- home
- Advanced Search
- Energy Research
- Restricted
- ES
- CA
- CN
- University of Lleida
- Energy Research
- Restricted
- ES
- CA
- CN
- University of Lleida
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Jérôme Barrau; Manel Ibañez; Ferran Badia;Abstract From the sustainable perspective, the optimum thickness calculations of the buildings envelope insulation materials published in scientific journals suffer a number of notable shortcomings. The most relevant are the short amortization time periods and the prevalence of economic criterion. The work presented shows that an increase from 20 to 50 years in the amortization time period involves, in some cases, to double the value of the optimum thickness. Moreover, the thicknesses calculated applying energetic or environmental criteria for the optimization give, in some cases, results 10 times higher than the ones obtained using the economic argument. The type of insulation materials (especially their different characteristics at the manufacturing stage) and the calculation conditions (e.g. Degree-Days zone) also affect optimum thicknesses determination.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.03.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.03.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: S. Hippeli; Harald Mehling; Stefan Hiebler; Luisa F. Cabeza;Hot water heat stores with stratification are a common technology used in solar energy systems and reuse of waste heat. Adding a PCM module at the top of the water tank would give the system higher storage density, and compensate heat loss in the top layer. The work presented here includes experimental results and numerical simulation of the system using an explicit finite-difference method. Experiments and simulations were carried out using different cylindrical PCM modules. With only 1/16 of the volume of the store being PCM, 3/16 of water at the top of the store was held warm for 50% to 200% longer and the average energy density was increased by 20% to 45%. Furthermore, these 3/16 of water were reheated by the heat from the module after being cooled down in only 20 min.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(02)00108-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(02)00108-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Luis J. Santín; Guillermo Estivill-Torrús; Estela Castilla-Ortega; Antonia Serrano; +6 AuthorsLuis J. Santín; Guillermo Estivill-Torrús; Estela Castilla-Ortega; Antonia Serrano; Juan Suárez; Francisco Javier Pavón; Carmen Pedraza; Eduardo Blanco; Laura Sánchez-Marín; Fernando Rodríguez de Fonseca;pmid: 26700247
Lysophosphatidic acid species (LPA) are lipid bioactive signaling molecules that have been recently implicated in the modulation of emotional and motivational behaviors. The present study investigates the consequences of either genetic deletion or pharmacological blockade of lysophosphatidic acid receptor-1 (LPA1) in alcohol consumption.The experiments were performed in alcohol-drinking animals by using LPA1-null mice and administering the LPA1 receptor antagonist Ki16425 in both mice and rats.In the two-bottle free choice paradigm, the LPA1-null mice preferred the alcohol more than their wild-type counterparts. Whereas the male LPA1-null mice displayed this higher preference at all doses tested, the female LPA1-null mice only consumed more alcohol at 6% concentration. The male LPA1-null mice were then further characterized, showing a notably increased ethanol drinking after a deprivation period and a reduced sleep time after acute ethanol administration. In addition, LPA1-null mice were more anxious than the wild-type mice in the elevated plus maze test. For the pharmacological experiments, the acute administration of the antagonist Ki16425 consistently increased ethanol consumption in both wild-type mice and rats; while it did not modulate alcohol drinking in the LPA1-null mice and lacked intrinsic rewarding properties and locomotor effects in a conditioned place preference paradigm. In addition, LPA1-null mice exhibited a marked reduction on the expression of glutamate-transmission-related genes in the prefrontal cortex similar to those described in alcohol-exposed rodents.Results suggest a relevant role for the LPA/LPA1 signaling system in alcoholism. In addition, the LPA1-null mice emerge as a new model for genetic vulnerability to excessive alcohol drinking. The pharmacological manipulation of LPA1 receptor arises as a new target for the study and treatment of alcoholism.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2015.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2015.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Carolina Cárdenas-Ramírez; Maryory A. Gómez; Franklin Jaramillo; Andrés F. Cardona; +2 AuthorsCarolina Cárdenas-Ramírez; Maryory A. Gómez; Franklin Jaramillo; Andrés F. Cardona; Angel G. Fernández; Luisa F. Cabeza;Thermal performance of SS-PCM composites, simulating building envelope conditions, is difficult to asset with traditional laboratory equipment. However, in this work, the evaluation of three SS-PCM based on eutectic fatty acid mixtures of capric-myristic (CA/MA), lauric-myristic (LA/MA) and palmitic-stearic (PA/SA) was accomplished by a testing setup that allows to test samples in steady-state and dynamic conditions. Moreover, a SS-PCM-based acrylic plaster was evaluated as a fiber cement siding finish. The obtained values were used to calculate the thermal transmittance (U-value), heat storage capacity, and thermal inertia parameters under a simulated diurnal cycle. Results showed that the use of phase change materials in powder form increase thermal lag between 148% and 180% and present a decrement factor <0.2. Furthermore, building envelopes as fiber cement siding with a SS-PCM-based acrylic plaster coating decreased 20.8% the indoor temperature, increase 67.26% the thermal lag and decrease 9% of the decrement factor. The authors are pleased to acknowledge the financial assistance of the “Ministerio de Ciencia, Tecnología e Innovación-MINCIENCIAS” through the PhD grant 758-2016-Contract 036–2016, Universidad de Antioquia and Sumicol S.A.S. The work is partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31—MCIU/AEI/FEDER, UE) and by the Ministerio de Ciencia, Innovación y Universidades—Agencia Estatal de Investigación (AEI) (RED2018-102431-T). This work is partially supported by ICREA under the ICREA Academia programme. Dr. Cabeza would like to thank the Catalan Government for the quality accreditation given to her research group GREiA (2017 SGR 1537). GREiA is a certified agent TECNIO in the category of technology developers from the Government of Catalonia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Camila Barreneche; Camila Barreneche; Luisa F. Cabeza; M. Elena Navarro; A. Inés Fernández; M. Niubó;Abstract In recent years, the overall energy consumption is increasing significantly and the energy consumption in the building sector represents over 30% of the global ones in developed countries. Thermal energy storage (TES) using phase change materials (PCM), which are materials able to store high amounts of energy as latent heat, is suggested as a possible solution to decrease the energy consumption. The authors of this paper developed materials able to encapsulate/stabilize PCM in addition to isolate an industrial residue from the steel recycling process: electrical arc furnace dust (EAFD). This waste is a hazardous dust, and when it is combined with a polymeric matrix produce dense sheet materials suitable for multilayered constructive systems. In this paper the physical, mechanical, thermal and acoustical characterization of two new materials with EAFD and PCM in a polymeric matrix for constructive system is presented. The results are compared with those obtained for one commercial dense sheet material available in the market, Texsound commercialized by TEXSA (Spain). The new dense sheet materials developed in this paper have similar acoustic properties compared to the results obtained for the commercial material and are competitive with it, even better because the new material incorporates PCM which increases the thermal inertia of final constructive system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Boquera, Laura; Castro Chicot, José Ramón; Pisello, Anna Laura; Fabiani, Claudia; +3 AuthorsBoquera, Laura; Castro Chicot, José Ramón; Pisello, Anna Laura; Fabiani, Claudia; D'Alessandro, Antonella; Ubertini, Filippo; Cabeza, Luisa F.;The incorporation of recycled materials in concrete as a partial replacement of cement is becoming an alternative strategy for decreasing energy-intensive and CO2 emissions imputable to the cement manufacture, while investigating new potential uses of such multifunctional materials for environmental sustainability opportunities. Therefore, low-cost and worldwide availability of by-products materials is being assessed for sensible heat thermal energy storage applications based on cementitious materials. A greater concern is especially required focusing on the thermal stability of cement paste under high temperature cycled conditions. Moreover, compatibility between cement type and supplementary cementitious materials is determinant for the proper performance reliability. In this study, benchmark cement types were selected, i.e., ordinary Portland and calcium aluminate. Six supplementary cementitious materials were added to both types of cement in a content of 10 % and 25 %. Thermo-mechanical properties were studied before and after 10 thermal cycles from 290 to 650 ◦C. Results after thermal cycling showed that calcium aluminate cement paste mixtures maintained their integrity. However, most ordinary Portland cement paste mixtures were deteriorated: only mixtures with 25 % cement replacement with chamotte, flay ash, and ground granulated blast furnace slag remained without cracks. Calcium aluminate cement paste mixtures obtained the highest compressive strength, for partial replacement of cement with 10 % of chamotte, ground granulated blast furnace slag, and iron silicate. The incorporation of supplementary cementitious materials did not increase the thermal conductivity. This work was partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31 - MCIU/AEI/FEDER, UE) and by the Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (AEI) (RED2018-102431-T). The authors at University of Lleida would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537). GREiA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA Academia programme and by the Italian project ‘SOS-CITTA’ supported by Fondazione Cassa di Risparmio di Perugia under grant agreement No 2018.0499.026. Laura Boquera acknowledgments are due to the PhD school in Energy and Sustainable Development from University of Perugia. Laura Boquera would like to acknowledge the financial support provided by UNIPG – CIRIAF InpathTES project. The authors also thank the companies that provided the material to make possible this experimental research: Arciresa, Abrasivos Mendiola EDERSA—Masaveu Industria, General Admixtures S.p.A, Mapei, Ciments Molins industrial, and Promsa for the material supplied in this research. Financial support of the UNIPG-CIRIAF team has been achieved from the Italian Ministry of University and Research (MUR) in the framework of the Project FISR 2019: “Eco Earth” (code 00245) and it is gratefully acknowledged.
Repositori Obert UdL arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repositori Obert UdL arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Frank Bruno; Luisa F. Cabeza; Albert Castell; Martin Belusko;Abstract Thermal energy storage systems for both heat and cold are necessary for many industrial processes. High energy density and high power capacity are desirable properties of the storage. The use of latent heat increases the energy density of the storage tank with high temperature control close to the melting point. Tube in PCM tank is a very promising system that provides high packing factor. This work presents an experimental study of a PCM tank for cold storage applications. Two different configurations and different flow rates of the heat transfer fluid were studied. The effectiveness of the PCM storage system was defined as that of a heat exchanger. The results showed that the heat exchange effectiveness of the system did not vary with time, decreased with increasing flow rate and increased with increasing heat transfer area. The effectiveness was experimentally determined to only be a function of the ratio m ˙ /A. This equation was found to be adequately be used to design a PCM storage system, and a case study is presented. It was shown that the tube in tank design together with a low temperature PCM is suitable as a thermal storage facility for cold storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.03.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 122 citations 122 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.03.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Laura Boquera; J. Ramon Castro; Anna Laura Pisello; Claudia Fabiani; Antonella D'Alessandro; Filippo Ubertini; Luisa F. Cabeza;Abstract Concrete is identified in the literature as a suitable material for thermal energy storage applications, with even innovative application potentials such as storage media in concentrating solar power plants. To ensure a suitable heat transfer among concrete components, the binder material of concrete (cement paste) require further research and understanding to this aim. In particular, the thermal stability of cement paste under temperature cycled conditions arises as a research gap. In this study, ordinary Portland and calcium aluminate cement types were selected using a low water-cement ratio. Thermo-mechanical properties were studied before and after 1, 10, and 25 or 50 thermal cycles at 200 °C, 400 °C, 600 °C, and 800 °C. Although ordinary Portland cement paste showed micro-cracking propagation after 25 thermal cycles from ambient temperature to 200 °C and 400 °C, both cement pastes preserved their integrity, being compressive strength higher in ordinary Portland cement. On the contrary, after 25 or 50 thermal cycles at 600 °C and 800 °C, only calcium aluminate cement preserved its integrity, while ordinary Portland cement revealed a fragmentation status. Despite the compressive strength decrease in calcium aluminate paste at 600 °C and 800 °C, as a result of porosity increase, the properties were maintained after 10 thermal cycles. However, thermal conductivity in calcium aluminate paste was reduced nearly 50% after the first cycle at temperatures higher than 200 °C.
Repositori Obert UdL arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repositori Obert UdL arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Dieter Boer; Luisa F. Cabeza; Albert Castell; Julià Coma; Gabriel Pérez; Lídia Rincón;Using recycled rubber crumbs as drainage layer in extensive green roofs have high potential to reduce the heating and cooling loads in buildings over traditional materials used as drainage layer, such as pozzolana gravel. However, the environmental impact due to the life cycle should be analyzed to assess its environmental benefit. This paper evaluates the environmental performance of green roofs in which the drainage layer is made of rubber crumbs, a recycled material the use of which is still experimental for this purpose. In this paper Life Cycle Assessment (LCA) is applied to compare the environmental impact of four constructive systems, two extensive green roofs without insulation layer and with different drainage materials, e a recycled material, rubber crumbs, and a conventional one, pozzolana gravel -, in front of two conventional flat roofs, with and without thermal insulation (polyurethane), built in an experimental set-up consisting of four monitored house-like cubicles, located in Mediterranean continental climate (Lleida, Spain). The LCA considered the production, construction, operational, and disposal phases of the roofs, according to UNE-EN 15643-2. The operational phase was carried out using data measured in the experimental set-up, considering heating and cooling energy consumptions in the winter and summer period, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2014.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 72 citations 72 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2014.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Authors: Lídia Rincón; Gabriel Pérez; Luisa F. Cabeza;Purpose Service life of buildings is an essential parameter to evaluate its operational impact in life cycle assessment (LCA). Although most studies assume building service life about 75 to 100 years since no reliable data are available, its accurate quantification is still an unresolved work. To avoid wrong generalizations, the determination of the service life of buildings according to the characteristics of every region is required.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAThe International Journal of Life Cycle AssessmentArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-013-0552-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAThe International Journal of Life Cycle AssessmentArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-013-0552-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Jérôme Barrau; Manel Ibañez; Ferran Badia;Abstract From the sustainable perspective, the optimum thickness calculations of the buildings envelope insulation materials published in scientific journals suffer a number of notable shortcomings. The most relevant are the short amortization time periods and the prevalence of economic criterion. The work presented shows that an increase from 20 to 50 years in the amortization time period involves, in some cases, to double the value of the optimum thickness. Moreover, the thicknesses calculated applying energetic or environmental criteria for the optimization give, in some cases, results 10 times higher than the ones obtained using the economic argument. The type of insulation materials (especially their different characteristics at the manufacturing stage) and the calculation conditions (e.g. Degree-Days zone) also affect optimum thicknesses determination.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.03.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.03.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: S. Hippeli; Harald Mehling; Stefan Hiebler; Luisa F. Cabeza;Hot water heat stores with stratification are a common technology used in solar energy systems and reuse of waste heat. Adding a PCM module at the top of the water tank would give the system higher storage density, and compensate heat loss in the top layer. The work presented here includes experimental results and numerical simulation of the system using an explicit finite-difference method. Experiments and simulations were carried out using different cylindrical PCM modules. With only 1/16 of the volume of the store being PCM, 3/16 of water at the top of the store was held warm for 50% to 200% longer and the average energy density was increased by 20% to 45%. Furthermore, these 3/16 of water were reheated by the heat from the module after being cooled down in only 20 min.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(02)00108-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(02)00108-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Luis J. Santín; Guillermo Estivill-Torrús; Estela Castilla-Ortega; Antonia Serrano; +6 AuthorsLuis J. Santín; Guillermo Estivill-Torrús; Estela Castilla-Ortega; Antonia Serrano; Juan Suárez; Francisco Javier Pavón; Carmen Pedraza; Eduardo Blanco; Laura Sánchez-Marín; Fernando Rodríguez de Fonseca;pmid: 26700247
Lysophosphatidic acid species (LPA) are lipid bioactive signaling molecules that have been recently implicated in the modulation of emotional and motivational behaviors. The present study investigates the consequences of either genetic deletion or pharmacological blockade of lysophosphatidic acid receptor-1 (LPA1) in alcohol consumption.The experiments were performed in alcohol-drinking animals by using LPA1-null mice and administering the LPA1 receptor antagonist Ki16425 in both mice and rats.In the two-bottle free choice paradigm, the LPA1-null mice preferred the alcohol more than their wild-type counterparts. Whereas the male LPA1-null mice displayed this higher preference at all doses tested, the female LPA1-null mice only consumed more alcohol at 6% concentration. The male LPA1-null mice were then further characterized, showing a notably increased ethanol drinking after a deprivation period and a reduced sleep time after acute ethanol administration. In addition, LPA1-null mice were more anxious than the wild-type mice in the elevated plus maze test. For the pharmacological experiments, the acute administration of the antagonist Ki16425 consistently increased ethanol consumption in both wild-type mice and rats; while it did not modulate alcohol drinking in the LPA1-null mice and lacked intrinsic rewarding properties and locomotor effects in a conditioned place preference paradigm. In addition, LPA1-null mice exhibited a marked reduction on the expression of glutamate-transmission-related genes in the prefrontal cortex similar to those described in alcohol-exposed rodents.Results suggest a relevant role for the LPA/LPA1 signaling system in alcoholism. In addition, the LPA1-null mice emerge as a new model for genetic vulnerability to excessive alcohol drinking. The pharmacological manipulation of LPA1 receptor arises as a new target for the study and treatment of alcoholism.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2015.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2015.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Carolina Cárdenas-Ramírez; Maryory A. Gómez; Franklin Jaramillo; Andrés F. Cardona; +2 AuthorsCarolina Cárdenas-Ramírez; Maryory A. Gómez; Franklin Jaramillo; Andrés F. Cardona; Angel G. Fernández; Luisa F. Cabeza;Thermal performance of SS-PCM composites, simulating building envelope conditions, is difficult to asset with traditional laboratory equipment. However, in this work, the evaluation of three SS-PCM based on eutectic fatty acid mixtures of capric-myristic (CA/MA), lauric-myristic (LA/MA) and palmitic-stearic (PA/SA) was accomplished by a testing setup that allows to test samples in steady-state and dynamic conditions. Moreover, a SS-PCM-based acrylic plaster was evaluated as a fiber cement siding finish. The obtained values were used to calculate the thermal transmittance (U-value), heat storage capacity, and thermal inertia parameters under a simulated diurnal cycle. Results showed that the use of phase change materials in powder form increase thermal lag between 148% and 180% and present a decrement factor <0.2. Furthermore, building envelopes as fiber cement siding with a SS-PCM-based acrylic plaster coating decreased 20.8% the indoor temperature, increase 67.26% the thermal lag and decrease 9% of the decrement factor. The authors are pleased to acknowledge the financial assistance of the “Ministerio de Ciencia, Tecnología e Innovación-MINCIENCIAS” through the PhD grant 758-2016-Contract 036–2016, Universidad de Antioquia and Sumicol S.A.S. The work is partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31—MCIU/AEI/FEDER, UE) and by the Ministerio de Ciencia, Innovación y Universidades—Agencia Estatal de Investigación (AEI) (RED2018-102431-T). This work is partially supported by ICREA under the ICREA Academia programme. Dr. Cabeza would like to thank the Catalan Government for the quality accreditation given to her research group GREiA (2017 SGR 1537). GREiA is a certified agent TECNIO in the category of technology developers from the Government of Catalonia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Camila Barreneche; Camila Barreneche; Luisa F. Cabeza; M. Elena Navarro; A. Inés Fernández; M. Niubó;Abstract In recent years, the overall energy consumption is increasing significantly and the energy consumption in the building sector represents over 30% of the global ones in developed countries. Thermal energy storage (TES) using phase change materials (PCM), which are materials able to store high amounts of energy as latent heat, is suggested as a possible solution to decrease the energy consumption. The authors of this paper developed materials able to encapsulate/stabilize PCM in addition to isolate an industrial residue from the steel recycling process: electrical arc furnace dust (EAFD). This waste is a hazardous dust, and when it is combined with a polymeric matrix produce dense sheet materials suitable for multilayered constructive systems. In this paper the physical, mechanical, thermal and acoustical characterization of two new materials with EAFD and PCM in a polymeric matrix for constructive system is presented. The results are compared with those obtained for one commercial dense sheet material available in the market, Texsound commercialized by TEXSA (Spain). The new dense sheet materials developed in this paper have similar acoustic properties compared to the results obtained for the commercial material and are competitive with it, even better because the new material incorporates PCM which increases the thermal inertia of final constructive system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Boquera, Laura; Castro Chicot, José Ramón; Pisello, Anna Laura; Fabiani, Claudia; +3 AuthorsBoquera, Laura; Castro Chicot, José Ramón; Pisello, Anna Laura; Fabiani, Claudia; D'Alessandro, Antonella; Ubertini, Filippo; Cabeza, Luisa F.;The incorporation of recycled materials in concrete as a partial replacement of cement is becoming an alternative strategy for decreasing energy-intensive and CO2 emissions imputable to the cement manufacture, while investigating new potential uses of such multifunctional materials for environmental sustainability opportunities. Therefore, low-cost and worldwide availability of by-products materials is being assessed for sensible heat thermal energy storage applications based on cementitious materials. A greater concern is especially required focusing on the thermal stability of cement paste under high temperature cycled conditions. Moreover, compatibility between cement type and supplementary cementitious materials is determinant for the proper performance reliability. In this study, benchmark cement types were selected, i.e., ordinary Portland and calcium aluminate. Six supplementary cementitious materials were added to both types of cement in a content of 10 % and 25 %. Thermo-mechanical properties were studied before and after 10 thermal cycles from 290 to 650 ◦C. Results after thermal cycling showed that calcium aluminate cement paste mixtures maintained their integrity. However, most ordinary Portland cement paste mixtures were deteriorated: only mixtures with 25 % cement replacement with chamotte, flay ash, and ground granulated blast furnace slag remained without cracks. Calcium aluminate cement paste mixtures obtained the highest compressive strength, for partial replacement of cement with 10 % of chamotte, ground granulated blast furnace slag, and iron silicate. The incorporation of supplementary cementitious materials did not increase the thermal conductivity. This work was partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31 - MCIU/AEI/FEDER, UE) and by the Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (AEI) (RED2018-102431-T). The authors at University of Lleida would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537). GREiA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA Academia programme and by the Italian project ‘SOS-CITTA’ supported by Fondazione Cassa di Risparmio di Perugia under grant agreement No 2018.0499.026. Laura Boquera acknowledgments are due to the PhD school in Energy and Sustainable Development from University of Perugia. Laura Boquera would like to acknowledge the financial support provided by UNIPG – CIRIAF InpathTES project. The authors also thank the companies that provided the material to make possible this experimental research: Arciresa, Abrasivos Mendiola EDERSA—Masaveu Industria, General Admixtures S.p.A, Mapei, Ciments Molins industrial, and Promsa for the material supplied in this research. Financial support of the UNIPG-CIRIAF team has been achieved from the Italian Ministry of University and Research (MUR) in the framework of the Project FISR 2019: “Eco Earth” (code 00245) and it is gratefully acknowledged.
Repositori Obert UdL arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repositori Obert UdL arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Frank Bruno; Luisa F. Cabeza; Albert Castell; Martin Belusko;Abstract Thermal energy storage systems for both heat and cold are necessary for many industrial processes. High energy density and high power capacity are desirable properties of the storage. The use of latent heat increases the energy density of the storage tank with high temperature control close to the melting point. Tube in PCM tank is a very promising system that provides high packing factor. This work presents an experimental study of a PCM tank for cold storage applications. Two different configurations and different flow rates of the heat transfer fluid were studied. The effectiveness of the PCM storage system was defined as that of a heat exchanger. The results showed that the heat exchange effectiveness of the system did not vary with time, decreased with increasing flow rate and increased with increasing heat transfer area. The effectiveness was experimentally determined to only be a function of the ratio m ˙ /A. This equation was found to be adequately be used to design a PCM storage system, and a case study is presented. It was shown that the tube in tank design together with a low temperature PCM is suitable as a thermal storage facility for cold storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.03.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 122 citations 122 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.03.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Laura Boquera; J. Ramon Castro; Anna Laura Pisello; Claudia Fabiani; Antonella D'Alessandro; Filippo Ubertini; Luisa F. Cabeza;Abstract Concrete is identified in the literature as a suitable material for thermal energy storage applications, with even innovative application potentials such as storage media in concentrating solar power plants. To ensure a suitable heat transfer among concrete components, the binder material of concrete (cement paste) require further research and understanding to this aim. In particular, the thermal stability of cement paste under temperature cycled conditions arises as a research gap. In this study, ordinary Portland and calcium aluminate cement types were selected using a low water-cement ratio. Thermo-mechanical properties were studied before and after 1, 10, and 25 or 50 thermal cycles at 200 °C, 400 °C, 600 °C, and 800 °C. Although ordinary Portland cement paste showed micro-cracking propagation after 25 thermal cycles from ambient temperature to 200 °C and 400 °C, both cement pastes preserved their integrity, being compressive strength higher in ordinary Portland cement. On the contrary, after 25 or 50 thermal cycles at 600 °C and 800 °C, only calcium aluminate cement preserved its integrity, while ordinary Portland cement revealed a fragmentation status. Despite the compressive strength decrease in calcium aluminate paste at 600 °C and 800 °C, as a result of porosity increase, the properties were maintained after 10 thermal cycles. However, thermal conductivity in calcium aluminate paste was reduced nearly 50% after the first cycle at temperatures higher than 200 °C.
Repositori Obert UdL arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repositori Obert UdL arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Dieter Boer; Luisa F. Cabeza; Albert Castell; Julià Coma; Gabriel Pérez; Lídia Rincón;Using recycled rubber crumbs as drainage layer in extensive green roofs have high potential to reduce the heating and cooling loads in buildings over traditional materials used as drainage layer, such as pozzolana gravel. However, the environmental impact due to the life cycle should be analyzed to assess its environmental benefit. This paper evaluates the environmental performance of green roofs in which the drainage layer is made of rubber crumbs, a recycled material the use of which is still experimental for this purpose. In this paper Life Cycle Assessment (LCA) is applied to compare the environmental impact of four constructive systems, two extensive green roofs without insulation layer and with different drainage materials, e a recycled material, rubber crumbs, and a conventional one, pozzolana gravel -, in front of two conventional flat roofs, with and without thermal insulation (polyurethane), built in an experimental set-up consisting of four monitored house-like cubicles, located in Mediterranean continental climate (Lleida, Spain). The LCA considered the production, construction, operational, and disposal phases of the roofs, according to UNE-EN 15643-2. The operational phase was carried out using data measured in the experimental set-up, considering heating and cooling energy consumptions in the winter and summer period, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2014.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 72 citations 72 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2014.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Authors: Lídia Rincón; Gabriel Pérez; Luisa F. Cabeza;Purpose Service life of buildings is an essential parameter to evaluate its operational impact in life cycle assessment (LCA). Although most studies assume building service life about 75 to 100 years since no reliable data are available, its accurate quantification is still an unresolved work. To avoid wrong generalizations, the determination of the service life of buildings according to the characteristics of every region is required.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAThe International Journal of Life Cycle AssessmentArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-013-0552-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAThe International Journal of Life Cycle AssessmentArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-013-0552-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu