone (PES), pyridine-boron trifluoride (PBF), 2% PES + 1% methylene methanedisulfonate (MMDS) + 1% tris(trimethylsilyl) phosphite (TTSPi) and 0.5% pyrazine di-boron trifluoride (PRZ) + 1% MMDS. The charge end-point capacity slippage, capacity fade, coulombic efficiency, impedance change during cycling, gas evolution and voltage drop during “cycle-store” testing were compared to gain an understanding of the effects of these promising electrolyte additives or additive combinations on the different types of pouch cells. It is hoped that this report can be used as a guide or reference for the wise choice of electrolyte additives in Li[Ni 1/3 Mn 1/3 Co 1/3 ]O 2 /graphite, Li[Ni 0.5 Mn 0.3 Co 0.2 ]O 2 /graphite and Li[Ni 0.6 Mn 0.2 Co 0.2 O 2 ]/graphite pouch cells and also to show the shortcomings of particular positive electrode compositions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:NSERCNSERCLin Ma; Julian Self; Mengyun Nie; Stephen Glazier; David Yaohui Wang; Yong-Shou Lin; J.R. Dahn;Abstract Li[Ni 1/3 Mn 1/3 Co 1/3 ]O 2 /graphite, Li[Ni 0.5 Mn 0.3 Co 0.2 ]O 2 /graphite and Li[Ni 0.6 Mn 0.2 Co 0.2 O 2 ]/graphite pouch cells were examined with and without electrolyte additives using the ultra high precision charger at Dalhousie University, electrochemical impedance spectroscopy, gas evolution measurements and “cycle-store” tests. The electrolyte additives tested were vinylene carbonate (VC), prop-1-ene-1,3-sultone (PES), pyridine-boron trifluoride (PBF), 2% PES + 1% methylene methanedisulfonate (MMDS) + 1% tris(trimethylsilyl) phosphite (TTSPi) and 0.5% pyrazine di-boron trifluoride (PRZ) + 1% MMDS. The charge end-point capacity slippage, capacity fade, coulombic efficiency, impedance change during cycling, gas evolution and voltage drop during “cycle-store” testing were compared to gain an understanding of the effects of these promising electrolyte additives or additive combinations on the different types of pouch cells. It is hoped that this report can be used as a guide or reference for the wise choice of electrolyte additives in Li[Ni 1/3 Mn 1/3 Co 1/3 ]O 2 /graphite, Li[Ni 0.5 Mn 0.3 Co 0.2 ]O 2 /graphite and Li[Ni 0.6 Mn 0.2 Co 0.2 O 2 ]/graphite pouch cells and also to show the shortcomings of particular positive electrode compositions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Xunliang Liu; Fangyuan Peng; Guofeng Lou; Zhi Wen;Abstract Fundamental understanding of liquid water transport in gas diffusion media (GDM) is important to improve the material and structure design of polymer electrolyte membrane (PEM) fuel cells. Continuum methods of two-phase flow modeling facilitate to give more details of relevant information. The proper empirical correlations of liquid water transport properties, such as capillary characteristics, water relative permeability and effective contact angle, are crucial to two phase flow modeling and cell performance prediction. In this work, researches on these properties in the last decade are reviewed. Various efforts have been devoted to determine the water transport properties for GDMs. However, most of the experimental studies are ex-situ measurements. In-situ measurements for GDMs and extending techniques available to study the catalyst layer and the microporous layer will be further challenges. Using the Leverett–Udell correlation is not recommended for quantitative modeling. The reliable Leverett-type correlation for GDMs, with the inclusion of the cosine of effective contact angle, is desirable but hard to be established for modeling two-phase flow in GDMs. A comprehensive data set of liquid water transport properties is needed for various GDM materials under different PEM fuel cell operating conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Xunliang Liu; Fangyuan Peng; Guofeng Lou; Zhi Wen;Abstract Fundamental understanding of liquid water transport in gas diffusion media (GDM) is important to improve the material and structure design of polymer electrolyte membrane (PEM) fuel cells. Continuum methods of two-phase flow modeling facilitate to give more details of relevant information. The proper empirical correlations of liquid water transport properties, such as capillary characteristics, water relative permeability and effective contact angle, are crucial to two phase flow modeling and cell performance prediction. In this work, researches on these properties in the last decade are reviewed. Various efforts have been devoted to determine the water transport properties for GDMs. However, most of the experimental studies are ex-situ measurements. In-situ measurements for GDMs and extending techniques available to study the catalyst layer and the microporous layer will be further challenges. Using the Leverett–Udell correlation is not recommended for quantitative modeling. The reliable Leverett-type correlation for GDMs, with the inclusion of the cosine of effective contact angle, is desirable but hard to be established for modeling two-phase flow in GDMs. A comprehensive data set of liquid water transport properties is needed for various GDM materials under different PEM fuel cell operating conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Siew Hwa Chan; Qinglin Liu; Renzhi Lyu; Zehua Pan; Ping Li;Abstract In this work, the effects of the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) electrode–yttria stabilized zirconia (YSZ) electrolyte interface on the stability of LSCF electrodes under high-current electrolysis are studied. Six different half-cells with different configurations are tested at 800 °C for 264 h under an electrolysis current of 1 A cm−2. A few concluding remarks can be drawn by comparing the behaviors of different cells. Firstly, it is confirmed that the formation of SrZrO3 at the interface will lead to the delamination of air electrode. Thus, the formation of SrZrO3 should be strictly prevented. Secondly, increasing sintering temperature can decrease the degradation rate of polarization resistance, RP, for LSCF electrodes. Thirdly, the increase of ohmic resistance, RS, comes from structural changes as the degradation rate in percentage is similar for cells with different electrolytes and electrodes. Fourthly, the LSCF electrode after the electrolysis test shows recrystallization and lattice shrink which could be the reason for the degradation of LSCF electrodes on Gd0.1Ce0.9O2–δ (GDC) electrolytes. Lastly, comparing all the samples, the cell composed of YSZ electrolyte, dense GDC interlayer and LSCF electrode sintered at 1000 °C can be used for future study on the degradation mechanisms of the LSCF air electrode and the electrolyte.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Siew Hwa Chan; Qinglin Liu; Renzhi Lyu; Zehua Pan; Ping Li;Abstract In this work, the effects of the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) electrode–yttria stabilized zirconia (YSZ) electrolyte interface on the stability of LSCF electrodes under high-current electrolysis are studied. Six different half-cells with different configurations are tested at 800 °C for 264 h under an electrolysis current of 1 A cm−2. A few concluding remarks can be drawn by comparing the behaviors of different cells. Firstly, it is confirmed that the formation of SrZrO3 at the interface will lead to the delamination of air electrode. Thus, the formation of SrZrO3 should be strictly prevented. Secondly, increasing sintering temperature can decrease the degradation rate of polarization resistance, RP, for LSCF electrodes. Thirdly, the increase of ohmic resistance, RS, comes from structural changes as the degradation rate in percentage is similar for cells with different electrolytes and electrodes. Fourthly, the LSCF electrode after the electrolysis test shows recrystallization and lattice shrink which could be the reason for the degradation of LSCF electrodes on Gd0.1Ce0.9O2–δ (GDC) electrolytes. Lastly, comparing all the samples, the cell composed of YSZ electrolyte, dense GDC interlayer and LSCF electrode sintered at 1000 °C can be used for future study on the degradation mechanisms of the LSCF air electrode and the electrolyte.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012 TurkeyPublisher:Elsevier BV Authors: Hamdullahpur, Feridun; Colpan, CAN ÖZGÜR; Fung, Alan;A two-dimensional model of a flowing-electrolyte direct methanol fuel cell has been developed to predict the performance of the cell under various operating conditions. Governing equations including the proton and electron transport, continuity, momentum, species transport for methanol, water, and oxygen, and the auxiliary equations are coupled to determine the output parameters. These parameters are the concentration distribution of the species, cell voltage, power density, and the electrical efficiency of the cell. After validation with the experimental data, several simulations are carried out to study the effects of the fluid velocity at the fuel, air, and flowing electrolyte channel inlets on the output parameters. In addition, the effect of recirculating the methanol at the flowing electrolyte channel outlet is assessed. The results show that higher fluid velocities at the fuel, air, and flowing electrolyte channel inlets are needed to obtain higher power densities. However, an increase in the fluid velocity at the fuel channel inlet causes a decrease in the electrical efficiency of the cell. Iris also found that the electrical efficiency of the FE-DMFC can be further increased if the methanol leaving the flowing electrolyte channel is recirculated into the methanol storage tank. (C) 2012 Elsevier B.V. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012 TurkeyPublisher:Elsevier BV Authors: Hamdullahpur, Feridun; Colpan, CAN ÖZGÜR; Fung, Alan;A two-dimensional model of a flowing-electrolyte direct methanol fuel cell has been developed to predict the performance of the cell under various operating conditions. Governing equations including the proton and electron transport, continuity, momentum, species transport for methanol, water, and oxygen, and the auxiliary equations are coupled to determine the output parameters. These parameters are the concentration distribution of the species, cell voltage, power density, and the electrical efficiency of the cell. After validation with the experimental data, several simulations are carried out to study the effects of the fluid velocity at the fuel, air, and flowing electrolyte channel inlets on the output parameters. In addition, the effect of recirculating the methanol at the flowing electrolyte channel outlet is assessed. The results show that higher fluid velocities at the fuel, air, and flowing electrolyte channel inlets are needed to obtain higher power densities. However, an increase in the fluid velocity at the fuel channel inlet causes a decrease in the electrical efficiency of the cell. Iris also found that the electrical efficiency of the FE-DMFC can be further increased if the methanol leaving the flowing electrolyte channel is recirculated into the methanol storage tank. (C) 2012 Elsevier B.V. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: S. Chevalier; N. Lavielle; B.D. Hatton; A. Bazylak;Abstract In this first of a series of two papers, we report an in-depth analysis of the impact of the gas diffusion layer (GDL) structure on the polymer electrolyte membrane (PEM) fuel cell performance through the use of custom GDLs fabricated in-house. Hydrophobic electrospun nanofibrous gas diffusion layers (eGDLs) are fabricated with controlled fibre diameter and alignment. The eGDLs are rendered hydrophobic through direct surface functionalization, and this molecular grafting is achieved in the absence of structural alteration. The fibre diameter, chemical composition, and electrical conductivity of the eGDL are characterized, and the impact of eGDL structure on fuel cell performance is analysed. We observe that the eGDL facilitates higher fuel cell power densities compared to a commercial GDL (Toray TGP-H-60) at highly humidified operating conditions. The ohmic resistance of the fuel cell is found to significantly increase with increasing inter-fiber distance. It is also observed that the addition of a hydrophobic treatment enhances membrane hydration, and fibres perpendicularly aligned to the channel direction may enhance the contact area between the catalyst layer and the GDL.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2017.03.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2017.03.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: S. Chevalier; N. Lavielle; B.D. Hatton; A. Bazylak;Abstract In this first of a series of two papers, we report an in-depth analysis of the impact of the gas diffusion layer (GDL) structure on the polymer electrolyte membrane (PEM) fuel cell performance through the use of custom GDLs fabricated in-house. Hydrophobic electrospun nanofibrous gas diffusion layers (eGDLs) are fabricated with controlled fibre diameter and alignment. The eGDLs are rendered hydrophobic through direct surface functionalization, and this molecular grafting is achieved in the absence of structural alteration. The fibre diameter, chemical composition, and electrical conductivity of the eGDL are characterized, and the impact of eGDL structure on fuel cell performance is analysed. We observe that the eGDL facilitates higher fuel cell power densities compared to a commercial GDL (Toray TGP-H-60) at highly humidified operating conditions. The ohmic resistance of the fuel cell is found to significantly increase with increasing inter-fiber distance. It is also observed that the addition of a hydrophobic treatment enhances membrane hydration, and fibres perpendicularly aligned to the channel direction may enhance the contact area between the catalyst layer and the GDL.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2017.03.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2017.03.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Jie Gao; Peng Wang; Naiqing Zhang; Shiru Le; Keening Sun; Xiaoliang Zhou;Abstract A co-tape casting technique was applied to fabricate electrolyte/anode for solid oxide fuel cells. YSZ and NiO–YSZ powders are raw materials for electrolyte and anode, respectively. Through adjusting the Polyvinyl Butyral (PVB) amount in slurry, the co-sintering temperature for electrolyte/anode could be dropped. After being co-sintered at 1400 °C for 5 h, the half-cells with dense electrolytes and large three phase boundaries were obtained. The improved unit cell exhibited a maximum power density of 589 mW cm −2 at 800 °C. At the voltage of 0.7 V, the current densities of the cell reached 667 mA cm −2 . When the electrolyte and the anode were cast within one step and sintered together at 1250 °C for 5 h and the thickness of electrolyte was controlled exactly at 20 μm, the open-circuit voltage (OCV) of the cell could reach 1.11 V at 800 °C and the maximum power densities were 739, 950 and 1222 mW cm −2 at 750, 800 and 850 °C, respectively, with H 2 as the fuel under a flow rate of 50 sccm and the cathode exposed to the stationary air. Under the voltage of 0.7 V, the current densities of cell were 875, 1126 and 1501 mA cm −2 , respectively. These are attributed to the large anode three phase boundaries and uniform electrolyte obtained under the lower sintering temperature. The electrochemical characteristics of the cells were investigated and discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2009.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2009.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Jie Gao; Peng Wang; Naiqing Zhang; Shiru Le; Keening Sun; Xiaoliang Zhou;Abstract A co-tape casting technique was applied to fabricate electrolyte/anode for solid oxide fuel cells. YSZ and NiO–YSZ powders are raw materials for electrolyte and anode, respectively. Through adjusting the Polyvinyl Butyral (PVB) amount in slurry, the co-sintering temperature for electrolyte/anode could be dropped. After being co-sintered at 1400 °C for 5 h, the half-cells with dense electrolytes and large three phase boundaries were obtained. The improved unit cell exhibited a maximum power density of 589 mW cm −2 at 800 °C. At the voltage of 0.7 V, the current densities of the cell reached 667 mA cm −2 . When the electrolyte and the anode were cast within one step and sintered together at 1250 °C for 5 h and the thickness of electrolyte was controlled exactly at 20 μm, the open-circuit voltage (OCV) of the cell could reach 1.11 V at 800 °C and the maximum power densities were 739, 950 and 1222 mW cm −2 at 750, 800 and 850 °C, respectively, with H 2 as the fuel under a flow rate of 50 sccm and the cathode exposed to the stationary air. Under the voltage of 0.7 V, the current densities of cell were 875, 1126 and 1501 mA cm −2 , respectively. These are attributed to the large anode three phase boundaries and uniform electrolyte obtained under the lower sintering temperature. The electrochemical characteristics of the cells were investigated and discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2009.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2009.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 TurkeyPublisher:Elsevier BV Authors: Cruickshank, Cynthia Ann; Matida, Edgar; Hamdullahpur, Feridun; Colpan, CAN ÖZGÜR;In this study, the performance characteristics of a flowing electrolyte-direct methanol fuel cell (FE-DMFC) and a direct methanol fuel cell (DMFC) are evaluated by computer simulations; and results are compared to experimental data found in the literature. Simulations are carried out to assess the effects of the operating parameters on the output parameters; namely, methanol concentration distribution, cell voltage, power density, and electrical efficiency of the cell. The operating parameters studied include the electrolyte flow rate, flowing electrolyte channel thickness, and methanol concentration at the feed stream. In addition, the effect of the circulation of the flowing electrolyte channel outlet stream on the performance is discussed. The results show that the maximum power densities that could be achieved do not significantly differ between these two fuel cells; however the electrical efficiency could be increased by 57% when FE-DMFC is used instead of DMFC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 TurkeyPublisher:Elsevier BV Authors: Cruickshank, Cynthia Ann; Matida, Edgar; Hamdullahpur, Feridun; Colpan, CAN ÖZGÜR;In this study, the performance characteristics of a flowing electrolyte-direct methanol fuel cell (FE-DMFC) and a direct methanol fuel cell (DMFC) are evaluated by computer simulations; and results are compared to experimental data found in the literature. Simulations are carried out to assess the effects of the operating parameters on the output parameters; namely, methanol concentration distribution, cell voltage, power density, and electrical efficiency of the cell. The operating parameters studied include the electrolyte flow rate, flowing electrolyte channel thickness, and methanol concentration at the feed stream. In addition, the effect of the circulation of the flowing electrolyte channel outlet stream on the performance is discussed. The results show that the maximum power densities that could be achieved do not significantly differ between these two fuel cells; however the electrical efficiency could be increased by 57% when FE-DMFC is used instead of DMFC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Martin Miller; Martin Miller; Aimy Bazylak;This paper presents an overview of polymer electrolyte membrane fuel cell (PEMFC) stack testing. Stack testing is critical for evaluating and demonstrating the viability and durability required for commercial applications. Single cell performance cannot be employed alone to fully derive the expected performance of PEMFC stacks, due to the non-uniformity in potential, temperature, and reactant and product flow distributions observed in stacks. In this paper, we provide a comprehensive review of the state-of-the art in PEMFC testing. We discuss the main topics of investigation, including single cell vs. stack-level performance, cell voltage uniformity, influence of operating conditions, durability and degradation, dynamic operation, and stack demonstrations. We also present opportunities for future work, including the need to verify the impact of stack size and cell voltage uniformity on performance, determine operating conditions for achieving a balance between electrical efficiency and flooding/dry-out, meet lifetime requirements through endurance testing, and develop a stronger understanding of degradation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.07.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu166 citations 166 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.07.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Martin Miller; Martin Miller; Aimy Bazylak;This paper presents an overview of polymer electrolyte membrane fuel cell (PEMFC) stack testing. Stack testing is critical for evaluating and demonstrating the viability and durability required for commercial applications. Single cell performance cannot be employed alone to fully derive the expected performance of PEMFC stacks, due to the non-uniformity in potential, temperature, and reactant and product flow distributions observed in stacks. In this paper, we provide a comprehensive review of the state-of-the art in PEMFC testing. We discuss the main topics of investigation, including single cell vs. stack-level performance, cell voltage uniformity, influence of operating conditions, durability and degradation, dynamic operation, and stack demonstrations. We also present opportunities for future work, including the need to verify the impact of stack size and cell voltage uniformity on performance, determine operating conditions for achieving a balance between electrical efficiency and flooding/dry-out, meet lifetime requirements through endurance testing, and develop a stronger understanding of degradation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.07.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu166 citations 166 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.07.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Chenxi Sun; Xiangkun Ma; Tao Zhang; Yi Zou; Huamin Zhang;Abstract Electrolyte flow rate is a key factor that affects the performance of vanadium redox flow battery (VRFB). A kilo-watt class VRFB system is fabricated to investigate the effects of electrolyte flow rate on the performance of VRFB. The experiments show that the capacity increases, but the system efficiency decreases with the increase of electrolyte flow rate. An optimal strategy of electrolyte flow rate is proposed to improve the system efficiency and keep the high capacity simultaneously, which is corresponding to optimize the electrolyte flow rate at different stages of charge and discharge processes. The results show that the system efficiency can be improved as high as 8% when keeping high capacity simultaneously.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2011.11.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu180 citations 180 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2011.11.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Chenxi Sun; Xiangkun Ma; Tao Zhang; Yi Zou; Huamin Zhang;Abstract Electrolyte flow rate is a key factor that affects the performance of vanadium redox flow battery (VRFB). A kilo-watt class VRFB system is fabricated to investigate the effects of electrolyte flow rate on the performance of VRFB. The experiments show that the capacity increases, but the system efficiency decreases with the increase of electrolyte flow rate. An optimal strategy of electrolyte flow rate is proposed to improve the system efficiency and keep the high capacity simultaneously, which is corresponding to optimize the electrolyte flow rate at different stages of charge and discharge processes. The results show that the system efficiency can be improved as high as 8% when keeping high capacity simultaneously.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2011.11.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu180 citations 180 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2011.11.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Ruiqiang Yan; Jianfeng Gao; Guangyao Meng; Jianjun Ma; Qianli Ma; Sa Zhou;Abstract Ammonia is a possible candidate as the fuel for solid oxide fuel cells (SOFCs). In this work, an anode-supported SOFC based on yttrium-stabled zircite (YSZ) thin-film electrolyte was fabricated by a simple dry-pressing process. Directly fueled by commercial liquefied ammonia, the single cell was tested at temperatures from 650 to 850 °C. The maximum power densities were 299 and 526 mW cm −2 at 750 and 850 °C, respectively, only slightly lower than that fueled by hydrogen. Analysis of open current voltages (OCVs) of the cell indicated the oxidation of ammonia within a SOFC is a two-stage process. Impedance spectra showed the cell fueled by ammonia had the same electrolyte resistances as that fueled by hydrogen, but a little larger interfacial polarization resistances. Further, the performances of the cell were essentially determined by the interfacial resistances under 750 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2006.09.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu146 citations 146 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2006.09.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Ruiqiang Yan; Jianfeng Gao; Guangyao Meng; Jianjun Ma; Qianli Ma; Sa Zhou;Abstract Ammonia is a possible candidate as the fuel for solid oxide fuel cells (SOFCs). In this work, an anode-supported SOFC based on yttrium-stabled zircite (YSZ) thin-film electrolyte was fabricated by a simple dry-pressing process. Directly fueled by commercial liquefied ammonia, the single cell was tested at temperatures from 650 to 850 °C. The maximum power densities were 299 and 526 mW cm −2 at 750 and 850 °C, respectively, only slightly lower than that fueled by hydrogen. Analysis of open current voltages (OCVs) of the cell indicated the oxidation of ammonia within a SOFC is a two-stage process. Impedance spectra showed the cell fueled by ammonia had the same electrolyte resistances as that fueled by hydrogen, but a little larger interfacial polarization resistances. Further, the performances of the cell were essentially determined by the interfacial resistances under 750 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2006.09.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu146 citations 146 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2006.09.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:NSERCNSERCLin Ma; Julian Self; Mengyun Nie; Stephen Glazier; David Yaohui Wang; Yong-Shou Lin; J.R. Dahn;Abstract Li[Ni 1/3 Mn 1/3 Co 1/3 ]O 2 /graphite, Li[Ni 0.5 Mn 0.3 Co 0.2 ]O 2 /graphite and Li[Ni 0.6 Mn 0.2 Co 0.2 O 2 ]/graphite pouch cells were examined with and without electrolyte additives using the ultra high precision charger at Dalhousie University, electrochemical impedance spectroscopy, gas evolution measurements and “cycle-store” tests. The electrolyte additives tested were vinylene carbonate (VC), prop-1-ene-1,3-sultone (PES), pyridine-boron trifluoride (PBF), 2% PES + 1% methylene methanedisulfonate (MMDS) + 1% tris(trimethylsilyl) phosphite (TTSPi) and 0.5% pyrazine di-boron trifluoride (PRZ) + 1% MMDS. The charge end-point capacity slippage, capacity fade, coulombic efficiency, impedance change during cycling, gas evolution and voltage drop during “cycle-store” testing were compared to gain an understanding of the effects of these promising electrolyte additives or additive combinations on the different types of pouch cells. It is hoped that this report can be used as a guide or reference for the wise choice of electrolyte additives in Li[Ni 1/3 Mn 1/3 Co 1/3 ]O 2 /graphite, Li[Ni 0.5 Mn 0.3 Co 0.2 ]O 2 /graphite and Li[Ni 0.6 Mn 0.2 Co 0.2 O 2 ]/graphite pouch cells and also to show the shortcomings of particular positive electrode compositions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:NSERCNSERCLin Ma; Julian Self; Mengyun Nie; Stephen Glazier; David Yaohui Wang; Yong-Shou Lin; J.R. Dahn;Abstract Li[Ni 1/3 Mn 1/3 Co 1/3 ]O 2 /graphite, Li[Ni 0.5 Mn 0.3 Co 0.2 ]O 2 /graphite and Li[Ni 0.6 Mn 0.2 Co 0.2 O 2 ]/graphite pouch cells were examined with and without electrolyte additives using the ultra high precision charger at Dalhousie University, electrochemical impedance spectroscopy, gas evolution measurements and “cycle-store” tests. The electrolyte additives tested were vinylene carbonate (VC), prop-1-ene-1,3-sultone (PES), pyridine-boron trifluoride (PBF), 2% PES + 1% methylene methanedisulfonate (MMDS) + 1% tris(trimethylsilyl) phosphite (TTSPi) and 0.5% pyrazine di-boron trifluoride (PRZ) + 1% MMDS. The charge end-point capacity slippage, capacity fade, coulombic efficiency, impedance change during cycling, gas evolution and voltage drop during “cycle-store” testing were compared to gain an understanding of the effects of these promising electrolyte additives or additive combinations on the different types of pouch cells. It is hoped that this report can be used as a guide or reference for the wise choice of electrolyte additives in Li[Ni 1/3 Mn 1/3 Co 1/3 ]O 2 /graphite, Li[Ni 0.5 Mn 0.3 Co 0.2 ]O 2 /graphite and Li[Ni 0.6 Mn 0.2 Co 0.2 O 2 ]/graphite pouch cells and also to show the shortcomings of particular positive electrode compositions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Xunliang Liu; Fangyuan Peng; Guofeng Lou; Zhi Wen;Abstract Fundamental understanding of liquid water transport in gas diffusion media (GDM) is important to improve the material and structure design of polymer electrolyte membrane (PEM) fuel cells. Continuum methods of two-phase flow modeling facilitate to give more details of relevant information. The proper empirical correlations of liquid water transport properties, such as capillary characteristics, water relative permeability and effective contact angle, are crucial to two phase flow modeling and cell performance prediction. In this work, researches on these properties in the last decade are reviewed. Various efforts have been devoted to determine the water transport properties for GDMs. However, most of the experimental studies are ex-situ measurements. In-situ measurements for GDMs and extending techniques available to study the catalyst layer and the microporous layer will be further challenges. Using the Leverett–Udell correlation is not recommended for quantitative modeling. The reliable Leverett-type correlation for GDMs, with the inclusion of the cosine of effective contact angle, is desirable but hard to be established for modeling two-phase flow in GDMs. A comprehensive data set of liquid water transport properties is needed for various GDM materials under different PEM fuel cell operating conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Xunliang Liu; Fangyuan Peng; Guofeng Lou; Zhi Wen;Abstract Fundamental understanding of liquid water transport in gas diffusion media (GDM) is important to improve the material and structure design of polymer electrolyte membrane (PEM) fuel cells. Continuum methods of two-phase flow modeling facilitate to give more details of relevant information. The proper empirical correlations of liquid water transport properties, such as capillary characteristics, water relative permeability and effective contact angle, are crucial to two phase flow modeling and cell performance prediction. In this work, researches on these properties in the last decade are reviewed. Various efforts have been devoted to determine the water transport properties for GDMs. However, most of the experimental studies are ex-situ measurements. In-situ measurements for GDMs and extending techniques available to study the catalyst layer and the microporous layer will be further challenges. Using the Leverett–Udell correlation is not recommended for quantitative modeling. The reliable Leverett-type correlation for GDMs, with the inclusion of the cosine of effective contact angle, is desirable but hard to be established for modeling two-phase flow in GDMs. A comprehensive data set of liquid water transport properties is needed for various GDM materials under different PEM fuel cell operating conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.08.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Siew Hwa Chan; Qinglin Liu; Renzhi Lyu; Zehua Pan; Ping Li;Abstract In this work, the effects of the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) electrode–yttria stabilized zirconia (YSZ) electrolyte interface on the stability of LSCF electrodes under high-current electrolysis are studied. Six different half-cells with different configurations are tested at 800 °C for 264 h under an electrolysis current of 1 A cm−2. A few concluding remarks can be drawn by comparing the behaviors of different cells. Firstly, it is confirmed that the formation of SrZrO3 at the interface will lead to the delamination of air electrode. Thus, the formation of SrZrO3 should be strictly prevented. Secondly, increasing sintering temperature can decrease the degradation rate of polarization resistance, RP, for LSCF electrodes. Thirdly, the increase of ohmic resistance, RS, comes from structural changes as the degradation rate in percentage is similar for cells with different electrolytes and electrodes. Fourthly, the LSCF electrode after the electrolysis test shows recrystallization and lattice shrink which could be the reason for the degradation of LSCF electrodes on Gd0.1Ce0.9O2–δ (GDC) electrolytes. Lastly, comparing all the samples, the cell composed of YSZ electrolyte, dense GDC interlayer and LSCF electrode sintered at 1000 °C can be used for future study on the degradation mechanisms of the LSCF air electrode and the electrolyte.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Siew Hwa Chan; Qinglin Liu; Renzhi Lyu; Zehua Pan; Ping Li;Abstract In this work, the effects of the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) electrode–yttria stabilized zirconia (YSZ) electrolyte interface on the stability of LSCF electrodes under high-current electrolysis are studied. Six different half-cells with different configurations are tested at 800 °C for 264 h under an electrolysis current of 1 A cm−2. A few concluding remarks can be drawn by comparing the behaviors of different cells. Firstly, it is confirmed that the formation of SrZrO3 at the interface will lead to the delamination of air electrode. Thus, the formation of SrZrO3 should be strictly prevented. Secondly, increasing sintering temperature can decrease the degradation rate of polarization resistance, RP, for LSCF electrodes. Thirdly, the increase of ohmic resistance, RS, comes from structural changes as the degradation rate in percentage is similar for cells with different electrolytes and electrodes. Fourthly, the LSCF electrode after the electrolysis test shows recrystallization and lattice shrink which could be the reason for the degradation of LSCF electrodes on Gd0.1Ce0.9O2–δ (GDC) electrolytes. Lastly, comparing all the samples, the cell composed of YSZ electrolyte, dense GDC interlayer and LSCF electrode sintered at 1000 °C can be used for future study on the degradation mechanisms of the LSCF air electrode and the electrolyte.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012 TurkeyPublisher:Elsevier BV Authors: Hamdullahpur, Feridun; Colpan, CAN ÖZGÜR; Fung, Alan;A two-dimensional model of a flowing-electrolyte direct methanol fuel cell has been developed to predict the performance of the cell under various operating conditions. Governing equations including the proton and electron transport, continuity, momentum, species transport for methanol, water, and oxygen, and the auxiliary equations are coupled to determine the output parameters. These parameters are the concentration distribution of the species, cell voltage, power density, and the electrical efficiency of the cell. After validation with the experimental data, several simulations are carried out to study the effects of the fluid velocity at the fuel, air, and flowing electrolyte channel inlets on the output parameters. In addition, the effect of recirculating the methanol at the flowing electrolyte channel outlet is assessed. The results show that higher fluid velocities at the fuel, air, and flowing electrolyte channel inlets are needed to obtain higher power densities. However, an increase in the fluid velocity at the fuel channel inlet causes a decrease in the electrical efficiency of the cell. Iris also found that the electrical efficiency of the FE-DMFC can be further increased if the methanol leaving the flowing electrolyte channel is recirculated into the methanol storage tank. (C) 2012 Elsevier B.V. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012 TurkeyPublisher:Elsevier BV Authors: Hamdullahpur, Feridun; Colpan, CAN ÖZGÜR; Fung, Alan;A two-dimensional model of a flowing-electrolyte direct methanol fuel cell has been developed to predict the performance of the cell under various operating conditions. Governing equations including the proton and electron transport, continuity, momentum, species transport for methanol, water, and oxygen, and the auxiliary equations are coupled to determine the output parameters. These parameters are the concentration distribution of the species, cell voltage, power density, and the electrical efficiency of the cell. After validation with the experimental data, several simulations are carried out to study the effects of the fluid velocity at the fuel, air, and flowing electrolyte channel inlets on the output parameters. In addition, the effect of recirculating the methanol at the flowing electrolyte channel outlet is assessed. The results show that higher fluid velocities at the fuel, air, and flowing electrolyte channel inlets are needed to obtain higher power densities. However, an increase in the fluid velocity at the fuel channel inlet causes a decrease in the electrical efficiency of the cell. Iris also found that the electrical efficiency of the FE-DMFC can be further increased if the methanol leaving the flowing electrolyte channel is recirculated into the methanol storage tank. (C) 2012 Elsevier B.V. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: S. Chevalier; N. Lavielle; B.D. Hatton; A. Bazylak;Abstract In this first of a series of two papers, we report an in-depth analysis of the impact of the gas diffusion layer (GDL) structure on the polymer electrolyte membrane (PEM) fuel cell performance through the use of custom GDLs fabricated in-house. Hydrophobic electrospun nanofibrous gas diffusion layers (eGDLs) are fabricated with controlled fibre diameter and alignment. The eGDLs are rendered hydrophobic through direct surface functionalization, and this molecular grafting is achieved in the absence of structural alteration. The fibre diameter, chemical composition, and electrical conductivity of the eGDL are characterized, and the impact of eGDL structure on fuel cell performance is analysed. We observe that the eGDL facilitates higher fuel cell power densities compared to a commercial GDL (Toray TGP-H-60) at highly humidified operating conditions. The ohmic resistance of the fuel cell is found to significantly increase with increasing inter-fiber distance. It is also observed that the addition of a hydrophobic treatment enhances membrane hydration, and fibres perpendicularly aligned to the channel direction may enhance the contact area between the catalyst layer and the GDL.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2017.03.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2017.03.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: S. Chevalier; N. Lavielle; B.D. Hatton; A. Bazylak;Abstract In this first of a series of two papers, we report an in-depth analysis of the impact of the gas diffusion layer (GDL) structure on the polymer electrolyte membrane (PEM) fuel cell performance through the use of custom GDLs fabricated in-house. Hydrophobic electrospun nanofibrous gas diffusion layers (eGDLs) are fabricated with controlled fibre diameter and alignment. The eGDLs are rendered hydrophobic through direct surface functionalization, and this molecular grafting is achieved in the absence of structural alteration. The fibre diameter, chemical composition, and electrical conductivity of the eGDL are characterized, and the impact of eGDL structure on fuel cell performance is analysed. We observe that the eGDL facilitates higher fuel cell power densities compared to a commercial GDL (Toray TGP-H-60) at highly humidified operating conditions. The ohmic resistance of the fuel cell is found to significantly increase with increasing inter-fiber distance. It is also observed that the addition of a hydrophobic treatment enhances membrane hydration, and fibres perpendicularly aligned to the channel direction may enhance the contact area between the catalyst layer and the GDL.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2017.03.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2017.03.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Jie Gao; Peng Wang; Naiqing Zhang; Shiru Le; Keening Sun; Xiaoliang Zhou;Abstract A co-tape casting technique was applied to fabricate electrolyte/anode for solid oxide fuel cells. YSZ and NiO–YSZ powders are raw materials for electrolyte and anode, respectively. Through adjusting the Polyvinyl Butyral (PVB) amount in slurry, the co-sintering temperature for electrolyte/anode could be dropped. After being co-sintered at 1400 °C for 5 h, the half-cells with dense electrolytes and large three phase boundaries were obtained. The improved unit cell exhibited a maximum power density of 589 mW cm −2 at 800 °C. At the voltage of 0.7 V, the current densities of the cell reached 667 mA cm −2 . When the electrolyte and the anode were cast within one step and sintered together at 1250 °C for 5 h and the thickness of electrolyte was controlled exactly at 20 μm, the open-circuit voltage (OCV) of the cell could reach 1.11 V at 800 °C and the maximum power densities were 739, 950 and 1222 mW cm −2 at 750, 800 and 850 °C, respectively, with H 2 as the fuel under a flow rate of 50 sccm and the cathode exposed to the stationary air. Under the voltage of 0.7 V, the current densities of cell were 875, 1126 and 1501 mA cm −2 , respectively. These are attributed to the large anode three phase boundaries and uniform electrolyte obtained under the lower sintering temperature. The electrochemical characteristics of the cells were investigated and discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2009.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2009.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Jie Gao; Peng Wang; Naiqing Zhang; Shiru Le; Keening Sun; Xiaoliang Zhou;Abstract A co-tape casting technique was applied to fabricate electrolyte/anode for solid oxide fuel cells. YSZ and NiO–YSZ powders are raw materials for electrolyte and anode, respectively. Through adjusting the Polyvinyl Butyral (PVB) amount in slurry, the co-sintering temperature for electrolyte/anode could be dropped. After being co-sintered at 1400 °C for 5 h, the half-cells with dense electrolytes and large three phase boundaries were obtained. The improved unit cell exhibited a maximum power density of 589 mW cm −2 at 800 °C. At the voltage of 0.7 V, the current densities of the cell reached 667 mA cm −2 . When the electrolyte and the anode were cast within one step and sintered together at 1250 °C for 5 h and the thickness of electrolyte was controlled exactly at 20 μm, the open-circuit voltage (OCV) of the cell could reach 1.11 V at 800 °C and the maximum power densities were 739, 950 and 1222 mW cm −2 at 750, 800 and 850 °C, respectively, with H 2 as the fuel under a flow rate of 50 sccm and the cathode exposed to the stationary air. Under the voltage of 0.7 V, the current densities of cell were 875, 1126 and 1501 mA cm −2 , respectively. These are attributed to the large anode three phase boundaries and uniform electrolyte obtained under the lower sintering temperature. The electrochemical characteristics of the cells were investigated and discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2009.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2009.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 TurkeyPublisher:Elsevier BV Authors: Cruickshank, Cynthia Ann; Matida, Edgar; Hamdullahpur, Feridun; Colpan, CAN ÖZGÜR;In this study, the performance characteristics of a flowing electrolyte-direct methanol fuel cell (FE-DMFC) and a direct methanol fuel cell (DMFC) are evaluated by computer simulations; and results are compared to experimental data found in the literature. Simulations are carried out to assess the effects of the operating parameters on the output parameters; namely, methanol concentration distribution, cell voltage, power density, and electrical efficiency of the cell. The operating parameters studied include the electrolyte flow rate, flowing electrolyte channel thickness, and methanol concentration at the feed stream. In addition, the effect of the circulation of the flowing electrolyte channel outlet stream on the performance is discussed. The results show that the maximum power densities that could be achieved do not significantly differ between these two fuel cells; however the electrical efficiency could be increased by 57% when FE-DMFC is used instead of DMFC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 TurkeyPublisher:Elsevier BV Authors: Cruickshank, Cynthia Ann; Matida, Edgar; Hamdullahpur, Feridun; Colpan, CAN ÖZGÜR;In this study, the performance characteristics of a flowing electrolyte-direct methanol fuel cell (FE-DMFC) and a direct methanol fuel cell (DMFC) are evaluated by computer simulations; and results are compared to experimental data found in the literature. Simulations are carried out to assess the effects of the operating parameters on the output parameters; namely, methanol concentration distribution, cell voltage, power density, and electrical efficiency of the cell. The operating parameters studied include the electrolyte flow rate, flowing electrolyte channel thickness, and methanol concentration at the feed stream. In addition, the effect of the circulation of the flowing electrolyte channel outlet stream on the performance is discussed. The results show that the maximum power densities that could be achieved do not significantly differ between these two fuel cells; however the electrical efficiency could be increased by 57% when FE-DMFC is used instead of DMFC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Martin Miller; Martin Miller; Aimy Bazylak;This paper presents an overview of polymer electrolyte membrane fuel cell (PEMFC) stack testing. Stack testing is critical for evaluating and demonstrating the viability and durability required for commercial applications. Single cell performance cannot be employed alone to fully derive the expected performance of PEMFC stacks, due to the non-uniformity in potential, temperature, and reactant and product flow distributions observed in stacks. In this paper, we provide a comprehensive review of the state-of-the art in PEMFC testing. We discuss the main topics of investigation, including single cell vs. stack-level performance, cell voltage uniformity, influence of operating conditions, durability and degradation, dynamic operation, and stack demonstrations. We also present opportunities for future work, including the need to verify the impact of stack size and cell voltage uniformity on performance, determine operating conditions for achieving a balance between electrical efficiency and flooding/dry-out, meet lifetime requirements through endurance testing, and develop a stronger understanding of degradation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.07.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu166 citations 166 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.07.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Martin Miller; Martin Miller; Aimy Bazylak;This paper presents an overview of polymer electrolyte membrane fuel cell (PEMFC) stack testing. Stack testing is critical for evaluating and demonstrating the viability and durability required for commercial applications. Single cell performance cannot be employed alone to fully derive the expected performance of PEMFC stacks, due to the non-uniformity in potential, temperature, and reactant and product flow distributions observed in stacks. In this paper, we provide a comprehensive review of the state-of-the art in PEMFC testing. We discuss the main topics of investigation, including single cell vs. stack-level performance, cell voltage uniformity, influence of operating conditions, durability and degradation, dynamic operation, and stack demonstrations. We also present opportunities for future work, including the need to verify the impact of stack size and cell voltage uniformity on performance, determine operating conditions for achieving a balance between electrical efficiency and flooding/dry-out, meet lifetime requirements through endurance testing, and develop a stronger understanding of degradation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.07.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu166 citations 166 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2010.07.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Chenxi Sun; Xiangkun Ma; Tao Zhang; Yi Zou; Huamin Zhang;Abstract Electrolyte flow rate is a key factor that affects the performance of vanadium redox flow battery (VRFB). A kilo-watt class VRFB system is fabricated to investigate the effects of electrolyte flow rate on the performance of VRFB. The experiments show that the capacity increases, but the system efficiency decreases with the increase of electrolyte flow rate. An optimal strategy of electrolyte flow rate is proposed to improve the system efficiency and keep the high capacity simultaneously, which is corresponding to optimize the electrolyte flow rate at different stages of charge and discharge processes. The results show that the system efficiency can be improved as high as 8% when keeping high capacity simultaneously.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2011.11.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu180 citations 180 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2011.11.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Chenxi Sun; Xiangkun Ma; Tao Zhang; Yi Zou; Huamin Zhang;Abstract Electrolyte flow rate is a key factor that affects the performance of vanadium redox flow battery (VRFB). A kilo-watt class VRFB system is fabricated to investigate the effects of electrolyte flow rate on the performance of VRFB. The experiments show that the capacity increases, but the system efficiency decreases with the increase of electrolyte flow rate. An optimal strategy of electrolyte flow rate is proposed to improve the system efficiency and keep the high capacity simultaneously, which is corresponding to optimize the electrolyte flow rate at different stages of charge and discharge processes. The results show that the system efficiency can be improved as high as 8% when keeping high capacity simultaneously.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2011.11.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu180 citations 180 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2011.11.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu