
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure: Combustion model formulation and implementation details

Abstract The present work focuses on the numerical simulation of Moderate or Intense Low oxygen Dilution combustion condition, using the Partially-Stirred Reactor model for turbulence-chemistry interactions. The Partially-Stirred Reactor model assumes that reactions are confined in a specific region of the computational cell, whose mass fraction depends both on the mixing and the chemical time scales. Therefore, the appropriate choice of mixing and chemical time scales becomes crucial to ensure the accuracy of the numerical simulation prediction. Results show that the most appropriate choice for mixing time scale in Moderate or Intense Low oxygen Dilution combustion regime is to use a dynamic evaluation, in which the ratio between the variance of mixture fraction and its dissipation rate is adopted, rather than global estimations based on Kolmogorov or integral mixing scales. This is supported by the validation of the numerical results against experimental profiles of temperature and species mass fractions, available from measurements on the Adelaide Jet in Hot Co-flow burner. Different approaches for chemical time scale evaluation are also compared, using the species formation rates, the reaction rates and the eigenvalues of the formation rate Jacobian matrix. Different co-flow oxygen dilution levels and Reynolds numbers are considered in the validation work, to evaluate the applicability of Partially-Stirred Reactor approach over a wide range of operating conditions. Moreover, the influence of specifying uniform and non-uniform boundary conditions for the chemical scalars is assessed. The present work sheds light on the key mechanisms of turbulence-chemistry interactions in advanced combustion regimes. At the same time, it provides essential information to advance the predictive nature of computational tools used by scientists and engineers, to support the development of new technologies.
- Université Libre de Bruxelles Belgium
- Vrije Universiteit Brussel Belgium
- University of Mons Belgium
- Polytechnic University of Milan Italy
Chemical time scale, Characteristic time scales; Chemical time scale; Finite-rate chemistry; MILD combustion; Mixing time scale; Partially-Stirred Reactor; Building and Construction; Energy (all); Mechanical Engineering; Management, Monitoring, Policy and Law, Finite-rate chemistry, Combustion, Characteristic time scales; Chemical time scale; Finite-rate chemistry; MILD combustion; Mixing time scale; Partially-Stirred Reactor., MILD combustion, Partially-Stirred Reactor, Mixing time scale, Characteristic time scales
Chemical time scale, Characteristic time scales; Chemical time scale; Finite-rate chemistry; MILD combustion; Mixing time scale; Partially-Stirred Reactor; Building and Construction; Energy (all); Mechanical Engineering; Management, Monitoring, Policy and Law, Finite-rate chemistry, Combustion, Characteristic time scales; Chemical time scale; Finite-rate chemistry; MILD combustion; Mixing time scale; Partially-Stirred Reactor., MILD combustion, Partially-Stirred Reactor, Mixing time scale, Characteristic time scales
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).59 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
