
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A systematic study of some promising electrolyte additives in Li[Ni1/3Mn1/3Co1/3]O2/graphite, Li[Ni0.5Mn0.3Co0.2]/graphite and Li[Ni0.6Mn0.2Co0.2]/graphite pouch cells

Abstract Li[Ni 1/3 Mn 1/3 Co 1/3 ]O 2 /graphite, Li[Ni 0.5 Mn 0.3 Co 0.2 ]O 2 /graphite and Li[Ni 0.6 Mn 0.2 Co 0.2 O 2 ]/graphite pouch cells were examined with and without electrolyte additives using the ultra high precision charger at Dalhousie University, electrochemical impedance spectroscopy, gas evolution measurements and “cycle-store” tests. The electrolyte additives tested were vinylene carbonate (VC), prop-1-ene-1,3-sultone (PES), pyridine-boron trifluoride (PBF), 2% PES + 1% methylene methanedisulfonate (MMDS) + 1% tris(trimethylsilyl) phosphite (TTSPi) and 0.5% pyrazine di-boron trifluoride (PRZ) + 1% MMDS. The charge end-point capacity slippage, capacity fade, coulombic efficiency, impedance change during cycling, gas evolution and voltage drop during “cycle-store” testing were compared to gain an understanding of the effects of these promising electrolyte additives or additive combinations on the different types of pouch cells. It is hoped that this report can be used as a guide or reference for the wise choice of electrolyte additives in Li[Ni 1/3 Mn 1/3 Co 1/3 ]O 2 /graphite, Li[Ni 0.5 Mn 0.3 Co 0.2 ]O 2 /graphite and Li[Ni 0.6 Mn 0.2 Co 0.2 O 2 ]/graphite pouch cells and also to show the shortcomings of particular positive electrode compositions.
- Dalhousie University Canada
- Dalhousie University Canada
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
