- home
- Advanced Search
- Energy Research
- CN
- CA
- SG
- Applied Energy
- Energy Research
- CN
- CA
- SG
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2015 SingaporePublisher:Elsevier BV Authors: Zhi-Hui Zhang;Rajasekhar Balasubramanian;
Rajasekhar Balasubramanian
Rajasekhar Balasubramanian in OpenAIREMetal-based fuel-borne catalysts (FBCs) have been used with diesel fuels to effectively reduce soot and diesel particulate matter (DPM) emissions from both on-road and off-road applications. However, there is a lack of detailed investigations on the potential changes in the properties of particulates, when FBCs-doped fuels are combusted in diesel engines. This study fully evaluates the potential impacts of ferrocene-doped ultralow sulfur diesel (ULSD) fuels on physical, chemical and toxicological characteristics of the particulates emitted by a single cylinder, direct-injection diesel engine working at a constant speed and at three engine loads. The results indicated that ferrocene-doped fuels could effectively reduce the particulate mass and elemental carbon (EC) emissions, while increasing the proportion of both organic carbon (OC) and water-soluble organic carbon (WSOC) in particles. Particle-phase PAHs and n-alkanes emissions increased with an increase of Fe in the fuels. Ferrocene addition also led to lower soot ignition temperature and activation energy. However, the total number emissions of particles from ferrocene-doped fuels dramatically increased due to the formation of Fe-rich nuclei mode particles. Compared to pure ULSD, the particles emitted from ferrocene-doped fuels showed a slight decline in cell viability. The Fe in the particles and the changes in chemical composition of particulates are thought to be responsible for the variation of cell viability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.120000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.120000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Guangsuo Yu; Zhenghua Dai; Fuchen Wang; Xinlei Yu; Guo Qinghua; Hongjun Li; Yang Li;Abstract This study presents a detailed kinetic investigation into ultra-rich oxidation of H 2 S-CH 4 under high temperature (900–1250 °C) and ambient pressure. Effects of temperature, initial H 2 S/CH 4 ratio and equivalence ratio (Φ) on reactants conversions and products distributions were experimentally studied in a tubular flow reactor and kinetically analyzed by CHEMKIN software. A detailed kinetic mechanism involving 85 species and 515 reactions has been developed and validated using reference data for H 2 S-CH 4 decomposition and results from extended experimental conditions involving the O 2 addition. For H 2 S-CH 4 system, conversion of H 2 S increased steady with the rising temperature while reactivity of CH 4 was weak at temperature below 1000 °C. At temperature higher than 1000 °C, conversion of CH 4 increased rapidly and devoted further formation of H 2 and CS 2 mainly via reacting with H 2 S decomposition products. The H 2 production efficiency was negatively associated with initial H 2 S fraction as H 2 S decomposition was dominant H 2 source within 1150 °C. The stoichiometric ratio for H 2 S/CH 4 merely showed its advantage in H 2 production at higher temperature under which CH 4 reached its equilibrium conversion swiftly. Introduction of little amount of O 2 (Φ = 6 or higher) accelerated the whole reaction process and triggered H 2 S partial oxidation and H 2 formation at lower temperature. CH 4 explicitly showed inferior position in oxidation competition with H 2 S and maintained poor conversion at temperature below 950 °C. The results of rate of production (ROP) analysis at condition without O 2 showed that CH 4 reactivity showed dependence on free S radical via S + CH 4 = SH + CH 3 , and the formed CH 3 was mainly converted via reacting with SH and H radicals. CH 3 could be concurrently reverted to CH 4 via reactions with H 2 S and H 2 . O 2 activated the whole system by forming chain branching radicals O and OH. These radicals promoted H 2 S and CH 4 conversions to form richer S, H and CH 3 radicals. SH + CS = CS 2 + H was important for CS 2 formation and with presence of O 2 , CS 2 was likely to be consumed via oxidation reactions. Finally reaction pathways for H 2 S, CH 4 conversion and H 2 , CS 2 formation were presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.09.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.09.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 China (People's Republic of)Publisher:Elsevier BV Su, Shanhe; Liu, Tie; Wang, Yuan; Chen, Xiaohang; Wang, Jintong; Chen, Jincan;An electric and thermal model of the hybrid device consisting of a dye-sensitized solar cell (DSSC) and a thermoelectric generator (TEG) is studied for exploiting the solar full spectrum. Analytical expressions for the power outputs and efficiencies of the DSSC, TEG and hybrid device are derived. Temperature-dependent coefficients of the DSSC are introduced and their values being consistent with the experimental data are determined. The effects of the operating electric current, working temperature and temperature-dependent coefficient in the DSSC on the performance of the hybrid device are discussed in detail. The optimum performance characteristics of the hybrid derive at different temperature conditions and the DSSC at the reference temperature condition are compared. The parametric design criteria of the optimal coupling are given. These results obtained here may provide some guidance for the optimum design of practical hybrid devices.
Applied Energy arrow_drop_down Xiamen University Institutional RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.01.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down Xiamen University Institutional RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.01.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yi-Xin Cheng; Rui Zhao; Yi-Huan Huang;Wen-Long Cheng;
Wen-Long Cheng
Wen-Long Cheng in OpenAIREAbstract A high heat storage capacity form-stable composite phase change material (CPCM) with enhanced flame retardancy that integrated modified glass fibers with form-stable PCM was proposed. The modified glass fibers were wrapped by a composite flame retardant coating. The thermal and flame retardant properties of the CPCM were measured and compared to other CPCM samples. The results of vertical burning test indicated that the glass fibers improved the mechanical properties of the CPCM and prevented it from fracturing during the burning process. The modified glass fibers could further improve the flame retardancy of CPCM, and V-0 burning rating was achieved while the content of paraffin was maintained at 70 wt%, which means the proportion of flame retardants could be reduced. TGA results showed that the modified glass fibers could enhance the thermal stability and retard the degradation process of the CPCM, and the char residue was increased to 15.3%. Thermal cycling results indicated that the CPCM has good thermal reliability. The results of cone calorimeter test indicated that the peak heat release rate (PHRR) of flame retardant form-stable CPCM dropped by 58.8%, and the combustion rate could be greatly slowed down due to the protection of carbon layers formed by modified glass fibers. In addition, the thermal conductivity of CPCMs were greatly enhanced and the CPCM has good thermal reliability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors:Xiao Luo;
Xiao Luo
Xiao Luo in OpenAIRECongliang Huang;
Chuwen Guo; Shang Liu;Congliang Huang
Congliang Huang in OpenAIREAbstract In recent years, solar steam generation has attracted many attentions due to its potential applications in desalination, etc. In the present work, a bi-layer solar steam generation system is prepared by daubing carbon particles on the sintered sawdust film, which possesses an advantage of adjustable porosities compared to widely used wood. Then, the influence of the porosity on the evaporation performance is explored. The experimental result indicates that: the porosity could significantly affect the water transportation in the film, and the water diffusivity increases almost linearly with the increase of the porosity. The evaporation efficiency increases with the increasing porosity, until the porosity reaches about 0.52 then decrease slowly. The positive effect of the increased water diffusivity and the negative effect of the increased thermal conductivity of the bottom film layer determine that the porosity of 0.52 is optimal for improving the evaporation efficiency. Under a solar light power of 1 kW·m−2, the optimal porosity gives an evaporation efficiency of 77.64%, which is comparable to the best performance of bi-layer systems reported in previous works. The conduction of heat through the bottom layer to the bulk water and the convection heat loss on the top surface contribute 83% to the total heat losses in the system, suggesting that the energy losses of these two modes should be further reduced in the future applications. Considering the accessible materials, easy preparation, low cost and high efficiency, we conclude that the 0.52-porosity system is suitable for being used as an efficient solar steam generation device.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Lean Yu; Zishu Wang; Ling Tang;Abstract To enhance prediction accuracy and reduce computation complexity, a decomposition–ensemble methodology with data-characteristic-driven reconstruction is proposed for crude oil price forecasting, based on two promising principles of “divide and conquer” and “data-characteristic-driven modeling”. Actually, this proposed model improves the existing decomposition–ensemble techniques in the “divide and conquer” framework, by formulating and incorporating a data-characteristic-driven reconstruction method based on the “data-characteristic-driven modeling”. Four main steps are involved in the proposed methodology, i.e., data decomposition for simplifying the complex data, component reconstruction based on the “data-characteristic-driven modeling” for capturing inner factors and reducing computational cost, individual prediction for each reconstructed component via a certain artificial intelligence (AI) tool, and ensemble prediction for final output. In the proposed data-characteristic-driven reconstruction, all decomposed modes are thoroughly analyzed to explore the hidden data characteristics, and are accordingly reconstructed into some meaningful components. For illustration and verification, the West Texas Intermediate (WTI) and Brent crude oil spot prices are used as the sample data, and the empirical results indicate that the proposed model statistically outperforms all considered benchmark models (including popular AI single models, typical decomposition–ensemble models without reconstruction, and similar decomposition–ensemble models with other existing reconstruction methods), since it has higher prediction accuracy and less computational time.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.07.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu168 citations 168 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.07.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: G.H. Lim; Y.B. He; Patrick S. K. Chua;Abstract With the increasing demand for an environmentally-friendly fluid medium in the fluid-power industries, recent advances in water hydraulics technology have sparked renewed interest in the application of water, instead of oil, as the energy-transmission medium. This paper introduces the history of water hydraulics and its present research. The advantages and disadvantages of water as an energy-transmission medium are discussed. A water-hydraulic system in Nanyang Technological University is introduced.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(03)00064-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 1% influence Top 1% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(03)00064-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 China (People's Republic of)Publisher:Elsevier BV Weizheng Zhou; Erkki Hiltunen; Erkki Hiltunen; Zhaohua Li; Zhongming Wang; Liandong Zhu; Liandong Zhu; Qing Shu;Abstract Algae have been considered as a promising biodiesel feedstock. One of the major factors affecting large-scale algae technology application is poor wintering cultivation performance. In this study, an integrated approach is investigated combining freshwater microalgae Chlorella zofingiensis wintering cultivation in pilot-scale photobioreactors with artificial wastewater treatment. Mixotrophic culture with the addition of acetic acid (pH-regulation group) and autotrophic culture (control group) were designed, and the characteristics of algal growth, lipid and biodiesel production, and nitrogen and phosphate removal were examined. The results showed that, by using acetic acid three times per day to regulate pH at between 6.8 and 7.2, the total nitrogen (TN) and total phosphate (TP) removal could be increased from 45.2% to 73.5% and from 92.2% to 100%, respectively. Higher biomass productivity of 66.94 mg L−1 day−1 with specific growth rate of 0.260 day−1 was achieved in the pH-regulation group. The lipid content was much higher when using acetic acid to regulate pH, and the relative lipid productivity reached 37.48 mg L−1 day−1. The biodiesel yield in the pH-regulated group was 19.44% of dry weight, with 16–18 carbons as the most abundant composition for fatty acid methyl esters. The findings of the study prove that pH adjustment using acetic acid is efficient in cultivating C. zofingiensis in wastewater in winter for biodiesel production and nutrient reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu