Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3,953 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • 3. Good health
  • CN
  • DE

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lídia Cantacorps; Lídia Cantacorps; Rainer Spanagel; Olga Valverde; +3 Authors

    AbstractThe co‐occurrence of chronic pain and alcohol use disorders (AUDs) involves complex interactions between genetic and neurophysiological aspects, and the research has reported mixed findings when they both co‐occur. There is also an indication of a gender‐dependent effect; males are more likely to use alcohol to cope with chronic pain problems than females. Recently, a new conceptualization has emerged, proposing that the negative affective component of pain drives and maintains alcohol‐related behaviors. We studied in a longitudinal fashion alterations in alcohol drinking patterns and pain thresholds in a mouse model of chronic neuropathic pain in a sex‐dependent manner. Following partial denervation (spared nerve injury [SNI]), stimulus‐evoked pain responses were measured before chronic alcohol consumption, during drinking, during a deprivation phase, and following an episode of excessive drinking. During the course of alcohol drinking, we observed pronounced sex differences in pain thresholds. Male mice showed a strong increase in pain thresholds, suggesting an analgesic effect induced by alcohol over time, an effect that was not observed in female mice. SNI mice did not differ from sham‐operated controls in baseline alcohol consumption. However, following a deprivation phase and the reintroduction of ethanol, male SNI mice but not female mice showed more pronounced excessive drinking than controls. Finally, we observed decreased central ethanol sensitivity in male SNI mice but not in females. Together with our finding, that ethanol is able to decrease a pain‐induced negative affective memory we come to following conclusion. We propose that a lower sensitivity to the intoxicating effects of alcohol together with the ability of alcohol to reduce the negative affective component of pain may explain the higher co‐occurrence of AUD in male chronic pain patients.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Addiction Biologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Addiction Biology
    Article . 2019 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Addiction Biologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Addiction Biology
      Article . 2019 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Christian Gerk; Monika Willert-Porada;

    ABSTRACTA novel design for a high temperature SOFC, based on lamellar electrode-electrolyte segments obtained by solidification of an oxidic eutectic melt on an electrolyte substrate is presented. Such “composite” electrodes contain NiO or MnO - 8Y-ZrO2 lamellae, which after reduction / oxidation yield electrode-electrolyte lamellae with 1–2 μm width and a vertical dimension of> 100 μm, depending upon the amount of eutectic melt solidified on a polycrystalline substrate. The nucleation of the eutectic on a polycrystalline substrate followed by a semi-directional crystallization of the two phases yields a gradient of 3-phase boundaries over the height of such an electrode, with the number of 3-phase boundaries increasing towards the substrate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Proceedingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    MRS Proceedings
    Article . 1997 . Peer-reviewed
    License: Cambridge Core User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Proceedingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      MRS Proceedings
      Article . 1997 . Peer-reviewed
      License: Cambridge Core User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Guang-Biao Zhou; Ying Shao; Yize Xiao; Xian-Jun Yu;

    Xuanwei City (formerly known as Xuanwei County) locates in the northeastern of Yunnan Province and is rich in coal, iron, copper and other mines, especially the smoky (bituminous) coal. Unfortunately, the lung cancer morbidity and mortality rates in this region are among China's highest, with a clear upward trend from the mid-1970s to mid-2000s. In 2004-2005, the crude death rate of lung cancer was 91.3 per 100,000 in the whole Xuanwei City, while that for Laibin Town in this city was 241.14 per 100,000. The epidemiologic distribution (clustering patterns by population, time, and space) of lung cancer in Xuanwei has some special features, e.g., high incidence in rural areas, high incidence in females, and an early age peak in lung cancer deaths. The main factor that associates with a high rate of lung cancer incidence was found to be indoor air pollution caused by the indoor burning of smoky coal. To a certain extent, genetic defects are also associated with the high incidence of lung cancer in Xuanwei. Taken together, lung cancer in this smoky coal combustion region is a unique model for environmental factor-related human cancer, and the current studies indicate that abandoning the use of smoky coal is the key to diminish lung cancer morbidity and mortality.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Frontiers of Medicin...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Frontiers of Medicine
    Article . 2012 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    50
    citations50
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Frontiers of Medicin...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Frontiers of Medicine
      Article . 2012 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shengbing He; Wenqiao Gao; Jungchen Huang; Fang Liu; +3 Authors

    In developing an algal treatment system, selenium (Se) removal efficiency by Chlorella vulgaris was evaluated under various conditions such as Se concentration, algal density, temperature and pH. A maximum removal efficiency plateau of ∼90% was observed between 1000-3000 μg Se/L while the tolerance of Se toxicity was found at 6000 μg Se/L. C. vulgaris of 0.75 g DW/L showed the highest removal efficiency (84%), and volatilization was dominant below 1.37 g DW/L. Se volatilization was two times higher at 25 °C than at 20 °C in the first 24 h. Moreover, the highest removal efficiency (77%) was obtained at pH 8.0, compared to 66.5% at pH 6.5 and 40% at pH 10.0. To prevent ecotoxicity, Se laden algae were further burned to ashes or filtered out by Anodonta woodiana. After burning, biomass Se was reduced by 99%, with organo-Se entirely converted into inorganic Se, lowering Se bioavailability. A. woodiana removed 54% of Se in 24 h, leading to Se bioaccumulation in soft tissues, which may serve as dietary Se supplements for human health. Our results suggest the cleanup of Se-contaminated water from either agricultural runoff or industrial discharge could be achieved using an algal treatment system with minimum potential ecotoxicity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Hazardous Materials
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    26
    citations26
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Hazardous Materials
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shen, Yafei;

    Volatile organic compounds (VOCs) can lead to environmental pollution and threaten human health due to their toxic and carcinogenic nature. The emission of VOCs increases dramatically with the accelerated industrialization and economic growth. Adsorption is identified as one of the most promising recovery technologies owing to its cost-effectiveness, flexible operation, and low energy consumption. In particular, adsorption-based technologies have a high potential to recycle both adsorbents and adsorbates, typically to capture valuable aromatic VOCs from industrial exhaust. Porous materials such as carbon-based materials, zeolite-based materials, and organic polymers and their composites have been extensively developed for VOCs adsorption focusing in adsorption capacity, hydrophobic property, thermal stability and regenerability. Among them, porous carbons as VOCs adsorbents have attracted increasingly attention, because they can be regulated by tuning the pore structure for VOCs accessibility during the adsorption process. Moreover, porous carbons can adsorb target VOCs by controlling the pore structure and surface functional groups. Significantly, the pore size distribution of porous carbons mostly controls the VOCs sorption process. Micropores provide the main adsorption sites, while mesopores enhance the diffusion of VOCs. In this review, the adsorption mechanism of VOCs onto porous carbons was generally concluded. Porous carbons can be designed as a specific structure for adsorption of aromatic VOCs by controlling the pore structure, hydrophobic sites, π-electronic structure, and surface functional groups. Since there are limited review literatures on porous carbons derived from renewable resources for VOCs adsorption, this paper will provide an overview on the synthesis of porous carbons from biomass and other organic wastes for VOCs adsorption or integrated oxidation processes (e.g., photocatalysis, non-thermal plasma catalysis, chemical catalysis) under ambient conditions with the objective of guiding ...

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    50
    citations50
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fiona, Meyer-Bockenkamp; Phileas J, Proskynitopoulos; Alexander, Glahn; Marc, Muschler; +6 Authors

    Abstract Aims Alcohol use alters the reward signaling processes contributing to the development of addiction. We studied the effects of alcohol use disorder (AUD) on brain regions and blood of deceased women and men to examine sex-dependent differences in epigenetic changes associated with AUD. We investigated the effects of alcohol use on the gene promoter methylation of GABBR1 coding for GABAB receptor subunit 1 in blood and brain. Methods We chose six brain regions associated with addiction and the reward pathway (nucleus arcuatus, nucleus accumbens, the mamillary bodies, amygdala, hippocampus and anterior temporal cortex) and performed epigenetic profiling of the proximal promoter of the GABBR1 gene of post-mortem brain and blood samples of 17 individuals with AUD pathology (4 female, 13 male) and 31 healthy controls (10 female, 21 male). Results Our results show sex-specific effects of AUD on GABBR1 promoter methylation. Especially, CpG −4 showed significant tissue-independent changes and significantly decreased methylation levels for the AUD group in the amygdala and the mammillary bodies of men. We saw prominent and consistent change in CpG-4 across all investigated tissues. For women, no significant loci were observed. Conclusion We found sex-dependent differences in GABBR1 promoter methylation in relation to AUD. CpG-4 hypomethylation in male individuals with AUD is consistent for most brain regions. Blood shows similar results without reaching significance, potentially serving as a peripheral marker for addiction-associated neuronal adaptations. Further research is needed to discover more contributing factors in the pathological alterations of alcohol addiction to offer sex-specific biomarkers and treatment.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcohol and Alcoholi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol and Alcoholism
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcohol and Alcoholi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol and Alcoholism
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mingke Jiao; Xiaodong Zhou; Bin Bo; Haili Su; +5 Authors

    ObjectivesThe poor safety profile of sunitinib capsules has encouraged the identification of targeted drug delivery systems against renal cell carcinoma. This study aimed to explore the effect of sunitinib‐loaded microbubbles along with ultrasound (US) treatment on proliferation and apoptosis of human GRC‐1 granulocyte renal carcinoma cells in vitro and in vivo (xenograft tumor growth in nude mice).MethodsLiposomes containing sunitinib were prepared by using the transmembrane ammonium sulfate gradient method and then absorbed into polymer microbubbles to generate sunitinib‐loaded microbubbles. Entrapment of sunitinib was verified by 25‐25‐[N‐[(7‐nitro‐2‐1,3‐benzoxadiazol‐4‐yl)methyl]amino]‐27‐norcholesterol staining. GRC‐1 cells were treated with microbubbles alone, liposomes alone, sunitinib alone, sunitinib‐loaded microbubbles without and with US, and no treatment (control). Cell survival and apoptosis were assessed at 12, 24, and 48 hours after treatment. Xenograft tumors were induced by implantation of GRC‐1 cells in nude mice. The animals with tumors were then randomly assigned to sunitinib alone, sunitinib‐loaded microbubbles − US, sunitinib‐loaded microbubbles + US, and no treatment (control; n = 10 per group). The tumor volumes were analyzed on the 7th, 15th, and 21st days.ResultsThe sunitinib entrapment efficiency in the liposomes was approximately 78%. The effective sunitinib concentration in each group was 0.1 μg/mL. The sunitinib‐loaded microbubble + US group showed a lower in vitro cell survival rate (P < .001) compared with the other groups. Greater in vivo inhibition of xenograft tumor growth was also observed in the sunitinib‐loaded microbubble + US group compared with the other groups.ConclusionsCombined sunitinib‐loaded microbubbles and US treatment significantly inhibits growth of renal carcinoma cells both in vitro and in vivo.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Ultrasoun...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Ultrasound in Medicine
    Article . 2016 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Ultrasoun...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Ultrasound in Medicine
      Article . 2016 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Andreas Zimmer; Eva Drews;

    It has been estimated that more than 80% of alcoholics are also nicotine dependent and that, vice versa, the rate of alcoholism is substantially increased by a factor of 4-10 in the nicotine-dependent population. However, the cause for this very high degree of comorbidity is still largely unknown. At the molecular and cellular level, both drugs have very different mechanisms of action. Nicotine specifically activates ligand-gated ion channels in the brain, which are normally gated by acetylcholine, while alcohol interacts with various neurotransmitter receptors. Despite this diversity, both drugs seem to engage the endogenous opioid system as a modulator of some of its pharmacological effect. An acute exposure to nicotine or alcohol leads to a release of opioid peptides in specific brain regions, thus resulting in an activation of their corresponding receptors. If the brain is exposed repeatedly or chronically to these drugs, adaptive changes in the level and expression of opioid peptides and receptors occur. These adaptive changes are thought to contribute to the homeostatic or allostatic adaptations of the brain, which have been associated with drug dependence. This review summarizes pharmacological and genetic studies in animal models and in humans that have addressed the role of specific opioid peptides and receptors in various stages of the addiction process.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neurobio...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress in Neurobiology
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    58
    citations58
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neurobio...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress in Neurobiology
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Marika Väli; G. Denissov; K. Vals; K. Vals; +3 Authors

    The aim of this study is to provide an overview of deaths caused by poisoning (especially illicit drugs) in Estonia from 2000 to 2009. The data on poisoning deaths (N = 4132) were collected from the autopsy reports of the Estonian Forensic Science Institute. Ethanol poisoning was the most frequent cause of death (N = 1449, 35.1%), followed by carbon monoxide (N = 1151, 27.9%) and poisoning from illicit drugs (N = 888, 21.5%). The study included 3267 male (79.1%) and 865 female fatalities, with the prevalent age group being 35-64 years. Since 2002, deaths from fentanyles have increased sharply and remained at a high level - from 63 cases in 2002 to 138 cases in 2009. This high number indicates that in spite of the state's drug policies, illegal drugs remain easily available and that this area requires more attention. Alcohol abuse prevention policies - restrictions on alcohol advertisements in the media, limitations on sale times and anti-alcohol campaigns concerning traffic - have not brought about a significant decrease in ethanol poisoning.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Forensic ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Forensic and Legal Medicine
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Forensic ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Forensic and Legal Medicine
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhanwu Lei; Xubin Lu; Chun Chang; Zenglin Wang; +2 Authors

    Abstract In order to achieve a perfect bottom-up electroplated Cu filling with a minimal surface thickness, 2-mercaptopyridine (2-MP) was investigated as a new leveler for replacing Janus Green B (JGB) for bottom-up copper filling. Electrochemical impedence results indicate that 2-MP has a stronger suppression for Cu deposition than JGB. With the addition of 2-MP, the filling capability of the electroplating solution is improved significantly with the Cu thickness on surface decreasing from ∼16 μm to ∼10 μm. The interaction mechanisms of 2-MP, bis(3-sulfopropyl) disulfide (SPS), Cl − and tri-block copolymer of PEG and PPG with ethylene oxide terminal blocks (EPE) in the plating solution are studied by galvanostatic measurements (GMs). The acceleration effect of SPS and the inhibition effect of 2-MP on copper deposition occur in the presence of EPE, and the convection-dependent adsorption (CDA) behavior of additives usually occurs with the injection of four additives at optional concentrations. Further, it was found that when 1.0 ppm 2-MP, 1.0 ppm SPS and 200 ppm EPE were injected into the basic electrolyte, the potential difference ( Δ h) value of the electrolyte became positive, and the bottom-up electroplated copper filling was obtained in the electrolyte in absence of Cl − . The interaction mechanisms of three additives for bottom-up filling have been investigated by GMs.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Electrochimica Acta
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    64
    citations64
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Electrochimica Acta
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3,953 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lídia Cantacorps; Lídia Cantacorps; Rainer Spanagel; Olga Valverde; +3 Authors

    AbstractThe co‐occurrence of chronic pain and alcohol use disorders (AUDs) involves complex interactions between genetic and neurophysiological aspects, and the research has reported mixed findings when they both co‐occur. There is also an indication of a gender‐dependent effect; males are more likely to use alcohol to cope with chronic pain problems than females. Recently, a new conceptualization has emerged, proposing that the negative affective component of pain drives and maintains alcohol‐related behaviors. We studied in a longitudinal fashion alterations in alcohol drinking patterns and pain thresholds in a mouse model of chronic neuropathic pain in a sex‐dependent manner. Following partial denervation (spared nerve injury [SNI]), stimulus‐evoked pain responses were measured before chronic alcohol consumption, during drinking, during a deprivation phase, and following an episode of excessive drinking. During the course of alcohol drinking, we observed pronounced sex differences in pain thresholds. Male mice showed a strong increase in pain thresholds, suggesting an analgesic effect induced by alcohol over time, an effect that was not observed in female mice. SNI mice did not differ from sham‐operated controls in baseline alcohol consumption. However, following a deprivation phase and the reintroduction of ethanol, male SNI mice but not female mice showed more pronounced excessive drinking than controls. Finally, we observed decreased central ethanol sensitivity in male SNI mice but not in females. Together with our finding, that ethanol is able to decrease a pain‐induced negative affective memory we come to following conclusion. We propose that a lower sensitivity to the intoxicating effects of alcohol together with the ability of alcohol to reduce the negative affective component of pain may explain the higher co‐occurrence of AUD in male chronic pain patients.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Addiction Biologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Addiction Biology
    Article . 2019 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Addiction Biologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Addiction Biology
      Article . 2019 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Christian Gerk; Monika Willert-Porada;

    ABSTRACTA novel design for a high temperature SOFC, based on lamellar electrode-electrolyte segments obtained by solidification of an oxidic eutectic melt on an electrolyte substrate is presented. Such “composite” electrodes contain NiO or MnO - 8Y-ZrO2 lamellae, which after reduction / oxidation yield electrode-electrolyte lamellae with 1–2 μm width and a vertical dimension of> 100 μm, depending upon the amount of eutectic melt solidified on a polycrystalline substrate. The nucleation of the eutectic on a polycrystalline substrate followed by a semi-directional crystallization of the two phases yields a gradient of 3-phase boundaries over the height of such an electrode, with the number of 3-phase boundaries increasing towards the substrate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Proceedingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    MRS Proceedings
    Article . 1997 . Peer-reviewed
    License: Cambridge Core User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Proceedingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      MRS Proceedings
      Article . 1997 . Peer-reviewed
      License: Cambridge Core User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Guang-Biao Zhou; Ying Shao; Yize Xiao; Xian-Jun Yu;

    Xuanwei City (formerly known as Xuanwei County) locates in the northeastern of Yunnan Province and is rich in coal, iron, copper and other mines, especially the smoky (bituminous) coal. Unfortunately, the lung cancer morbidity and mortality rates in this region are among China's highest, with a clear upward trend from the mid-1970s to mid-2000s. In 2004-2005, the crude death rate of lung cancer was 91.3 per 100,000 in the whole Xuanwei City, while that for Laibin Town in this city was 241.14 per 100,000. The epidemiologic distribution (clustering patterns by population, time, and space) of lung cancer in Xuanwei has some special features, e.g., high incidence in rural areas, high incidence in females, and an early age peak in lung cancer deaths. The main factor that associates with a high rate of lung cancer incidence was found to be indoor air pollution caused by the indoor burning of smoky coal. To a certain extent, genetic defects are also associated with the high incidence of lung cancer in Xuanwei. Taken together, lung cancer in this smoky coal combustion region is a unique model for environmental factor-related human cancer, and the current studies indicate that abandoning the use of smoky coal is the key to diminish lung cancer morbidity and mortality.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Frontiers of Medicin...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Frontiers of Medicine
    Article . 2012 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    50
    citations50
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Frontiers of Medicin...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Frontiers of Medicine
      Article . 2012 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shengbing He; Wenqiao Gao; Jungchen Huang; Fang Liu; +3 Authors

    In developing an algal treatment system, selenium (Se) removal efficiency by Chlorella vulgaris was evaluated under various conditions such as Se concentration, algal density, temperature and pH. A maximum removal efficiency plateau of ∼90% was observed between 1000-3000 μg Se/L while the tolerance of Se toxicity was found at 6000 μg Se/L. C. vulgaris of 0.75 g DW/L showed the highest removal efficiency (84%), and volatilization was dominant below 1.37 g DW/L. Se volatilization was two times higher at 25 °C than at 20 °C in the first 24 h. Moreover, the highest removal efficiency (77%) was obtained at pH 8.0, compared to 66.5% at pH 6.5 and 40% at pH 10.0. To prevent ecotoxicity, Se laden algae were further burned to ashes or filtered out by Anodonta woodiana. After burning, biomass Se was reduced by 99%, with organo-Se entirely converted into inorganic Se, lowering Se bioavailability. A. woodiana removed 54% of Se in 24 h, leading to Se bioaccumulation in soft tissues, which may serve as dietary Se supplements for human health. Our results suggest the cleanup of Se-contaminated water from either agricultural runoff or industrial discharge could be achieved using an algal treatment system with minimum potential ecotoxicity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Hazardous Materials
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    26
    citations26
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Hazardous Materials
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shen, Yafei;

    Volatile organic compounds (VOCs) can lead to environmental pollution and threaten human health due to their toxic and carcinogenic nature. The emission of VOCs increases dramatically with the accelerated industrialization and economic growth. Adsorption is identified as one of the most promising recovery technologies owing to its cost-effectiveness, flexible operation, and low energy consumption. In particular, adsorption-based technologies have a high potential to recycle both adsorbents and adsorbates, typically to capture valuable aromatic VOCs from industrial exhaust. Porous materials such as carbon-based materials, zeolite-based materials, and organic polymers and their composites have been extensively developed for VOCs adsorption focusing in adsorption capacity, hydrophobic property, thermal stability and regenerability. Among them, porous carbons as VOCs adsorbents have attracted increasingly attention, because they can be regulated by tuning the pore structure for VOCs accessibility during the adsorption process. Moreover, porous carbons can adsorb target VOCs by controlling the pore structure and surface functional groups. Significantly, the pore size distribution of porous carbons mostly controls the VOCs sorption process. Micropores provide the main adsorption sites, while mesopores enhance the diffusion of VOCs. In this review, the adsorption mechanism of VOCs onto porous carbons was generally concluded. Porous carbons can be designed as a specific structure for adsorption of aromatic VOCs by controlling the pore structure, hydrophobic sites, π-electronic structure, and surface functional groups. Since there are limited review literatures on porous carbons derived from renewable resources for VOCs adsorption, this paper will provide an overview on the synthesis of porous carbons from biomass and other organic wastes for VOCs adsorption or integrated oxidation processes (e.g., photocatalysis, non-thermal plasma catalysis, chemical catalysis) under ambient conditions with the objective of guiding ...

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    50
    citations50
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fiona, Meyer-Bockenkamp; Phileas J, Proskynitopoulos; Alexander, Glahn; Marc, Muschler; +6 Authors

    Abstract Aims Alcohol use alters the reward signaling processes contributing to the development of addiction. We studied the effects of alcohol use disorder (AUD) on brain regions and blood of deceased women and men to examine sex-dependent differences in epigenetic changes associated with AUD. We investigated the effects of alcohol use on the gene promoter methylation of GABBR1 coding for GABAB receptor subunit 1 in blood and brain. Methods We chose six brain regions associated with addiction and the reward pathway (nucleus arcuatus, nucleus accumbens, the mamillary bodies, amygdala, hippocampus and anterior temporal cortex) and performed epigenetic profiling of the proximal promoter of the GABBR1 gene of post-mortem brain and blood samples of 17 individuals with AUD pathology (4 female, 13 male) and 31 healthy controls (10 female, 21 male). Results Our results show sex-specific effects of AUD on GABBR1 promoter methylation. Especially, CpG −4 showed significant tissue-independent changes and significantly decreased methylation levels for the AUD group in the amygdala and the mammillary bodies of men. We saw prominent and consistent change in CpG-4 across all investigated tissues. For women, no significant loci were observed. Conclusion We found sex-dependent differences in GABBR1 promoter methylation in relation to AUD. CpG-4 hypomethylation in male individuals with AUD is consistent for most brain regions. Blood shows similar results without reaching significance, potentially serving as a peripheral marker for addiction-associated neuronal adaptations. Further research is needed to discover more contributing factors in the pathological alterations of alcohol addiction to offer sex-specific biomarkers and treatment.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcohol and Alcoholi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol and Alcoholism
    Article . 2023 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcohol and Alcoholi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol and Alcoholism
      Article . 2023 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mingke Jiao; Xiaodong Zhou; Bin Bo; Haili Su; +5 Authors

    ObjectivesThe poor safety profile of sunitinib capsules has encouraged the identification of targeted drug delivery systems against renal cell carcinoma. This study aimed to explore the effect of sunitinib‐loaded microbubbles along with ultrasound (US) treatment on proliferation and apoptosis of human GRC‐1 granulocyte renal carcinoma cells in vitro and in vivo (xenograft tumor growth in nude mice).MethodsLiposomes containing sunitinib were prepared by using the transmembrane ammonium sulfate gradient method and then absorbed into polymer microbubbles to generate sunitinib‐loaded microbubbles. Entrapment of sunitinib was verified by 25‐25‐[N‐[(7‐nitro‐2‐1,3‐benzoxadiazol‐4‐yl)methyl]amino]‐27‐norcholesterol staining. GRC‐1 cells were treated with microbubbles alone, liposomes alone, sunitinib alone, sunitinib‐loaded microbubbles without and with US, and no treatment (control). Cell survival and apoptosis were assessed at 12, 24, and 48 hours after treatment. Xenograft tumors were induced by implantation of GRC‐1 cells in nude mice. The animals with tumors were then randomly assigned to sunitinib alone, sunitinib‐loaded microbubbles − US, sunitinib‐loaded microbubbles + US, and no treatment (control; n = 10 per group). The tumor volumes were analyzed on the 7th, 15th, and 21st days.ResultsThe sunitinib entrapment efficiency in the liposomes was approximately 78%. The effective sunitinib concentration in each group was 0.1 μg/mL. The sunitinib‐loaded microbubble + US group showed a lower in vitro cell survival rate (P < .001) compared with the other groups. Greater in vivo inhibition of xenograft tumor growth was also observed in the sunitinib‐loaded microbubble + US group compared with the other groups.ConclusionsCombined sunitinib‐loaded microbubbles and US treatment significantly inhibits growth of renal carcinoma cells both in vitro and in vivo.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Ultrasoun...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Ultrasound in Medicine
    Article . 2016 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Ultrasoun...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Ultrasound in Medicine
      Article . 2016 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Andreas Zimmer; Eva Drews;

    It has been estimated that more than 80% of alcoholics are also nicotine dependent and that, vice versa, the rate of alcoholism is substantially increased by a factor of 4-10 in the nicotine-dependent population. However, the cause for this very high degree of comorbidity is still largely unknown. At the molecular and cellular level, both drugs have very different mechanisms of action. Nicotine specifically activates ligand-gated ion channels in the brain, which are normally gated by acetylcholine, while alcohol interacts with various neurotransmitter receptors. Despite this diversity, both drugs seem to engage the endogenous opioid system as a modulator of some of its pharmacological effect. An acute exposure to nicotine or alcohol leads to a release of opioid peptides in specific brain regions, thus resulting in an activation of their corresponding receptors. If the brain is exposed repeatedly or chronically to these drugs, adaptive changes in the level and expression of opioid peptides and receptors occur. These adaptive changes are thought to contribute to the homeostatic or allostatic adaptations of the brain, which have been associated with drug dependence. This review summarizes pharmacological and genetic studies in animal models and in humans that have addressed the role of specific opioid peptides and receptors in various stages of the addiction process.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neurobio...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress in Neurobiology
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    58
    citations58
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neurobio...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress in Neurobiology
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Marika Väli; G. Denissov; K. Vals; K. Vals; +3 Authors

    The aim of this study is to provide an overview of deaths caused by poisoning (especially illicit drugs) in Estonia from 2000 to 2009. The data on poisoning deaths (N = 4132) were collected from the autopsy reports of the Estonian Forensic Science Institute. Ethanol poisoning was the most frequent cause of death (N = 1449, 35.1%), followed by carbon monoxide (N = 1151, 27.9%) and poisoning from illicit drugs (N = 888, 21.5%). The study included 3267 male (79.1%) and 865 female fatalities, with the prevalent age group being 35-64 years. Since 2002, deaths from fentanyles have increased sharply and remained at a high level - from 63 cases in 2002 to 138 cases in 2009. This high number indicates that in spite of the state's drug policies, illegal drugs remain easily available and that this area requires more attention. Alcohol abuse prevention policies - restrictions on alcohol advertisements in the media, limitations on sale times and anti-alcohol campaigns concerning traffic - have not brought about a significant decrease in ethanol poisoning.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Forensic ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Forensic and Legal Medicine
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Forensic ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Forensic and Legal Medicine
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhanwu Lei; Xubin Lu; Chun Chang; Zenglin Wang; +2 Authors

    Abstract In order to achieve a perfect bottom-up electroplated Cu filling with a minimal surface thickness, 2-mercaptopyridine (2-MP) was investigated as a new leveler for replacing Janus Green B (JGB) for bottom-up copper filling. Electrochemical impedence results indicate that 2-MP has a stronger suppression for Cu deposition than JGB. With the addition of 2-MP, the filling capability of the electroplating solution is improved significantly with the Cu thickness on surface decreasing from ∼16 μm to ∼10 μm. The interaction mechanisms of 2-MP, bis(3-sulfopropyl) disulfide (SPS), Cl − and tri-block copolymer of PEG and PPG with ethylene oxide terminal blocks (EPE) in the plating solution are studied by galvanostatic measurements (GMs). The acceleration effect of SPS and the inhibition effect of 2-MP on copper deposition occur in the presence of EPE, and the convection-dependent adsorption (CDA) behavior of additives usually occurs with the injection of four additives at optional concentrations. Further, it was found that when 1.0 ppm 2-MP, 1.0 ppm SPS and 200 ppm EPE were injected into the basic electrolyte, the potential difference ( Δ h) value of the electrolyte became positive, and the bottom-up electroplated copper filling was obtained in the electrolyte in absence of Cl − . The interaction mechanisms of three additives for bottom-up filling have been investigated by GMs.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Electrochimica Acta
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    64
    citations64
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Electrochimica Acta
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.