- home
- Advanced Search
- Energy Research
- Restricted
- EU
- CN
- Royal Institute of Technology
- Energy Research
- Restricted
- EU
- CN
- Royal Institute of Technology
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Elsevier BV Hao Wang; Junguo Liu; Ganquan Mao; Jinyue Yan; Jinyue Yan; Chunmiao Zheng; Arjen Ysbert Hoekstra; Michelle T. H. van Vliet; Benjamin L. Ruddell; Jianhua Wang; May Wu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SwedenPublisher:ASME International Funded by:EC | VIRTUAL CAMPUS HUBEC| VIRTUAL CAMPUS HUBAuthors: Lucio, Monaco; Bergmans, John; Vogt, Damian; Fransson, Torsten H.;doi: 10.1115/1.4028463
The use of advanced pedagogical methodologies in connection with advanced use of modern information technology for delivery enables new ways of communicating, of exchanging knowledge, and of learning that are gaining increasing relevance in our society. Remote laboratory exercises offer the possibility to enhance learning for students in different technical areas, especially to the ones not having physical access to laboratory facilities and thus spreading knowledge in a world-wide perspective. A new “Remote Flutter Laboratory” has been developed to introduce aeromechanics engineering students and professionals to aeroelastic phenomena in turbomachinery. The laboratory is world-wide unique in the sense that it allows global access for learners anywhere and anytime to a facility dedicated to what is both a complex and relevant area for gas turbine design and operation. The core of the system consists of an aeroelastically unstable turbine blade row that exhibits self-excited and self-sustained flutter at specific operating conditions. Steady and unsteady blade loading and motion data are simultaneously acquired on five neighboring suspended blades and the whole system allows for a distant-based operation and monitoring of the rig as well as for automatic data retrieval. This paper focuses on the development of the Remote Flutter Laboratory exercise as a hands-on learning platform for online and distant-based education and training in turbomachinery aeromechanics enabling familiarization with the concept of critical reduced frequency and of flutter phenomena. This laboratory setup can easily be used “as is” directly by any turbomachinery teacher in the world, free of charge and independent upon time and location with the intended learning outcomes as specified in the lab, but it can also very easily be adapted to other intended learning outcomes that a teacher might want to highlight in a specific course. As such it is also a base for a turbomachinery repository of advanced remote laboratories of global uniqueness and access. The present work documents also the pioneer implementation of the LabSocket System for the remote operation of a wind tunnel test facility from any Internet-enabled computer, tablet or smartphone with no end-user software or plug-in installation.
Publikationer från K... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2014 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4028463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publikationer från K... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2014 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4028463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Jiaxiang Hu; Weihao Hu; Di Cao; Qianwen Xu; Qi Huang; Zhe Chen; Frede Blaabjerg;The training process of learning-based distribution system state estimation (DSSE) methods relies on accurate state variables, which typically contain unknown noise and outliers in practice. To this end, this paper proposes an adaptive noise-resistant graphical learning-based DSSE method considering the impact of inaccurate state variables. Specifically, two global-scanning graph jumping connection networks are first developed to capture the regression rules between measurements and state variables considering the structure constraints. To mitigate the negative impact caused by inaccurate labels, a collaborative learning framework is further developed, within which Gaussian mixture model-based discriminators are employed to adaptively select clean samples in each mini-batch. These allow the method to obtain robustness against noisy state labels in historical data, as well as anomalous measurements during online operations. Comparative tests show the superiority of the proposed method in tackling abnormal data in both the training and test phases.
Aalborg University R... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3518098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3518098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SwedenPublisher:Bentham Science Publishers Ltd. Funded by:EC | TRISOFCEC| TRISOFCLu, Yuzheng; Afzal, Muhammad; Zhu, Bin; Wang, Baoyuan; Wang, Jun; Xia, Chen;Nanocomposites (integrating the nano and composite technologies) for advanced fuel cells (NANOCOFC) demonstrate the great potential to reduce the operational temperature of solid oxide fuel cell (SOFC) significantly in the low temperature (LT) range 300-600ºC. NANOCOFC has offered the development of multi-functional materials composed of semiconductor and ionic materials to meet the requirements of low temperature solid oxide fuel cell (LTSOFC) and green energy conversion devices with their unique mechanisms.This work reviews the recent developments relevant to the devices and the patents in LTSOFCs from nanotechnology perspectives that reports advances including fabrication methods, material compositions, characterization techniques and cell performances.Finally, the future scope of LTSOFC with nanotechnology and the practical applications are also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1872210510666161107085439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1872210510666161107085439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 SwedenPublisher:Elsevier BV Funded by:EC | TRISOFCEC| TRISOFCYufeng Zhao; Liangdong Fan; Liangdong Fan; Hao Wang; Yunjun He; Yunjun He; Bin Zhu; Bin Zhu;Abstract Hereby we report first a commercial lithium battery LiMn-oxide (LMO) positive electrode material for fuel cell applications. The obtained LMO can be used for both anode and cathode in a three-layer fuel cell, but displays low electro-catalytic activity and power output. Using a nanocomposite approach we have significantly improved the cell performance from tens mW cm−2 up to 210 mW cm−2, which is technically useful for low temperature (bellow 600 °C) ceramic fuel cells. We also constructed single-layer fuel cell using the LMO/SDC–metal oxide composite and achieved even better performances than those for conventional anode–electrolyte–cathode three-layer fuel cells.
Publikationer från K... arrow_drop_down http://dx.doi.org/10.1016/j.ma...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matlet.2014.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Publikationer från K... arrow_drop_down http://dx.doi.org/10.1016/j.ma...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matlet.2014.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwedenPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | RE-SIZEDEC| RE-SIZEDAuthors: Konstantinos N. Genikomsakis; Ignacio Angulo Gutierrez; Dimitrios Thomas; Christos S. Ioakimidis;Carsharing is a mode of transportation that provides access to a set of vehicles in the form of organized short-term car rental, serving as a substitute for private car ownership with a number of transportation, environmental, and social benefits. Combining the mobility concept of carsharing with electric vehicles (EVs), referred to as e-carsharing, can contribute not only to more efficient use of the shared vehicles, but also to more sustainable urban mobility in smart cities. In this context, this paper advances the concept of university-based e-carsharing, to serve the mobility needs of an academic community in Bilbao, Spain, focusing on the technical design aspects to cover the energy requirements of the EV fleet of the proposed system through the installation of fast charging posts based on a battery-to-battery approach. In this regard, a MATLAB/Simulink model is implemented to simulate the fast charging infrastructure using the real-world data collected from the university parking lot in order to represent the potential utilization of the EVs. The simulation results confirm the effectiveness of the proposed system design, ensuring that the energy demand of the EVs is successfully covered and concurrently the charging station batteries operate out of the low charge zone.
Publikationer från K... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Intelligent Transportation SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2017.2767779&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publikationer från K... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Intelligent Transportation SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2017.2767779&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SwedenPublisher:Elsevier BV Funded by:EC | NURESAFEEC| NURESAFEAuthors: Li, Haipeng; Anglart, Henryk;A mechanistic model of annular flow with evaporating liquid film has been developed using computational fluid dynamics (CFD). The model is employing a separate solver with two-dimensional conservat ...
Publikationer från K... arrow_drop_down Nuclear Engineering and DesignArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2016.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publikationer från K... arrow_drop_down Nuclear Engineering and DesignArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2016.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 SwedenPublisher:Elsevier BV Funded by:EC | TRISOFCEC| TRISOFCMingming Chen; Bin Zhu; Bin Zhu; Manish Singh; Liangdong Fan; Liangdong Fan; Liangdong Fan; Chengyang Wang; Hongjuan Zhang; Hao Wang;Abstract In this work, Lithiated NiCuZnOx (LNCZO) composite is synthesized and evaluated as a potential symmetrical electrode for ceria-carbonate composite electrolyte based low temperature ceramic fuel cells. Its crystal structures, the hydrogen oxidation/oxygen reduction electrochemical activities and fuel cell performances are systematically examined on the symmetrical cell configuration. Nano crystallite particles in the form of composite are observed for these oxides. The LNCZO shows relatively high catalytic activities for hydrogen oxidation and oxygen reduction reaction according to the electrochemical impedance spectroscopy measurements. A remarkable low oxygen reduction activation energy of 42 kJ mol−1 is obtained on the LNCZO/ceria-carbonate composite, demonstrating excellent electro-catalytic activity. Especially, the catalytic activity can be further improved in the presence of water in the cathode chamber. The results show that the lithiated transition metal oxide composite is a promising symmetrical electrode for ceria-carbonate electrolyte and composite approach might a probable solution to develop super-performance electrodes for reduced temperature ceramic fuel cells.
Publikationer från K... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2013.06.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publikationer från K... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2013.06.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | DERRIEC| DERRIAuthors: A. Parisio; E. Rikos; G. Tzamalis; Glielmo L.;handle: 11588/910683
In this paper we deal with the problem of efficiently optimizing microgrid operations while satisfying a time-varying request and operation constraints. Microgrids are subsystems of the distribution grid comprising sufficient generating resources to operate in isolation from the main grid, in a deliberate and controlled way. The Model Predictive Control (MPC) approach is applied for achieving economic efficiency in microgrid operation management. The method is thus applied to an experimental microgrid located in Athens, Greece: experimental results show the feasibility and the effectiveness of the proposed approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu194 citations 194 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SwedenPublisher:Elsevier BV Funded by:EC | CONVENIENTEC| CONVENIENTKhodabakhshian, Mohammad; Feng, Lei; Börjesson, Stefan; Lindgärde, Olof; Wikander, Jan;The electric engine cooling system, where the coolant pump and the radiator fan are driven by electric motors, admits advanced control methods to decrease auxiliary energy consumption. Recent publications show the fuel saving potential of optimal control strategies for the electric cooling system through offline simulations. These strategies often assume full knowledge of the drive cycle and compute the optimal control sequence by expensive global optimization methods. In reality, the full drive cycle is unknown during driving and global optimization not directly applicable on resource-constrained truck electronic control units. This paper reports state-of-the-art engineering achievements of exploiting vehicular onboard prediction for a limited time horizon and minimizing the auxiliary energy consumption of the electric cooling system through real-time optimization. The prediction and optimization are integrated into a model predictive controller (MPC), which is implemented on a dSPACE MicroAutoBox and tested on a truck on a public road. Systematic simulations show that the new method reduces fuel consumption of a 40-tonne truck by 0.36% and a 60-tonne truck by 0.69% in a real drive cycle compared to a base-line controller. The reductions on auxiliary fuel consumption for the 40-tonne and 60-tonne trucks are about 26% and 38%, respectively. Truck experiments validate the consistency between simulations and experiments and confirm the real-time feasibility of the MPC controller.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.11.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.11.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Elsevier BV Hao Wang; Junguo Liu; Ganquan Mao; Jinyue Yan; Jinyue Yan; Chunmiao Zheng; Arjen Ysbert Hoekstra; Michelle T. H. van Vliet; Benjamin L. Ruddell; Jianhua Wang; May Wu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SwedenPublisher:ASME International Funded by:EC | VIRTUAL CAMPUS HUBEC| VIRTUAL CAMPUS HUBAuthors: Lucio, Monaco; Bergmans, John; Vogt, Damian; Fransson, Torsten H.;doi: 10.1115/1.4028463
The use of advanced pedagogical methodologies in connection with advanced use of modern information technology for delivery enables new ways of communicating, of exchanging knowledge, and of learning that are gaining increasing relevance in our society. Remote laboratory exercises offer the possibility to enhance learning for students in different technical areas, especially to the ones not having physical access to laboratory facilities and thus spreading knowledge in a world-wide perspective. A new “Remote Flutter Laboratory” has been developed to introduce aeromechanics engineering students and professionals to aeroelastic phenomena in turbomachinery. The laboratory is world-wide unique in the sense that it allows global access for learners anywhere and anytime to a facility dedicated to what is both a complex and relevant area for gas turbine design and operation. The core of the system consists of an aeroelastically unstable turbine blade row that exhibits self-excited and self-sustained flutter at specific operating conditions. Steady and unsteady blade loading and motion data are simultaneously acquired on five neighboring suspended blades and the whole system allows for a distant-based operation and monitoring of the rig as well as for automatic data retrieval. This paper focuses on the development of the Remote Flutter Laboratory exercise as a hands-on learning platform for online and distant-based education and training in turbomachinery aeromechanics enabling familiarization with the concept of critical reduced frequency and of flutter phenomena. This laboratory setup can easily be used “as is” directly by any turbomachinery teacher in the world, free of charge and independent upon time and location with the intended learning outcomes as specified in the lab, but it can also very easily be adapted to other intended learning outcomes that a teacher might want to highlight in a specific course. As such it is also a base for a turbomachinery repository of advanced remote laboratories of global uniqueness and access. The present work documents also the pioneer implementation of the LabSocket System for the remote operation of a wind tunnel test facility from any Internet-enabled computer, tablet or smartphone with no end-user software or plug-in installation.
Publikationer från K... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2014 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4028463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publikationer från K... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2014 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4028463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Jiaxiang Hu; Weihao Hu; Di Cao; Qianwen Xu; Qi Huang; Zhe Chen; Frede Blaabjerg;The training process of learning-based distribution system state estimation (DSSE) methods relies on accurate state variables, which typically contain unknown noise and outliers in practice. To this end, this paper proposes an adaptive noise-resistant graphical learning-based DSSE method considering the impact of inaccurate state variables. Specifically, two global-scanning graph jumping connection networks are first developed to capture the regression rules between measurements and state variables considering the structure constraints. To mitigate the negative impact caused by inaccurate labels, a collaborative learning framework is further developed, within which Gaussian mixture model-based discriminators are employed to adaptively select clean samples in each mini-batch. These allow the method to obtain robustness against noisy state labels in historical data, as well as anomalous measurements during online operations. Comparative tests show the superiority of the proposed method in tackling abnormal data in both the training and test phases.
Aalborg University R... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3518098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3518098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SwedenPublisher:Bentham Science Publishers Ltd. Funded by:EC | TRISOFCEC| TRISOFCLu, Yuzheng; Afzal, Muhammad; Zhu, Bin; Wang, Baoyuan; Wang, Jun; Xia, Chen;Nanocomposites (integrating the nano and composite technologies) for advanced fuel cells (NANOCOFC) demonstrate the great potential to reduce the operational temperature of solid oxide fuel cell (SOFC) significantly in the low temperature (LT) range 300-600ºC. NANOCOFC has offered the development of multi-functional materials composed of semiconductor and ionic materials to meet the requirements of low temperature solid oxide fuel cell (LTSOFC) and green energy conversion devices with their unique mechanisms.This work reviews the recent developments relevant to the devices and the patents in LTSOFCs from nanotechnology perspectives that reports advances including fabrication methods, material compositions, characterization techniques and cell performances.Finally, the future scope of LTSOFC with nanotechnology and the practical applications are also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1872210510666161107085439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1872210510666161107085439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 SwedenPublisher:Elsevier BV Funded by:EC | TRISOFCEC| TRISOFCYufeng Zhao; Liangdong Fan; Liangdong Fan; Hao Wang; Yunjun He; Yunjun He; Bin Zhu; Bin Zhu;Abstract Hereby we report first a commercial lithium battery LiMn-oxide (LMO) positive electrode material for fuel cell applications. The obtained LMO can be used for both anode and cathode in a three-layer fuel cell, but displays low electro-catalytic activity and power output. Using a nanocomposite approach we have significantly improved the cell performance from tens mW cm−2 up to 210 mW cm−2, which is technically useful for low temperature (bellow 600 °C) ceramic fuel cells. We also constructed single-layer fuel cell using the LMO/SDC–metal oxide composite and achieved even better performances than those for conventional anode–electrolyte–cathode three-layer fuel cells.
Publikationer från K... arrow_drop_down http://dx.doi.org/10.1016/j.ma...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matlet.2014.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Publikationer från K... arrow_drop_down http://dx.doi.org/10.1016/j.ma...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matlet.2014.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwedenPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | RE-SIZEDEC| RE-SIZEDAuthors: Konstantinos N. Genikomsakis; Ignacio Angulo Gutierrez; Dimitrios Thomas; Christos S. Ioakimidis;Carsharing is a mode of transportation that provides access to a set of vehicles in the form of organized short-term car rental, serving as a substitute for private car ownership with a number of transportation, environmental, and social benefits. Combining the mobility concept of carsharing with electric vehicles (EVs), referred to as e-carsharing, can contribute not only to more efficient use of the shared vehicles, but also to more sustainable urban mobility in smart cities. In this context, this paper advances the concept of university-based e-carsharing, to serve the mobility needs of an academic community in Bilbao, Spain, focusing on the technical design aspects to cover the energy requirements of the EV fleet of the proposed system through the installation of fast charging posts based on a battery-to-battery approach. In this regard, a MATLAB/Simulink model is implemented to simulate the fast charging infrastructure using the real-world data collected from the university parking lot in order to represent the potential utilization of the EVs. The simulation results confirm the effectiveness of the proposed system design, ensuring that the energy demand of the EVs is successfully covered and concurrently the charging station batteries operate out of the low charge zone.
Publikationer från K... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Intelligent Transportation SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2017.2767779&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publikationer från K... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Intelligent Transportation SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2017.2767779&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SwedenPublisher:Elsevier BV Funded by:EC | NURESAFEEC| NURESAFEAuthors: Li, Haipeng; Anglart, Henryk;A mechanistic model of annular flow with evaporating liquid film has been developed using computational fluid dynamics (CFD). The model is employing a separate solver with two-dimensional conservat ...
Publikationer från K... arrow_drop_down Nuclear Engineering and DesignArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2016.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publikationer från K... arrow_drop_down Nuclear Engineering and DesignArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2016.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 SwedenPublisher:Elsevier BV Funded by:EC | TRISOFCEC| TRISOFCMingming Chen; Bin Zhu; Bin Zhu; Manish Singh; Liangdong Fan; Liangdong Fan; Liangdong Fan; Chengyang Wang; Hongjuan Zhang; Hao Wang;Abstract In this work, Lithiated NiCuZnOx (LNCZO) composite is synthesized and evaluated as a potential symmetrical electrode for ceria-carbonate composite electrolyte based low temperature ceramic fuel cells. Its crystal structures, the hydrogen oxidation/oxygen reduction electrochemical activities and fuel cell performances are systematically examined on the symmetrical cell configuration. Nano crystallite particles in the form of composite are observed for these oxides. The LNCZO shows relatively high catalytic activities for hydrogen oxidation and oxygen reduction reaction according to the electrochemical impedance spectroscopy measurements. A remarkable low oxygen reduction activation energy of 42 kJ mol−1 is obtained on the LNCZO/ceria-carbonate composite, demonstrating excellent electro-catalytic activity. Especially, the catalytic activity can be further improved in the presence of water in the cathode chamber. The results show that the lithiated transition metal oxide composite is a promising symmetrical electrode for ceria-carbonate electrolyte and composite approach might a probable solution to develop super-performance electrodes for reduced temperature ceramic fuel cells.
Publikationer från K... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2013.06.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publikationer från K... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2013.06.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | DERRIEC| DERRIAuthors: A. Parisio; E. Rikos; G. Tzamalis; Glielmo L.;handle: 11588/910683
In this paper we deal with the problem of efficiently optimizing microgrid operations while satisfying a time-varying request and operation constraints. Microgrids are subsystems of the distribution grid comprising sufficient generating resources to operate in isolation from the main grid, in a deliberate and controlled way. The Model Predictive Control (MPC) approach is applied for achieving economic efficiency in microgrid operation management. The method is thus applied to an experimental microgrid located in Athens, Greece: experimental results show the feasibility and the effectiveness of the proposed approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu194 citations 194 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.10.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SwedenPublisher:Elsevier BV Funded by:EC | CONVENIENTEC| CONVENIENTKhodabakhshian, Mohammad; Feng, Lei; Börjesson, Stefan; Lindgärde, Olof; Wikander, Jan;The electric engine cooling system, where the coolant pump and the radiator fan are driven by electric motors, admits advanced control methods to decrease auxiliary energy consumption. Recent publications show the fuel saving potential of optimal control strategies for the electric cooling system through offline simulations. These strategies often assume full knowledge of the drive cycle and compute the optimal control sequence by expensive global optimization methods. In reality, the full drive cycle is unknown during driving and global optimization not directly applicable on resource-constrained truck electronic control units. This paper reports state-of-the-art engineering achievements of exploiting vehicular onboard prediction for a limited time horizon and minimizing the auxiliary energy consumption of the electric cooling system through real-time optimization. The prediction and optimization are integrated into a model predictive controller (MPC), which is implemented on a dSPACE MicroAutoBox and tested on a truck on a public road. Systematic simulations show that the new method reduces fuel consumption of a 40-tonne truck by 0.36% and a 60-tonne truck by 0.69% in a real drive cycle compared to a base-line controller. The reductions on auxiliary fuel consumption for the 40-tonne and 60-tonne trucks are about 26% and 38%, respectively. Truck experiments validate the consistency between simulations and experiments and confirm the real-time feasibility of the MPC controller.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.11.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.11.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu