- home
- Advanced Search
- Energy Research
- Open Access
- GB
- CN
- DK
- Applied Energy
- Energy Research
- Open Access
- GB
- CN
- DK
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of), China (People's Republic of), China (People's Republic of), United StatesPublisher:Elsevier BV Han Li; Zhe Wang; Tianzhen Hong; Andrew Parker; Monica Neukomm;The rapid development of advanced metering infrastructure provides a new data source—building electrical load profiles with high temporal resolution. Electric load profile characterization can generate useful information to enhance building energy modeling and provide metrics to represent patterns and variability of load profiles. Such characterizations can be used to identify changes to building electricity demand due to operations or faulty equipment and controls. In this study, we proposed a two-path approach to analyze high temporal resolution building electrical load profiles: (1) time-domain analysis and (2) frequency-domain analysis. The commonly adopted time-domain analysis can extract and quantify the distribution of key parameters characterizing load shape such as peak-base load ratio and morning rise time, while a frequency-domain analysis can identify major periodic fluctuations and quantify load variability. We implemented and evaluated both paths using whole-year 15-minute interval smart meter data of 188 commercial office building in Northern California. The results from these two paths are consistent with each other and complementary to represent full dynamics of load profiles. The time- and frequency-domain analyses can be used to enhance building energy modeling by: (1) providing more realistic assumptions about building operation schedules, and (2) validating the simulated electric load profiles using the developed variability metrics against the real building load data.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | Heat supply through Solar..., EC | H-DisNetUKRI| Heat supply through Solar Thermochemical Residential Seasonal Storage (Heat-STRESS) ,EC| H-DisNetAuthors: Giampieri, Alessandro; Ma, Zhiwei; Smallbone, Andrew; Roskilly, Anthony Paul;Abstract In an effort to minimise electricity consumption and greenhouse gases emissions, the heating, ventilation and air-conditioning sector has focused its attention on developing alternative solutions to electrically-driven vapour-compression cooling. Liquid desiccant air-conditioning systems represent an energy-efficient and more environmentally friendly alternative technology for dehumidification and cooling, particularly in those cases with high latent loads to maintain indoor air quality and comfort conditions. This technology is considered particularly efficient in hot and humid climates. As a matter of fact, the choice of the desiccant solution influences the overall performance of the system. The current paper reviews the working principle of liquid desiccant systems, focusing on the thermodynamic properties of the desiccant solutions and describes an evaluation of the reference thermodynamic properties of different desiccant solutions to identify which thermodynamic, physical, transport property influences the liquid desiccant process and to what extent. The comparison of these thermodynamic properties for the commonly used desiccants is conducted to estimate which fluid could perform most favourably in the system. The economic factors and the effect of different applications and climatic conditions on the system performance are also described. The paper is intended to be the first step in the evaluation of alternative desiccant fluids able to overcome the problems related to the use of the common desiccant solutions, such as crystallization and corrosion to metals. Ionic liquids seem a promising alternative working fluid in liquid desiccant air-conditioning systems and their characteristics and cost are discussed.
Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/29398/Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/29398/Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 IrelandPublisher:Elsevier BV Publicly fundedFunded by:University College DublinUniversity College DublinUsman Ali; Mohammad Haris Shamsi; Mark Bohacek; Karl Purcell; Cathal Hoare; Eleni Mangina; James O’Donnell;handle: 10197/12265
Abstract Urban planners, local authorities, and energy policymakers often develop strategic sustainable energy plans for the urban building stock in order to minimize overall energy consumption and emissions. Planning at such scales could be informed by building stock modeling using existing building data and Geographic Information System-based mapping. However, implementing these processes involves several issues, namely, data availability, data inconsistency, data scalability, data integration, geocoding, and data privacy. This research addresses the aforementioned information challenges by proposing a generalized integrated methodology that implements bottom-up, data-driven, and spatial modeling approaches for multi-scale Geographic Information System mapping of building energy modeling. This study uses the Irish building stock to map building energy performance at multiple scales. The generalized data-driven methodology uses approximately 650,000 Irish Energy Performance Certificates buildings data to predict more than 2 million buildings’ energy performance. In this case, the approach delivers a prediction accuracy of 88% using deep learning algorithms. These prediction results are then used for spatial modeling at multiple scales from the individual building level to a national level. Furthermore, these maps are coupled with available spatial resources (social, economic, or environmental data) for energy planning, analysis, and support decision-making. The modeling results identify clusters of buildings that have a significant potential for energy savings within any specific region. Geographic Information System-based modeling aids stakeholders in identifying priority areas for implementing energy efficiency measures. Furthermore, the stakeholders could target local communities for retrofit campaigns, which would enhance the implementation of sustainable energy policy decisions.
University College D... arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12265Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University College D... arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12265Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:Elsevier BV Funded by:UKRI | DTP 2018-19 University of...UKRI| DTP 2018-19 University of CambridgeAuthors: Quentin Paletta; Anthony Hu; Guillaume Arbod; Joan Lasenby;Efficient integration of solar energy into the electricity mix depends on a reliable anticipation of its intermittency. A promising approach to forecast the temporal variability of solar irradiance resulting from the cloud cover dynamics is based on the analysis of sequences of ground-taken sky images or satellite observations. Despite encouraging results, a recurrent limitation of existing deep learning approaches lies in the ubiquitous tendency of reacting to past observations rather than actively anticipating future events. This leads to a frequent temporal lag and limited ability to predict sudden events. To address this challenge, we introduce ECLIPSE, a spatio-temporal neural network architecture that models cloud motion from sky images to not only predict future irradiance levels and associated uncertainties, but also segmented images, which provide richer information on the local irradiance map. We show that ECLIPSE anticipates critical events and reduces temporal delay while generating visually realistic futures. The model characteristics and properties are investigated with an ablation study and a comparative study on the benefits and different ways to integrate auxiliary data into the modelling. The model predictions are also interpreted through an analysis of the principal spatio-temporal components learned during network training. Manuscript accepted for publication in Applied Energy
Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 BelgiumPublisher:Elsevier BV Funded by:EC | VADEMECOM, EC | CLEAN-GasEC| VADEMECOM ,EC| CLEAN-GasAlberto Cuoci; Zhiyi Li; Marco Ferrarotti; Marco Ferrarotti; Alessandro Parente;Abstract The present work focuses on the numerical simulation of Moderate or Intense Low oxygen Dilution combustion condition, using the Partially-Stirred Reactor model for turbulence-chemistry interactions. The Partially-Stirred Reactor model assumes that reactions are confined in a specific region of the computational cell, whose mass fraction depends both on the mixing and the chemical time scales. Therefore, the appropriate choice of mixing and chemical time scales becomes crucial to ensure the accuracy of the numerical simulation prediction. Results show that the most appropriate choice for mixing time scale in Moderate or Intense Low oxygen Dilution combustion regime is to use a dynamic evaluation, in which the ratio between the variance of mixture fraction and its dissipation rate is adopted, rather than global estimations based on Kolmogorov or integral mixing scales. This is supported by the validation of the numerical results against experimental profiles of temperature and species mass fractions, available from measurements on the Adelaide Jet in Hot Co-flow burner. Different approaches for chemical time scale evaluation are also compared, using the species formation rates, the reaction rates and the eigenvalues of the formation rate Jacobian matrix. Different co-flow oxygen dilution levels and Reynolds numbers are considered in the validation work, to evaluate the applicability of Partially-Stirred Reactor approach over a wide range of operating conditions. Moreover, the influence of specifying uniform and non-uniform boundary conditions for the chemical scalars is assessed. The present work sheds light on the key mechanisms of turbulence-chemistry interactions in advanced combustion regimes. At the same time, it provides essential information to advance the predictive nature of computational tools used by scientists and engineers, to support the development of new technologies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.04.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.04.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Cetengfei Zhang; Quan Zhou; Min Hua; Hongming Xu; Mike Bassett; Fanggang Zhang;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2017Publisher:Elsevier BV Funded by:FCT | D4FCT| D4Authors: Zhiwen Wang; Chen Shen; Feng Liu;In power system operation, characterizing the stochastic nature of wind power is an important albeit challenging issue. It is well known that distributions of wind power forecast errors often exhibit significant variability with respect to different forecast values. Therefore, appropriate probabilistic models that can provide accurate information for conditional forecast error distributions are of great need. On the basis of Gaussian mixture model, this paper constructs analytical conditional distributions of forecast errors for multiple wind farms with respect to forecast values. The accuracy of the proposed probabilistic models is verified by using historical data. Thereafter, a fast sampling method is proposed to generate scenarios from the conditional distributions which are non-Gaussian and interdependent. The efficiency of the proposed sampling method is verified.
Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SingaporePublisher:Elsevier BV Zhou, Dezhi; Yang, Wenming; Li, Jing; Tay, Kun Lin; Kraft, Markus;handle: 10356/136824
This study proposed a hybrid model consisting of a characteristic time combustion (CTC) model and a closed reactor model for the combustion modelling with detailed chemistry in RCCI engines. In the light of the basic idea of the CTC model of achieving chemical equilibrium in high temperature, this hybrid model uses the CTC model to solve the species conversion and heat release in the diffusion flame. Except for the diffusion flame, the auto-ignition in RCCI combustion is computed by a closed reactor model with the CHEMKIN library by assuming that the computational cells are closed reactors. The border of the transition between the CTC model and closed reactor model is determined by two criteria, a critical temperature and a critical Damkohler number. On the formulation of this hybrid model, emphasis is placed on coupling detailed chemistry into this hybrid model. A CEQ solver for species equilibrium calculations at certain temperature, pressure was embedded with CTC for detailed chemistry calculation. Then this combustion model was integrated with the CFD framework KIVA4 and the chemical library CHEMKIN-II and validated in a RCCI engine. The predicted in-cylinder pressure and heat release rate (HRR) show a good consistency with the data from the experiment and better accuracy than that computed from the sole closed reactor model. More importantly, it is observed that this model could save computational time compared with closed reactor model due to less stiff ordinary differential equations (ODEs) computation. A sensitivity analysis of the critical temperature and critical Damkohler number was conducted to demonstrate the effect of these two parameters in the current model.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Biomethanisation of CO2 i...UKRI| Biomethanisation of CO2 in anaerobic digestion plantsBing Tao; Anna M. Alessi; Yue Zhang; James P.J. Chong; Sonia Heaven; Charles J. Banks;In-situ biomethanisation reduces the CO2 in biogas to CH4 via direct H2 injection into an anaerobic digester, but volumetric methane production (VMP) is limited by organic loading. Ex-situ biomethanisation, where gaseous substrates are fed to pure or mixed cultures of hydrogenotrophic methanogens, offers higher VMP but requires an additional reactor and supply of essential nutrients. This work combined the two approaches in a novel hybrid application achieving simultaneous in-situ and ex-situ biomethanisation within an organically-loaded anaerobic digester receiving supplementary biogas. Conventional stirred-tank digesters were first acclimated to H2 addition, increasing biogas methane content from 50% to 95% and VMP from 0.86 to 1.51 L L-1 day-1 at a moderate loading rate of 3 g organic chemical oxygen demand per L per day (g CODorg L-1 day-1). Externally-produced biogas was then added to demonstrate simultaneous biomethanisation of endogenous and imported CO2. This further increased VMP to 2.76 L L-1 day-1 without affecting organic substrate degradation. In-situ CO2 reduction can alter digester pH by reducing bicarbonate buffering: the combined process operated stably at around pH 8.0 with 3-5% CO2 in the headspace. Microbial community analysis indicated the process was mediated by bacterial syntrophic acetate oxidation and highly enriched hydrogenotrophic methanogenic archaea (up to 97% of the archaeal population). This approach presents the opportunity to retrofit a single digester for H2 injection to convert and upgrade biogas from several others, minimising capital and operating costs by utilising both existing infrastructure and waste-derived feedstock nutrients for simultaneous biogas upgrading and power-to-methane.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)White Rose Research OnlineArticle . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 22visibility views 22 download downloads 103 Powered bymore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)White Rose Research OnlineArticle . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Catherine Mitchell; Ronan Bolton; Chiara Candelise; Jinyue Yan; Florian Kern; Richard Hoggett;This special edition to be published in Applied Energy brings together a range of papers that explore the complex, multi-dimensional and inter-related issues associated with the supply or value chains that make up energy systems and how a focus on them can bring new insights for energy security in a low carbon transition.\ud \ud Dealing with the trilemma of maintaining energy security, reducing greenhouse gas emissions and maintaining affordability for economies and end users are key issues for all countries, but there are synergies and trade-offs in simultaneously dealing with these different objectives. Currently, industrialised energy systems are dominated by supply chains based on fossil fuels and these, for the most part, have been effective in enabling energy security and affordability. However, they are increasingly struggling to do this, particularly in respect to efforts to tackle climate change, given that the energy sector is responsible for around two-thirds of the global greenhouse gas emissions [1]. A key challenge is therefore how to decarbonise energy systems, whilst also ensuring energy security and affordability. This special issue, through a focus on supply chains, particularly considers the interactions and relationships between energy security and decarbonisation.\ud \ud Energy security is a property of energy systems and their ability to withstand short-term shocks and longer-term stresses depends on other important system properties including resilience, robustness, flexibility and stability [2]. Energy systems are essentially a supply chain comprising of multiple and interrelated sub-chains based around different fuels, technologies, infrastructures, and actors, operating at different scales and locations – from extraction/imports and conversion through to end use [3]. These supply chains have become increasingly globalised and are influenced by the on-going shifts in global supply and demand. Thus the aim of this special issue is to explore and discuss how to enable the development of a secure and sustainable energy system through a better understanding of both existing and emerging low carbon energy supply chains as well as of new approaches to the design and management of energy systems. In part, because moving from a system dominated by fossil fuels to one based on low carbon creates a new set of risks and uncertainties for energy security as well as new opportunities.\ud \ud A large number of submissions from over 18 countries were received for this special edition and 16 papers were accepted after peer review. These address a variety of issues and we have chosen to discuss the findings under two key themes, although many of the papers cut across these: (1) Insights from, and for, supply chain analysis. (2) Insights for energy security and its management. We then provide in (3) a summary of insights and research gaps. Table 1 provides a snapshot of the areas covered by the papers showing: theme (s); empirical domains; and geographical coverage.
CORE arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 490 Powered bymore_vert CORE arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of), China (People's Republic of), China (People's Republic of), United StatesPublisher:Elsevier BV Han Li; Zhe Wang; Tianzhen Hong; Andrew Parker; Monica Neukomm;The rapid development of advanced metering infrastructure provides a new data source—building electrical load profiles with high temporal resolution. Electric load profile characterization can generate useful information to enhance building energy modeling and provide metrics to represent patterns and variability of load profiles. Such characterizations can be used to identify changes to building electricity demand due to operations or faulty equipment and controls. In this study, we proposed a two-path approach to analyze high temporal resolution building electrical load profiles: (1) time-domain analysis and (2) frequency-domain analysis. The commonly adopted time-domain analysis can extract and quantify the distribution of key parameters characterizing load shape such as peak-base load ratio and morning rise time, while a frequency-domain analysis can identify major periodic fluctuations and quantify load variability. We implemented and evaluated both paths using whole-year 15-minute interval smart meter data of 188 commercial office building in Northern California. The results from these two paths are consistent with each other and complementary to represent full dynamics of load profiles. The time- and frequency-domain analyses can be used to enhance building energy modeling by: (1) providing more realistic assumptions about building operation schedules, and (2) validating the simulated electric load profiles using the developed variability metrics against the real building load data.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | Heat supply through Solar..., EC | H-DisNetUKRI| Heat supply through Solar Thermochemical Residential Seasonal Storage (Heat-STRESS) ,EC| H-DisNetAuthors: Giampieri, Alessandro; Ma, Zhiwei; Smallbone, Andrew; Roskilly, Anthony Paul;Abstract In an effort to minimise electricity consumption and greenhouse gases emissions, the heating, ventilation and air-conditioning sector has focused its attention on developing alternative solutions to electrically-driven vapour-compression cooling. Liquid desiccant air-conditioning systems represent an energy-efficient and more environmentally friendly alternative technology for dehumidification and cooling, particularly in those cases with high latent loads to maintain indoor air quality and comfort conditions. This technology is considered particularly efficient in hot and humid climates. As a matter of fact, the choice of the desiccant solution influences the overall performance of the system. The current paper reviews the working principle of liquid desiccant systems, focusing on the thermodynamic properties of the desiccant solutions and describes an evaluation of the reference thermodynamic properties of different desiccant solutions to identify which thermodynamic, physical, transport property influences the liquid desiccant process and to what extent. The comparison of these thermodynamic properties for the commonly used desiccants is conducted to estimate which fluid could perform most favourably in the system. The economic factors and the effect of different applications and climatic conditions on the system performance are also described. The paper is intended to be the first step in the evaluation of alternative desiccant fluids able to overcome the problems related to the use of the common desiccant solutions, such as crystallization and corrosion to metals. Ionic liquids seem a promising alternative working fluid in liquid desiccant air-conditioning systems and their characteristics and cost are discussed.
Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/29398/Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/29398/Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 IrelandPublisher:Elsevier BV Publicly fundedFunded by:University College DublinUniversity College DublinUsman Ali; Mohammad Haris Shamsi; Mark Bohacek; Karl Purcell; Cathal Hoare; Eleni Mangina; James O’Donnell;handle: 10197/12265
Abstract Urban planners, local authorities, and energy policymakers often develop strategic sustainable energy plans for the urban building stock in order to minimize overall energy consumption and emissions. Planning at such scales could be informed by building stock modeling using existing building data and Geographic Information System-based mapping. However, implementing these processes involves several issues, namely, data availability, data inconsistency, data scalability, data integration, geocoding, and data privacy. This research addresses the aforementioned information challenges by proposing a generalized integrated methodology that implements bottom-up, data-driven, and spatial modeling approaches for multi-scale Geographic Information System mapping of building energy modeling. This study uses the Irish building stock to map building energy performance at multiple scales. The generalized data-driven methodology uses approximately 650,000 Irish Energy Performance Certificates buildings data to predict more than 2 million buildings’ energy performance. In this case, the approach delivers a prediction accuracy of 88% using deep learning algorithms. These prediction results are then used for spatial modeling at multiple scales from the individual building level to a national level. Furthermore, these maps are coupled with available spatial resources (social, economic, or environmental data) for energy planning, analysis, and support decision-making. The modeling results identify clusters of buildings that have a significant potential for energy savings within any specific region. Geographic Information System-based modeling aids stakeholders in identifying priority areas for implementing energy efficiency measures. Furthermore, the stakeholders could target local communities for retrofit campaigns, which would enhance the implementation of sustainable energy policy decisions.
University College D... arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12265Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University College D... arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12265Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:Elsevier BV Funded by:UKRI | DTP 2018-19 University of...UKRI| DTP 2018-19 University of CambridgeAuthors: Quentin Paletta; Anthony Hu; Guillaume Arbod; Joan Lasenby;Efficient integration of solar energy into the electricity mix depends on a reliable anticipation of its intermittency. A promising approach to forecast the temporal variability of solar irradiance resulting from the cloud cover dynamics is based on the analysis of sequences of ground-taken sky images or satellite observations. Despite encouraging results, a recurrent limitation of existing deep learning approaches lies in the ubiquitous tendency of reacting to past observations rather than actively anticipating future events. This leads to a frequent temporal lag and limited ability to predict sudden events. To address this challenge, we introduce ECLIPSE, a spatio-temporal neural network architecture that models cloud motion from sky images to not only predict future irradiance levels and associated uncertainties, but also segmented images, which provide richer information on the local irradiance map. We show that ECLIPSE anticipates critical events and reduces temporal delay while generating visually realistic futures. The model characteristics and properties are investigated with an ablation study and a comparative study on the benefits and different ways to integrate auxiliary data into the modelling. The model predictions are also interpreted through an analysis of the principal spatio-temporal components learned during network training. Manuscript accepted for publication in Applied Energy
Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 BelgiumPublisher:Elsevier BV Funded by:EC | VADEMECOM, EC | CLEAN-GasEC| VADEMECOM ,EC| CLEAN-GasAlberto Cuoci; Zhiyi Li; Marco Ferrarotti; Marco Ferrarotti; Alessandro Parente;Abstract The present work focuses on the numerical simulation of Moderate or Intense Low oxygen Dilution combustion condition, using the Partially-Stirred Reactor model for turbulence-chemistry interactions. The Partially-Stirred Reactor model assumes that reactions are confined in a specific region of the computational cell, whose mass fraction depends both on the mixing and the chemical time scales. Therefore, the appropriate choice of mixing and chemical time scales becomes crucial to ensure the accuracy of the numerical simulation prediction. Results show that the most appropriate choice for mixing time scale in Moderate or Intense Low oxygen Dilution combustion regime is to use a dynamic evaluation, in which the ratio between the variance of mixture fraction and its dissipation rate is adopted, rather than global estimations based on Kolmogorov or integral mixing scales. This is supported by the validation of the numerical results against experimental profiles of temperature and species mass fractions, available from measurements on the Adelaide Jet in Hot Co-flow burner. Different approaches for chemical time scale evaluation are also compared, using the species formation rates, the reaction rates and the eigenvalues of the formation rate Jacobian matrix. Different co-flow oxygen dilution levels and Reynolds numbers are considered in the validation work, to evaluate the applicability of Partially-Stirred Reactor approach over a wide range of operating conditions. Moreover, the influence of specifying uniform and non-uniform boundary conditions for the chemical scalars is assessed. The present work sheds light on the key mechanisms of turbulence-chemistry interactions in advanced combustion regimes. At the same time, it provides essential information to advance the predictive nature of computational tools used by scientists and engineers, to support the development of new technologies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.04.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.04.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Cetengfei Zhang; Quan Zhou; Min Hua; Hongming Xu; Mike Bassett; Fanggang Zhang;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2017Publisher:Elsevier BV Funded by:FCT | D4FCT| D4Authors: Zhiwen Wang; Chen Shen; Feng Liu;In power system operation, characterizing the stochastic nature of wind power is an important albeit challenging issue. It is well known that distributions of wind power forecast errors often exhibit significant variability with respect to different forecast values. Therefore, appropriate probabilistic models that can provide accurate information for conditional forecast error distributions are of great need. On the basis of Gaussian mixture model, this paper constructs analytical conditional distributions of forecast errors for multiple wind farms with respect to forecast values. The accuracy of the proposed probabilistic models is verified by using historical data. Thereafter, a fast sampling method is proposed to generate scenarios from the conditional distributions which are non-Gaussian and interdependent. The efficiency of the proposed sampling method is verified.
Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SingaporePublisher:Elsevier BV Zhou, Dezhi; Yang, Wenming; Li, Jing; Tay, Kun Lin; Kraft, Markus;handle: 10356/136824
This study proposed a hybrid model consisting of a characteristic time combustion (CTC) model and a closed reactor model for the combustion modelling with detailed chemistry in RCCI engines. In the light of the basic idea of the CTC model of achieving chemical equilibrium in high temperature, this hybrid model uses the CTC model to solve the species conversion and heat release in the diffusion flame. Except for the diffusion flame, the auto-ignition in RCCI combustion is computed by a closed reactor model with the CHEMKIN library by assuming that the computational cells are closed reactors. The border of the transition between the CTC model and closed reactor model is determined by two criteria, a critical temperature and a critical Damkohler number. On the formulation of this hybrid model, emphasis is placed on coupling detailed chemistry into this hybrid model. A CEQ solver for species equilibrium calculations at certain temperature, pressure was embedded with CTC for detailed chemistry calculation. Then this combustion model was integrated with the CFD framework KIVA4 and the chemical library CHEMKIN-II and validated in a RCCI engine. The predicted in-cylinder pressure and heat release rate (HRR) show a good consistency with the data from the experiment and better accuracy than that computed from the sole closed reactor model. More importantly, it is observed that this model could save computational time compared with closed reactor model due to less stiff ordinary differential equations (ODEs) computation. A sensitivity analysis of the critical temperature and critical Damkohler number was conducted to demonstrate the effect of these two parameters in the current model.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Biomethanisation of CO2 i...UKRI| Biomethanisation of CO2 in anaerobic digestion plantsBing Tao; Anna M. Alessi; Yue Zhang; James P.J. Chong; Sonia Heaven; Charles J. Banks;In-situ biomethanisation reduces the CO2 in biogas to CH4 via direct H2 injection into an anaerobic digester, but volumetric methane production (VMP) is limited by organic loading. Ex-situ biomethanisation, where gaseous substrates are fed to pure or mixed cultures of hydrogenotrophic methanogens, offers higher VMP but requires an additional reactor and supply of essential nutrients. This work combined the two approaches in a novel hybrid application achieving simultaneous in-situ and ex-situ biomethanisation within an organically-loaded anaerobic digester receiving supplementary biogas. Conventional stirred-tank digesters were first acclimated to H2 addition, increasing biogas methane content from 50% to 95% and VMP from 0.86 to 1.51 L L-1 day-1 at a moderate loading rate of 3 g organic chemical oxygen demand per L per day (g CODorg L-1 day-1). Externally-produced biogas was then added to demonstrate simultaneous biomethanisation of endogenous and imported CO2. This further increased VMP to 2.76 L L-1 day-1 without affecting organic substrate degradation. In-situ CO2 reduction can alter digester pH by reducing bicarbonate buffering: the combined process operated stably at around pH 8.0 with 3-5% CO2 in the headspace. Microbial community analysis indicated the process was mediated by bacterial syntrophic acetate oxidation and highly enriched hydrogenotrophic methanogenic archaea (up to 97% of the archaeal population). This approach presents the opportunity to retrofit a single digester for H2 injection to convert and upgrade biogas from several others, minimising capital and operating costs by utilising both existing infrastructure and waste-derived feedstock nutrients for simultaneous biogas upgrading and power-to-methane.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)White Rose Research OnlineArticle . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 22visibility views 22 download downloads 103 Powered bymore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)White Rose Research OnlineArticle . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Catherine Mitchell; Ronan Bolton; Chiara Candelise; Jinyue Yan; Florian Kern; Richard Hoggett;This special edition to be published in Applied Energy brings together a range of papers that explore the complex, multi-dimensional and inter-related issues associated with the supply or value chains that make up energy systems and how a focus on them can bring new insights for energy security in a low carbon transition.\ud \ud Dealing with the trilemma of maintaining energy security, reducing greenhouse gas emissions and maintaining affordability for economies and end users are key issues for all countries, but there are synergies and trade-offs in simultaneously dealing with these different objectives. Currently, industrialised energy systems are dominated by supply chains based on fossil fuels and these, for the most part, have been effective in enabling energy security and affordability. However, they are increasingly struggling to do this, particularly in respect to efforts to tackle climate change, given that the energy sector is responsible for around two-thirds of the global greenhouse gas emissions [1]. A key challenge is therefore how to decarbonise energy systems, whilst also ensuring energy security and affordability. This special issue, through a focus on supply chains, particularly considers the interactions and relationships between energy security and decarbonisation.\ud \ud Energy security is a property of energy systems and their ability to withstand short-term shocks and longer-term stresses depends on other important system properties including resilience, robustness, flexibility and stability [2]. Energy systems are essentially a supply chain comprising of multiple and interrelated sub-chains based around different fuels, technologies, infrastructures, and actors, operating at different scales and locations – from extraction/imports and conversion through to end use [3]. These supply chains have become increasingly globalised and are influenced by the on-going shifts in global supply and demand. Thus the aim of this special issue is to explore and discuss how to enable the development of a secure and sustainable energy system through a better understanding of both existing and emerging low carbon energy supply chains as well as of new approaches to the design and management of energy systems. In part, because moving from a system dominated by fossil fuels to one based on low carbon creates a new set of risks and uncertainties for energy security as well as new opportunities.\ud \ud A large number of submissions from over 18 countries were received for this special edition and 16 papers were accepted after peer review. These address a variety of issues and we have chosen to discuss the findings under two key themes, although many of the papers cut across these: (1) Insights from, and for, supply chain analysis. (2) Insights for energy security and its management. We then provide in (3) a summary of insights and research gaps. Table 1 provides a snapshot of the areas covered by the papers showing: theme (s); empirical domains; and geographical coverage.
CORE arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 490 Powered bymore_vert CORE arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu