- home
- Advanced Search
- Energy Research
- physical sciences
- 11. Sustainability
- 12. Responsible consumption
- CN
- DE
- NL
- Energy Research
- physical sciences
- 11. Sustainability
- 12. Responsible consumption
- CN
- DE
- NL
description Publicationkeyboard_double_arrow_right Article , Journal 2020 JapanPublisher:Elsevier BV Tamer M. Ismail; Yasunori Kobayashi; Kunio Yoshikawa; Ding Lu; Takahiro Kobori; Kuniomi Araki; Kiryu Kanazawa; Fumitake Takahashi; M.Abd El-Salam;Abstract Many organizations in the world are interested in waste management problems and their potential solutions. In order to solve these problems, a Japanese venture company has developed an innovative thermal decomposer for organic wastes called ERCM (Earth-Resource-Ceramic-Machine). The ERCM reactor employs electron injected air to promote the thermal decomposition reaction, while the effect of electron injection into air has not yet been clarified. An experimental work was performed using a fixed bed reactor to explore the effects of different parameters of electron injection into air, the reaction temperature and different feedstock on the syngas generation. The main purpose of this study is to clarify the phenomena occurring in the ERCM reactor where a direct current electric field is produced in the flame reaction zone to enhance the thermal decomposition of wastes. In this regard, a mathematical model for simulating the thermal decomposition of solid waste in the presence of an electric field have been developed. The equations of aero-thermochemistry are coupled to the balance equations for densities of charged species, and the Poisson equation for the electrical potential is solved. The model was validated by the experimental data and showed a good agreement. The results showed that the electric field significantly improves the stabilization of the flame. From the release behavior of CO and CO2, it is noted that the electron injection would affect the char combustion process significantly. Finally the effect of the flame reaction zone generated by the field induced ion wind on the thermal decomposition was investigated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Nuofu Chen; Han Zhang; Xiulan Zhang; Yiming Bai;AbstractEnergy is the biggest crisis to humanity in the future. Nowadays, most of the energy used on earth comes from oil, gas and coal. According to the recent exploring and consuming rates, the energy will be exhausted in 50-100 years. Whether we can solve the crisis is closely related to the survival of humanity on the earth. The irradiation from the sun is the biggest energy source. Building PV power plant to utilize the energy from sun will be an only way to sustain the life cycle on the earth. However, the development of PV power plants require the huge supply of PV cell and the fabrication process may bring a quantity of pollution and waste, which is harmful to the environment. On the other hand, super large PV power plant will occupy huge land. If the land cannot be explored and used reasonably, this will not benefit the human life either. In this article, we address the discussions about the above problems and propose the initial suggestions about development trend of PV industry and the safety operation mode of super PV power plant.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Yi Jiang; Tao Zhang; Xiaohua Liu; Lun Zhang;AbstractUsing a low supply water temperature in heating conditions and a high water temperature during cooling can increase energy efficiency, use renewable energy sources, and provide a comfortable and healthy indoor climate. High temperature cooling and low temperature heating is achieved by reducing temperature difference in heat trans er and energy transportation process. The losses in temperature difference can be classified into three types: by heat/moisture exchange; by energy transportation through air/water circulation; by indoor terminal that releases heat/cooling to indoor condit oned space. The air handling process of HVAC system and indoor terminals are the key factor of reducing temperature differen e.Aiming at the losses in HVAC system, Annex 59, titled High Temperature Cooling & Low Temperature Heating in Buildings, is a new international cooperative work under the framework of International Energy Agency (IEA) Energy in Buildings and Communities (EBC). This paper introduc s the background, scope, objective, structure and deliverables of Annex 59. Annex 59 will try to present a new perspective and a new concept to analyze HVAC system in buildings. The goal of the Annex is to build up new concept of analyzing HVAC system from the perspective of reducing mixture loss and transfer loss and th n apply it in high temperature cooling and low temperature heating system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:UKRI | Picsima SnugsUKRI| Picsima SnugsAuthors: Yangyang Meng; Qingjie Qi; Jianzhong Liu; Wei Zhou;doi: 10.3390/su14127234
With the prosperous development of the urban metro network, the characteristics of the topological structure and node importance are changing dynamically. Most studies focus on static comparisons, and dynamic evolution research is rarely conducted. It is necessary to track the dynamic evolution mechanism of the metro network from the perspective of development. In this paper, the Shenzhen Metro Network (SZMN) topology from 2004 to 2021 was first modeled in Space L. Five kinds of node centralities in eight periods were measured. Then, the dynamic evolution characteristics of the SZMN network topology and node centralities were compared. Finally, an improved multi-attribute decision-making method (MADM) was used to evaluate the node importance, and the spatiotemporal-evolution mechanism of the node importance was discussed qualitatively and quantitatively. The results show that, with the spatiotemporal evolution of the SZMN, the nodes became more and more intensive, and the network tended to be assortative. The different kinds of node centralities changed variously over time. Moreover, the node importance of the SZMN gradually dispersed from the core area of Chegongmiao–Futian to the direction of the Airport and Shenzhen North. The node importance evolves dynamically over time, and it is closely related to the changes in the node type, surrounding nodes and whole network environment. This study reveals the dynamic evolution mechanism of the complex topology and node importance in the SZMN, which can provide scientific suggestions and decision support for the planning, construction, operation management and resilient sustainable development of the urban metro.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV G.-N. Luo; Bo Zhang; Zhongshi Yang; Xianzu Gong; L. Zeng; Qingquan Yang; Yuqiang Tao; Yuqiang Tao; B. N. Wan; E.Z. Li; Gang Xu; Ning Yan; B.J. Xiao; Feng Ding; Kedong Li; Kedong Li; Lingxuan Zhang; L. Wang; M.W. Chen; M.W. Chen; L.Y. Meng; L.Y. Meng; Houyang Guo; Kai Wu; J.C. Xu; Huiqian Wang; Yanmin Duan; J.B. Liu; Q.P. Yuan;Simultaneous control of transient heat load induced by large-amplitude edge-localized modes (ELMs) and steady-state heat load on divertor targets under metal wall environment is crucial for steady-state operation of future tokamak fusion reactors, such as ITER and the China Fusion Engineering Test Reactor (CFETR). In the recent experiments, sustained partial energy detachment without confinement degradation has been achieved in the Experimental Advanced Superconducting Tokamak (EAST) in high-performance grassy-ELM H-mode with q95 ~ 5.9 by a newly developed detachment feedback control scheme, in which we first used electron temperature (Tet) measured by divertor Langmuir probes to identify the onset of energy detachment, and then the system switched to the feedback control of total radiation power measured by absolute extreme ultraviolet (AXUV) system. Tet around the upper outer strike point was successfully maintained less than 8 eV with seeding of 80% Ne and 20% D2 mixture from upper outer divertor, and the total radiation power was maintained ~1.4 MW, around 52% of injected power. There was no significant decrease of the plasma stored energy and H98,y2 factor (~1) over the entire detachment feedback control process. These experiment results demonstrate good compatibility of the high-performance grassy-ELM regime with radiative divertor. In order to confirm the compatibility in a wider range, stable partial energy detachment in grassy-ELM H-mode with relatively lower q95 (~5.4) was also achieved in EAST through the newly developed integrated-feedback-control technique. The new detachment feedback control without confinement degradation in grassy-ELM H-mode provides a candidate mode for EAST long-pulse operation in the future with well control of ELM-induced transient and steady heat fluxes on the divertor target.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Bin Wu; Lijuan Hao; Shengpeng Yu; Zhongyang Li; Zhongyang Li; Jin Wang; Yican Wu; Chun-Hua Chen;Abstract With the plan to increase nuclear generating capacity to 58 GWe and more than 30GWe under construction by 2020, China would have to confront the challenge from the transportation safety of nuclear material. In this paper, based on the analysis of transportation systems and the accident scenarios, the safety evaluation index system of spent fuel road transportation was established by using analytic hierarchy process (AHP), and the transportation safety evaluation model was constructed by weighted nearest neighbor method. By using the model, the safety evaluation of spent fuel road transportation in DaYa Bay nuclear power plant was carried out. The evaluation results showed that the whole transportation was safe, though it has safety risk caused by the weather and the junctions of the bridges and tunnels. In addition, the results from the fuzzy comprehensive evaluation method and the weighted nearest neighbor method are compared, which indicated that the weighted nearest neighbor method supplied a better decision support during the spent fuel road transportation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2018.12.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2018.12.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Funded by:EC | NEWPACKEC| NEWPACKTassinari, Gianmaria; Bassani, Andrea; Spigno, Giorgia; Soregaroli, Claudio; Drabik, Dušan;pmid: 36181818
Bio-based polymers are increasingly attracting attention as a solution to reducing the consumption of non-renewable resources and curbing the accumulation of fossil-based plastic waste. In this study, we analyze the economics of a new packaging film based on a polylactic acid-polyhydroxybutyrate blend (PLA-PHB), with PHB obtained from agro-industrial residues (potato peels). We model various sizes of biorefineries using the new biotechnology in Europe. For a four-year payback period, which is generally accepted in the industry, the calculated minimum product selling price ranges from 9.7 euros per kilogram to 37.2 euros per kilogram, depending, among other factors, on the production capacity of the biorefinery. We have incorporated the uncertainty over the model parameters in a Monte Carlo simulation and investigated the relative impact of individual factors on the minimum product selling price. Overall, the results indicate that the bio-based feedstock availability is the most influential factor on the profitability of the new biotechnology.
Wageningen Staff Pub... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.159101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Wageningen Staff Pub... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.159101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Feng Chen; Changlin Liu; Yuekai Wen; Fuxing Zhu; Hongguo Yao; Yufeng Guo; Shuai Wang; Lingzhi Yang;doi: 10.3390/su14010293
The titanium resources in Panxi reign, China, have a high-impurities content of Ca and Mg, which is usually processed by the molten salt chlorination process. This process allows higher Ca and Mg content in its furnace burdens. However, there is a huge amount of molten salt chlorinated slag produced by this process, consisting of complex compounds and waste NaCl/KCl salts. These slags are always stockpiled without efficient utilization, causing serious environmental pollutions. To recycle the NaCl in the slag back to the molten salt chlorination process, a novel process to deal with those molten salt chlorinated slags with phase conversion at high temperature is presented in this paper. The calcium-containing solid phase was generated when Na2SiO3 was added to the molten salt chlorinated slags at high temperature, while NaCl was kept as a liquid. Thus, liquid NaCl was easily separated from the calcium-containing solid phase, and it could be reused in the molten salt chlorination process. The conversion of calcium-containing phases and their separation of NaCl are the key parts of this work, and they have been systematically studied in this paper; thermodynamic analysis, phase transformation behavior, and calcium removal behavior have all been investigated. The calcium removal rate is 78.69% when the molar ratio of CaCl2:Na2SiO3 is 1:1.5 at 1173 K and N2 atmosphere.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 1980Publisher:American Society of Civil Engineers (ASCE) Douglas L. Inman; James A. Zampol; Thomas E. White; Daniel M. Hanes; B. Walton Waldorf; Kim A. Kastens;doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
Mass transport phenomenon was first recognized by Stokes in 1847 using a Lagrangian description. Later, a basic theory for the mass transport in water waves in viscous fluid and of finite depth was derived by Longuet-Higgins in 1953. Theoretical solutions of mass transport in progressive waves of permanent type are subjected to the definitions of wave celerity in deriving the various finite amplitude wave theories. As it has been generally acknowledged that the Stokes wave theory can not yield a correct prediction of mass transport in the shallow depths, some new theories have been developed. Recently the authors(1974 § 1977) have derived a new finite amplitude wave theory in shallow water for quasi- Stokes and cnoidal waves by the so-called reductive perturbation method, in which the mass transport is formulated both in Lagrangian and Eulerian descriptions. On the experimental verification, Russell and 0sorio(1957) investigated and compared Longuet-Higgins' solution with experimental data of Lagrangian mass transport velocity obtained in a normal closed wave tank of finite length. Since then, many investigations, and nearly all of them, have employed the finite length of wave tank in carrying out their experiments. However, no experiment has yet been attempted at verifying the Stokes drift in progressive waves of permanent type in a wave tank of infinite length. It is not realistic nor economical in constructing such an infinitely long flume to investigate experimentally the mass transport velocity in progressive waves. Instead of using such an ideal wave tank, a new one incorporated with natural water re-circulation was equipped to carry out experiments by the authors(1978). It was confirmed from these experiments that mass transport in progressive waves of permanent type exists in the Same direction of wave propagation throughout the depth, and agrees with both the Stokes drift and the authors' new formulations, within the test range of experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu451 citations 451 popularity Top 1% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Siyuan Ma; Yongqing Guo; Fulu Wei; Qingyin Li; Zhenyu Wang;doi: 10.3390/su142416615
Pedestrian two-stage crossing, as one of the key elements of the urban roadway network, affects not only vehicle flow at signalized interactions, but also road capacities in the transport system. Therefore, it is vital to deeply understand the behavioral characteristics of pedestrian twice-crossing in order to improve the safety and efficiency of the road transport network. Based on our previous study, this study continues to improve the social force model by classifying the trajectory type of pedestrian twice crossing. In the interactive aggregation, the pedestrian trajectory line was divided into two types: straight path and curved path. The Work–Energy Principle and Impulse–Momentum Principle were used to identify the spatial and temporal characteristics of pedestrian twice-crossing behaviors. It was found that when pedestrians on the two sides are facing very close in a congested section, the maximum repulsive force appears to be a dramatic increase and remains for a period of time. This result provides us with direction for updating the social force model, focusing on the repulsive force generated by the opposite flow. The improved model can achieve high precision in predicting pedestrian twice-crossing behaviors. The findings of this study have great implications for designing pedestrian facilities and optimizing pedestrian signal timings, thus helping to increase the mobility and safety of pedestrian twice-crossing.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142416615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142416615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 JapanPublisher:Elsevier BV Tamer M. Ismail; Yasunori Kobayashi; Kunio Yoshikawa; Ding Lu; Takahiro Kobori; Kuniomi Araki; Kiryu Kanazawa; Fumitake Takahashi; M.Abd El-Salam;Abstract Many organizations in the world are interested in waste management problems and their potential solutions. In order to solve these problems, a Japanese venture company has developed an innovative thermal decomposer for organic wastes called ERCM (Earth-Resource-Ceramic-Machine). The ERCM reactor employs electron injected air to promote the thermal decomposition reaction, while the effect of electron injection into air has not yet been clarified. An experimental work was performed using a fixed bed reactor to explore the effects of different parameters of electron injection into air, the reaction temperature and different feedstock on the syngas generation. The main purpose of this study is to clarify the phenomena occurring in the ERCM reactor where a direct current electric field is produced in the flame reaction zone to enhance the thermal decomposition of wastes. In this regard, a mathematical model for simulating the thermal decomposition of solid waste in the presence of an electric field have been developed. The equations of aero-thermochemistry are coupled to the balance equations for densities of charged species, and the Poisson equation for the electrical potential is solved. The model was validated by the experimental data and showed a good agreement. The results showed that the electric field significantly improves the stabilization of the flame. From the release behavior of CO and CO2, it is noted that the electron injection would affect the char combustion process significantly. Finally the effect of the flame reaction zone generated by the field induced ion wind on the thermal decomposition was investigated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Nuofu Chen; Han Zhang; Xiulan Zhang; Yiming Bai;AbstractEnergy is the biggest crisis to humanity in the future. Nowadays, most of the energy used on earth comes from oil, gas and coal. According to the recent exploring and consuming rates, the energy will be exhausted in 50-100 years. Whether we can solve the crisis is closely related to the survival of humanity on the earth. The irradiation from the sun is the biggest energy source. Building PV power plant to utilize the energy from sun will be an only way to sustain the life cycle on the earth. However, the development of PV power plants require the huge supply of PV cell and the fabrication process may bring a quantity of pollution and waste, which is harmful to the environment. On the other hand, super large PV power plant will occupy huge land. If the land cannot be explored and used reasonably, this will not benefit the human life either. In this article, we address the discussions about the above problems and propose the initial suggestions about development trend of PV industry and the safety operation mode of super PV power plant.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Yi Jiang; Tao Zhang; Xiaohua Liu; Lun Zhang;AbstractUsing a low supply water temperature in heating conditions and a high water temperature during cooling can increase energy efficiency, use renewable energy sources, and provide a comfortable and healthy indoor climate. High temperature cooling and low temperature heating is achieved by reducing temperature difference in heat trans er and energy transportation process. The losses in temperature difference can be classified into three types: by heat/moisture exchange; by energy transportation through air/water circulation; by indoor terminal that releases heat/cooling to indoor condit oned space. The air handling process of HVAC system and indoor terminals are the key factor of reducing temperature differen e.Aiming at the losses in HVAC system, Annex 59, titled High Temperature Cooling & Low Temperature Heating in Buildings, is a new international cooperative work under the framework of International Energy Agency (IEA) Energy in Buildings and Communities (EBC). This paper introduc s the background, scope, objective, structure and deliverables of Annex 59. Annex 59 will try to present a new perspective and a new concept to analyze HVAC system in buildings. The goal of the Annex is to build up new concept of analyzing HVAC system from the perspective of reducing mixture loss and transfer loss and th n apply it in high temperature cooling and low temperature heating system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:UKRI | Picsima SnugsUKRI| Picsima SnugsAuthors: Yangyang Meng; Qingjie Qi; Jianzhong Liu; Wei Zhou;doi: 10.3390/su14127234
With the prosperous development of the urban metro network, the characteristics of the topological structure and node importance are changing dynamically. Most studies focus on static comparisons, and dynamic evolution research is rarely conducted. It is necessary to track the dynamic evolution mechanism of the metro network from the perspective of development. In this paper, the Shenzhen Metro Network (SZMN) topology from 2004 to 2021 was first modeled in Space L. Five kinds of node centralities in eight periods were measured. Then, the dynamic evolution characteristics of the SZMN network topology and node centralities were compared. Finally, an improved multi-attribute decision-making method (MADM) was used to evaluate the node importance, and the spatiotemporal-evolution mechanism of the node importance was discussed qualitatively and quantitatively. The results show that, with the spatiotemporal evolution of the SZMN, the nodes became more and more intensive, and the network tended to be assortative. The different kinds of node centralities changed variously over time. Moreover, the node importance of the SZMN gradually dispersed from the core area of Chegongmiao–Futian to the direction of the Airport and Shenzhen North. The node importance evolves dynamically over time, and it is closely related to the changes in the node type, surrounding nodes and whole network environment. This study reveals the dynamic evolution mechanism of the complex topology and node importance in the SZMN, which can provide scientific suggestions and decision support for the planning, construction, operation management and resilient sustainable development of the urban metro.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV G.-N. Luo; Bo Zhang; Zhongshi Yang; Xianzu Gong; L. Zeng; Qingquan Yang; Yuqiang Tao; Yuqiang Tao; B. N. Wan; E.Z. Li; Gang Xu; Ning Yan; B.J. Xiao; Feng Ding; Kedong Li; Kedong Li; Lingxuan Zhang; L. Wang; M.W. Chen; M.W. Chen; L.Y. Meng; L.Y. Meng; Houyang Guo; Kai Wu; J.C. Xu; Huiqian Wang; Yanmin Duan; J.B. Liu; Q.P. Yuan;Simultaneous control of transient heat load induced by large-amplitude edge-localized modes (ELMs) and steady-state heat load on divertor targets under metal wall environment is crucial for steady-state operation of future tokamak fusion reactors, such as ITER and the China Fusion Engineering Test Reactor (CFETR). In the recent experiments, sustained partial energy detachment without confinement degradation has been achieved in the Experimental Advanced Superconducting Tokamak (EAST) in high-performance grassy-ELM H-mode with q95 ~ 5.9 by a newly developed detachment feedback control scheme, in which we first used electron temperature (Tet) measured by divertor Langmuir probes to identify the onset of energy detachment, and then the system switched to the feedback control of total radiation power measured by absolute extreme ultraviolet (AXUV) system. Tet around the upper outer strike point was successfully maintained less than 8 eV with seeding of 80% Ne and 20% D2 mixture from upper outer divertor, and the total radiation power was maintained ~1.4 MW, around 52% of injected power. There was no significant decrease of the plasma stored energy and H98,y2 factor (~1) over the entire detachment feedback control process. These experiment results demonstrate good compatibility of the high-performance grassy-ELM regime with radiative divertor. In order to confirm the compatibility in a wider range, stable partial energy detachment in grassy-ELM H-mode with relatively lower q95 (~5.4) was also achieved in EAST through the newly developed integrated-feedback-control technique. The new detachment feedback control without confinement degradation in grassy-ELM H-mode provides a candidate mode for EAST long-pulse operation in the future with well control of ELM-induced transient and steady heat fluxes on the divertor target.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Bin Wu; Lijuan Hao; Shengpeng Yu; Zhongyang Li; Zhongyang Li; Jin Wang; Yican Wu; Chun-Hua Chen;Abstract With the plan to increase nuclear generating capacity to 58 GWe and more than 30GWe under construction by 2020, China would have to confront the challenge from the transportation safety of nuclear material. In this paper, based on the analysis of transportation systems and the accident scenarios, the safety evaluation index system of spent fuel road transportation was established by using analytic hierarchy process (AHP), and the transportation safety evaluation model was constructed by weighted nearest neighbor method. By using the model, the safety evaluation of spent fuel road transportation in DaYa Bay nuclear power plant was carried out. The evaluation results showed that the whole transportation was safe, though it has safety risk caused by the weather and the junctions of the bridges and tunnels. In addition, the results from the fuzzy comprehensive evaluation method and the weighted nearest neighbor method are compared, which indicated that the weighted nearest neighbor method supplied a better decision support during the spent fuel road transportation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2018.12.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2018.12.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Funded by:EC | NEWPACKEC| NEWPACKTassinari, Gianmaria; Bassani, Andrea; Spigno, Giorgia; Soregaroli, Claudio; Drabik, Dušan;pmid: 36181818
Bio-based polymers are increasingly attracting attention as a solution to reducing the consumption of non-renewable resources and curbing the accumulation of fossil-based plastic waste. In this study, we analyze the economics of a new packaging film based on a polylactic acid-polyhydroxybutyrate blend (PLA-PHB), with PHB obtained from agro-industrial residues (potato peels). We model various sizes of biorefineries using the new biotechnology in Europe. For a four-year payback period, which is generally accepted in the industry, the calculated minimum product selling price ranges from 9.7 euros per kilogram to 37.2 euros per kilogram, depending, among other factors, on the production capacity of the biorefinery. We have incorporated the uncertainty over the model parameters in a Monte Carlo simulation and investigated the relative impact of individual factors on the minimum product selling price. Overall, the results indicate that the bio-based feedstock availability is the most influential factor on the profitability of the new biotechnology.
Wageningen Staff Pub... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.159101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Wageningen Staff Pub... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.159101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Feng Chen; Changlin Liu; Yuekai Wen; Fuxing Zhu; Hongguo Yao; Yufeng Guo; Shuai Wang; Lingzhi Yang;doi: 10.3390/su14010293
The titanium resources in Panxi reign, China, have a high-impurities content of Ca and Mg, which is usually processed by the molten salt chlorination process. This process allows higher Ca and Mg content in its furnace burdens. However, there is a huge amount of molten salt chlorinated slag produced by this process, consisting of complex compounds and waste NaCl/KCl salts. These slags are always stockpiled without efficient utilization, causing serious environmental pollutions. To recycle the NaCl in the slag back to the molten salt chlorination process, a novel process to deal with those molten salt chlorinated slags with phase conversion at high temperature is presented in this paper. The calcium-containing solid phase was generated when Na2SiO3 was added to the molten salt chlorinated slags at high temperature, while NaCl was kept as a liquid. Thus, liquid NaCl was easily separated from the calcium-containing solid phase, and it could be reused in the molten salt chlorination process. The conversion of calcium-containing phases and their separation of NaCl are the key parts of this work, and they have been systematically studied in this paper; thermodynamic analysis, phase transformation behavior, and calcium removal behavior have all been investigated. The calcium removal rate is 78.69% when the molar ratio of CaCl2:Na2SiO3 is 1:1.5 at 1173 K and N2 atmosphere.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 1980Publisher:American Society of Civil Engineers (ASCE) Douglas L. Inman; James A. Zampol; Thomas E. White; Daniel M. Hanes; B. Walton Waldorf; Kim A. Kastens;doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
Mass transport phenomenon was first recognized by Stokes in 1847 using a Lagrangian description. Later, a basic theory for the mass transport in water waves in viscous fluid and of finite depth was derived by Longuet-Higgins in 1953. Theoretical solutions of mass transport in progressive waves of permanent type are subjected to the definitions of wave celerity in deriving the various finite amplitude wave theories. As it has been generally acknowledged that the Stokes wave theory can not yield a correct prediction of mass transport in the shallow depths, some new theories have been developed. Recently the authors(1974 § 1977) have derived a new finite amplitude wave theory in shallow water for quasi- Stokes and cnoidal waves by the so-called reductive perturbation method, in which the mass transport is formulated both in Lagrangian and Eulerian descriptions. On the experimental verification, Russell and 0sorio(1957) investigated and compared Longuet-Higgins' solution with experimental data of Lagrangian mass transport velocity obtained in a normal closed wave tank of finite length. Since then, many investigations, and nearly all of them, have employed the finite length of wave tank in carrying out their experiments. However, no experiment has yet been attempted at verifying the Stokes drift in progressive waves of permanent type in a wave tank of infinite length. It is not realistic nor economical in constructing such an infinitely long flume to investigate experimentally the mass transport velocity in progressive waves. Instead of using such an ideal wave tank, a new one incorporated with natural water re-circulation was equipped to carry out experiments by the authors(1978). It was confirmed from these experiments that mass transport in progressive waves of permanent type exists in the Same direction of wave propagation throughout the depth, and agrees with both the Stokes drift and the authors' new formulations, within the test range of experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu451 citations 451 popularity Top 1% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Siyuan Ma; Yongqing Guo; Fulu Wei; Qingyin Li; Zhenyu Wang;doi: 10.3390/su142416615
Pedestrian two-stage crossing, as one of the key elements of the urban roadway network, affects not only vehicle flow at signalized interactions, but also road capacities in the transport system. Therefore, it is vital to deeply understand the behavioral characteristics of pedestrian twice-crossing in order to improve the safety and efficiency of the road transport network. Based on our previous study, this study continues to improve the social force model by classifying the trajectory type of pedestrian twice crossing. In the interactive aggregation, the pedestrian trajectory line was divided into two types: straight path and curved path. The Work–Energy Principle and Impulse–Momentum Principle were used to identify the spatial and temporal characteristics of pedestrian twice-crossing behaviors. It was found that when pedestrians on the two sides are facing very close in a congested section, the maximum repulsive force appears to be a dramatic increase and remains for a period of time. This result provides us with direction for updating the social force model, focusing on the repulsive force generated by the opposite flow. The improved model can achieve high precision in predicting pedestrian twice-crossing behaviors. The findings of this study have great implications for designing pedestrian facilities and optimizing pedestrian signal timings, thus helping to increase the mobility and safety of pedestrian twice-crossing.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142416615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142416615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu