- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- Open Source
- CN
- IN
- AU
- Energy Research
- Open Access
- Closed Access
- Open Source
- CN
- IN
- AU
Research data keyboard_double_arrow_right Dataset 2018Embargo end date: 18 Jan 2018Publisher:Dryad Authors: Lanjekar, Rajan D.; Deshmukh, Devendra;doi: 10.5061/dryad.f7r7b
The comparative experimental and numerical study is conducted to establish the significance of the use of single component over the multi-component representative of the biodiesel, diesel and their blend for predicting the spray tip penetration. The single component representatives of biodiesel, methyl oleate and methyl laurate and for the diesel are n-heptane, n-dodecane and n-tetradecane are studied. The methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single component representative of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment. Data of the graphs in the paperFull form of abbreviation used in the data and the operating conditions of the data is explained in README file.data.xls
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.f7r7b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.f7r7b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 15 Sep 2023Publisher:Dryad Authors: Marzinelli, Ezequiel;# Heatwave grazing kelp microbes sequences [https://doi.org/10.5061/dryad.vhhmgqns7](https://doi.org/10.5061/dryad.vhhmgqns7) We experimentally simulated ocean warming and marine heatwaves (MHWs) to quantify effects on two dominant temperate seaweed species and their microbiota, as well as grazing by a tropical herbivore. The kelp *Ecklonia radiata*’s microbiota in sustained warming and MHW treatments were enriched with microorganisms associated with seaweed disease and tissue degradation. In contrast, the fucoid *Sargassum linearifolium*’s microbiota was unaffected by temperature\*.\* Consumption by the tropical sea-urchin *Tripneustes gratilla* was greater on *Ecklonia* where the microbiota had been altered by higher temperatures, while *Sargassum*’s consumption was unaffected. Elemental traits (carbon, nitrogen), chemical defences (phenolics) and tissue bleaching of both seaweeds were generally unaffected by temperature. ## Description of the data and file structure Juvenile *Ecklonia radiata* (length \~15cm; N=140) and *Sargassum linearifolium* (length \~10cm; N=140) were collected haphazardly (>2m apart) at Cronulla rocky reef, Sydney, Australia. We exposed seaweeds to one of four temperature profiles over seven weeks: Ambient, Warming, marine heatwave MHW, MHW variable. After seven weeks of exposure to temperature treatments, a subset of individuals from each species/temperature treatment (*Ecklonia*: n=4-6; *Sargassum*: n=3) were randomly selected. Sterile cotton swabs were used to sample microbiota on algal surfaces, with the same area (20cm2) and swabbing time (30s) sampled for all individuals. Swabs were immediately stored in liquid nitrogen and transported to the University of New South Wales (UNSW, Sydney) and kept at -80°C until DNA extraction. DNA was extracted from swabs using the DNeasy PowerSoil Kit (Qiagen) and amplified using Polymerase Chain Reaction (PCR) primers 341F (5’-CCTACGGGNGGCWGCAG-3’) and 785R (5’-GACTACHVGGGTATCTAATCC-3’), targeting the 16S rRNA gene V3-V4 regions (bacteria and archaea), and were sequenced with a 2x250bp MiSeq reagent kit v2 on the Illumina MiSeq2000 Platform. The range-expansion of tropical herbivores due to ocean warming can profoundly alter temperate reef communities by overgrazing the seaweed forests that underpin them. Such ecological interactions may be mediated by changes to seaweed-associated microbiota in response to warming, but empirical evidence demonstrating this is rare. We experimentally simulated ocean warming and marine heatwaves (MHWs) to quantify effects on two dominant temperate seaweed species and their microbiota, as well as grazing by a tropical herbivore. The kelp Ecklonia radiata’s microbiotain sustained warming and MHW treatments were enriched with microorganisms associated with seaweed disease and tissue degradation. In contrast, the fucoid Sargassum linearifolium’s microbiota was unaffected by temperature. Consumption by the tropical sea-urchin Tripneustes gratilla was greater on Ecklonia where the microbiota had been altered by higher temperatures, while Sargassum’s consumption was unaffected. Elemental traits (carbon, nitrogen), chemical defences (phenolics) and tissue bleaching of both seaweeds were generally unaffected by temperature. Effects of warming and MHWs on seaweed holobionts (host plus its microbiota) are likely species-specific. The effect of increased temperature on Ecklonia’s microbiota and subsequent increased consumption suggest that changes to kelp microbiota may underpin kelp-herbivore interactions, providing novel insights into potential mechanisms driving change in species’ interactions in warming oceans.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vhhmgqns7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vhhmgqns7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Dongqin Xia; Yazhou Li; Tingting Zhang; Yanling He; Yongliang Wang; Jibao Gu;Public acceptance (PA) is nowadays essential for the sustainable development of nuclear energy and becomes animportant issue for research community. Although some studies had investigated the factors influencing PA ofnuclear energy, few researches were founded to verify the impact of cultural values. This research proposed atheoretical model to explore how individualism and collectivism, as an important dimension of culture, moderated the relevance between perceived risk/benefit and PA. A questionnaire survey was conducted nationwidein China whose number of under-construction nuclear power plants ranks first in the world, and received 887valid responses. The analysis of moderating effect showed individualism weakened the relevance betweenperceived benefit and PA, whereas collectivism had no significant moderating role on the relevance betweenperceived benefit and PA. Collectivism strengthened the relevance between perceived risk and PA, whereasindividualism had no significant moderating role on the relevance between perceived risk and PA. Moreover,perceived benefit was confirmed to be a more important predictor for PA than perceived risk. The abovementioned findings could not only provide new insights that help to understand the difference in energy policiesbetween China and the developed countries, but also provide new reference and guidance for the future policymaking. Public acceptance (PA) is nowadays essential for the sustainable development of nuclear energy and becomes animportant issue for research community. Although some studies had investigated the factors influencing PA ofnuclear energy, few researches were founded to verify the impact of cultural values. This research proposed atheoretical model to explore how individualism and collectivism, as an important dimension of culture, moderated the relevance between perceived risk/benefit and PA. A questionnaire survey was conducted nationwidein China whose number of under-construction nuclear power plants ranks first in the world, and received 887valid responses. The analysis of moderating effect showed individualism weakened the relevance betweenperceived benefit and PA, whereas collectivism had no significant moderating role on the relevance betweenperceived benefit and PA. Collectivism strengthened the relevance between perceived risk and PA, whereasindividualism had no significant moderating role on the relevance between perceived risk and PA. Moreover,perceived benefit was confirmed to be a more important predictor for PA than perceived risk. The abovementioned findings could not only provide new insights that help to understand the difference in energy policiesbetween China and the developed countries, but also provide new reference and guidance for the future policymaking.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.03027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.03027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 22 Feb 2021Publisher:Dryad Chua, Kenny; Liew, Jia Huan; Wilkinson, Clare; Ahmad, Amirrudin; Tan, Heok Hui; Yeo, Darren;Studies have shown that food chain length is governed by interactions between species richness, ecosystem size, and resource availability. While redundant trophic links may buffer impacts of species loss on food chain length, higher extinction risks associated with predators may result in bottom-heavy food webs with shorter food chains. The lack of consensus in earlier empirical studies relating species richness and food chain length reflects the need to account robustly for the factors described above. In response to this, we conducted an empirical study to elucidate impacts of land-use change on food chain length in tropical forest streams of Southeast Asia. Despite species losses associated with forest loss at our study areas, results from amino acid isotope analyses showed that food chain length was not linked to land use, ecosystem size or resource availability. Correspondingly, species losses did not have a significant effect on occurrence likelihoods of all trophic guilds except herbivores. Impacts of species losses were likely buffered by high levels of initial trophic redundancy, which declined with canopy cover. Declines in trophic redundancy were most drastic amongst invertivorous fishes. Declines in redundancy across trophic guilds were also more pronounced in wider and more resource-rich streams. While our study found limited evidence for immediate land-use impacts on stream food chains, the potential loss of trophic redundancy in the longer term implies increasing vulnerability of streams to future perturbations, as long as land conversion continues unabated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.k0p2ngf5g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 19visibility views 19 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.k0p2ngf5g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Zhang, Jie; Wu, Tongwen; Shi, Xueli; Zhang, Fang; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.BCC.BCC-ESM1.amip' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The BCC-ESM 1 climate model, released in 2017, includes the following components: atmos: BCC_AGCM3_LR (T42; 128 x 64 longitude/latitude; 26 levels; top level 2.19 hPa), atmosChem: BCC-AGCM3-Chem, land: BCC_AVIM2, ocean: MOM4 (1/3 deg 10S-10N, 1/3-1 deg 10-30 N/S, and 1 deg in high latitudes; 360 x 232 longitude/latitude; 40 levels; top grid cell 0-10 m), seaIce: SIS2. The model was run by the Beijing Climate Center, Beijing 100081, China (BCC) in native nominal resolutions: atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmbcbeam&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmbcbeam&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Yun, Hanbo; Qingbai, Wu; Elberling, Bo; Zohner, Constantin M.;Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values based on 3,013 plots and 26,337 plant-specific measurements representing eight sites across the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Four process-based biogeochemical models failed to simulate the observed changes in η, which highlights the importance of improved process understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.11218337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.11218337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Biological and Chemical Oceanography Data Management Office (BCO-DMO) Schenck, Forest; DuBois, Katherine; Kardish, Melissa; Stachowicz, John J.; Hughes, A. Randall;handle: 1912/29524
This dataset includes outputs from statistical analyses of differences in microbial taxa (amplicon sequence variant or ASV) abundance among two groups of seagrass, Zostera marina, genotypes: those that showed reduced Labyrinthula zosterae parasites when warmed vs those that showed increased L. zosterae parasites when warmed; and two seawater temperature treatments: ambient or elevated +3.2oC. Data were collected as part of a mesocosm study at the Bodega Marine Laboratory examining the independent and interactive effects of warming, host genotypic identity, and host genotypic diversity on the prevalence and intensity of infections of seagrass by the wasting disease parasite L. zosterae. These data were published in Schenck et al (2022). Related sequence data from this experiment is accessible from the National Center for Biotechnology Information (NCBI) BioProject PRJNA716355.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerDataset . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26008/1912/bco-dmo.883070.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerDataset . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26008/1912/bco-dmo.883070.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Li, Lijuan;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAS.FGOALS-g3' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The FGOALS-g3 climate model, released in 2017, includes the following components: atmos: GAMIL3 (180 x 80 longitude/latitude; 26 levels; top level 2.19hPa), land: CAS-LSM, ocean: LICOM3.0 (LICOM3.0, tripolar primarily 1deg; 360 x 218 longitude/latitude; 30 levels; top grid cell 0-10 m), seaIce: CICE4.0. The model was run by the Chinese Academy of Sciences, Beijing 100029, China (CAS) in native nominal resolutions: atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcasfgo&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcasfgo&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 24 Oct 2022Publisher:Dryad Xue, Xiao-Feng; Li, Ni; Sun, Jing-Tao; Yin, Yue; Hong, Xiao-Yue;Aim: Environmental drivers and host richness play key roles in affecting herbivore diversity. However, the relative effects of these factors and their effects on lineages characterized by high host specificity are not well known. In this study, we explored the extent to which contemporary climate, Quaternary climate change, habitat heterogeneity, and host plants determine the species richness and endemism patterns of herbivorous eriophyoid mites. Location: Global. Taxon: Eriophyoid mites (Acari: Eriophyoidea). Methods: We compiled a dataset comprising 4,278 eriophyoid mite species from 22,973 occurrence sites based on a comprehensive search of the published literature and the Global Biodiversity Information Facility (GBIF) as a basis for predicting their global distribution patterns. We measured the association of environmental variables and host plant richness with species richness and endemism of eriophyoid mites through multiple regression analyses using a simultaneous autoregressive (SAR) model, an ordinary least squares (OLS) model, and a random forest model. We examined the direct and indirect effects of these environmental variables and the host plant richness on eriophyoid mite diversity using structural equation models (SEMs). Results: The species richness and endemism patterns of eriophyoid mites are concentrated in temperate regions. Contemporary climate, Quaternary climate change, habitat heterogeneity, and host plants all significantly affected eriophyoid mite richness, while Quaternary climate change, habitat heterogeneity, and host plants contributed to the eriophyoid mite endemism. Abiotic factors indirectly influenced the species richness and endemism of eriophyoid mites, via biotic factors—host plants. Main conclusions: The species richness and endemism of eriophyoid mites peak in temperate regions, opposite to the patterns of plants and some other organisms. Complex interactions among biotic and abiotic factors shape the current eriophyoid mite species diversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1ns1rn8v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 51visibility views 51 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1ns1rn8v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 25 Oct 2023Publisher:Dryad Farha, Mst Nahid; Daniells, Jeff; Cernusak, Lucas; Ritmejerytė, Edita; Wangchuk, Phurpa; Sitch, Stephen; Mercado, Lina; Hayes, Felicity; Brown, Flossie; Cheesman, Alexander;The ozone (O3) susceptibility of cv. Williams was tested in nine independently controlled and monitored open-top chambers (OTC) built at the UK University of Exeter’s TropOz Research facility located at James Cook University’s Environmental Research Complex (ERC) on the Nguma-bada campus in far-north Queensland, Australia (www.tropoz.org). The plants (27 cv. Williams) were grown under O3 fumigation in OTCs for about three months. At the end of the O3 fumigation period and when the plants were on average 97 cm in height, two leaves were collected from every plant, specifically the third most recently expanded and therefore newly mature leaf (new leaf) and the eighth-most recently expanded (old leaf) both new and old leaves having fully developed under O3 fumigation. From each leaf, two mid-lamina leaf sections ~300 cm2 from both sides of the midrib were taken and measured for total fresh weight. After weighing, and scanning to determine area, one section was, wrapped in tinfoil, snap-frozen in liquid N2 and stored at –20°C before freeze-drying for biochemical analyses; the other was dried at 70 °C to account for leaf mass lost to sampling. At the end of the experiment, leaves, midrib, pseudostem, corm and small suckers were harvested separately, and dried in an oven at 70 °C until constant weight for biomass determination. For all lamina samples collected from the OTC experiment, leaf mass per area (LMA) was calculated using the leaf dry mass (DM) obtained on freeze-dried samples and the leaf area (LA) determined by image analyser software (Image-J, NIH, Bethesda, Maryland, USA). LMA was calculated as LMA= DM/LA in units of g m−2. Freeze-dried leaf samples were subsequently ground into fine powder (Rocklabs Bench Top Ring Mill) and stored in airtight vials until determination of leaf biochemistry and stable isotope concentrations. Powdered leaf samples (~30 mg) were extracted in cold 50% acetone (Ritmejerytė et al. 2019). Total antioxidant capacity (TAC) was determined in the leaf extract by the ferric reducing antioxidant power (FRAP) assay. The assay was carried out according to Benzie and Strain (1996) with some modifications. Ascorbic acid was used as the standard and TAC was expressed as ascorbic acid equivalents (mg AAE g−1 dry weight). Total phenolic content (TPC) was measured in the same leaf extract by the Folin–Ciocalteau method (Cork and Krockenberger 1991; Singleton and Rossi 1965) with some modifications (Ritmejerytė et al. 2019). Gallic acid was used as a standard and TPC was expressed as Gallic acid equivalents (mg GAE g–1 dry weight). The carbon stable isotope ratio (δ13C, ‰) and weight percent (%C) were determined using a Costech Elemental Analyser fitted with a zero-blank auto-sampler coupled via a ConFloIV to a ThermoFinnigan DeltaVPLUS using Continuous-Flow Isotope Ratio Mass Spectrometry (EA-IRMS) at James Cook University’s Advanced Analytical Centre. Stable isotope results are reported as per mil (‰) deviations from the VPDB reference. Precisions (S.D.) on internal standards were better than 0.1‰ for δ13C. The iWUE was calculated from δ13C according to the equation of Farquhar et al. (1989). Environmental variables such as air temperature (T), air relative humidity (RH), shortwave radiation and photosynthetically active radiation (PAR) were monitored using a single meteorological monitoring station (Campbell Scientific, Logan, UT, USA) established in the central OTC. Hourly values of O3 and meteorological conditions were measured for the DO3SE (Deposition of O3 for Stomatal Exchange) model. The DO3SE model was used to estimate the O3 flux into leaves. References Benzie IF, Strain JJ (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76. Cork SJ, Krockenberger AK (1991). Methods and pitfalls of extracting condensed tannins and other phenolics from plants: insights from investigations on Eucalyptus leaves. Journal of chemical ecology, 17(1), 123-134. Farquhar GD, Ehleringer JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis. Annual review of plant biology, 40(1), 503-537. Ritmejerytė E, Boughton BA, Bayly MJ, Miller RE (2019). Divergent responses of above-and below-ground chemical defence to nitrogen and phosphorus supply in waratahs (Telopea speciosissima). Functional Plant Biology, 46(12), 1134-1145. Singleton VL, Rossi JA (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. # Examining ozone susceptibility in the genus Musa (bananas) [https://doi.org/10.5061/dryad.fbg79cp26](https://doi.org/10.5061/dryad.fbg79cp26) The ozone (O3) susceptibility of cv. Williams was tested in nine independently controlled and monitored open top chambers (OTC) built at the UK University of Exeter’s TropOz Research facility located at James Cook University’s Environmental Research Complex (ERC) on the Nguma-bada campus in far-north Queensland, Australia ([www.tropoz.org](https://tropoz.org/)). The plants (27 cv. Williams) were grown under O3 fumigation in OTCs for about three months. At the end of the O3 fumigation period, two leaves were collected from every plant, specifically the third most recently expanded and therefore newly mature leaf (new leaf) and the eighth-most recently expanded (old leaf) both new and old leaves having fully developed under O3 fumigation from every plant for the determination of leaf functional traits such as leaf mass per area (LMA), intrinsic water-use-efficiency (iWUE), total antioxidant capacity (TAC), and total phenolic contents (TPC). LMA was calculated using the leaf dry mass (DM) obtained on freeze-dried samples and the leaf area (LA) determined by image analyser software (Image-J, NIH, [Bethesda, Maryland](https://en.wikipedia.org/wiki/Bethesda,_Maryland), USA). LMA was calculated as LMA= DM/LA in units of g m−2. TAC was determined in the leaf extract by the ferric reducing antioxidant power (FRAP) assay. TAC was expressed as ascorbic acid equivalents (mg AAE g−1 dry weight). Ascorbic acid was used as the standard. TPC was measured in the same leaf extract by the Folin–Ciocalteau method with some modifications. Gallic acid was used as a standard and TPC was expressed as Gallic acid equivalents (mg GAE g–1 dry weight). The carbon stable isotope ratio (δ13C, ‰) was determined using a Costech Elemental Analyser fitted with a zero-blank auto-sampler coupled via a ConFloIV to a ThermoFinnigan DeltaVPLUS using Continuous-Flow Isotope Ratio Mass Spectrometry (EA-IRMS) at James Cook University’s Advanced Analytical Centre. The δ13C values were used to calculate the iWUE. At the end of the experiment, leaves, midrib, pseudostem, corm and small suckers were harvested separately, and dried in an oven at 70 °C until constant weight for biomass determination. Values (dataset 1) represent OTC of three plants (n=3). Environmental variables such as air temperature (T), air relative humidity (RH), shortwave radiation and photosynthetically active radiation (PAR) were monitored using a single meteorological monitoring station (Campbell Scientific, Logan, UT, USA) established in the central OTC. Hourly values of O3 concentration and meteorological conditions were measured for the DO3SE (Deposition of O3 for Stomatal Exchange) model. The DO3SE model was used to estimate the O3 flux into leaves. ## Description of the data and file structure Dataset was uploaded in three different excel sheets, Data1, Data2 and Data3 with their metadata (Data1\_Metadata, Data2\_Metadata, and Data3\_Metadata). Metadata sheets represents the parameter names, description, and units. Data1 sheet contains open top chamber averages data. Data2 sheet contains environmental variables during experimental period. Data3 sheet contains hourly values of O3 concentration and meteorological conditions that were measured for the DO3SE (Deposition of O3 for Stomatal Exchange) model. ## Sharing/Access information Data was produced from our own experimental open top chambers (OTC) built at the UK University of Exeter’s TropOz Research facility located at James Cook University’s Environmental Research Complex (ERC) on the Nguma-bada campus in far-north Queensland, Australia ([www.tropoz.org](https://tropoz.org/)). ## Code/Software Tropospheric ozone (O3) is a global air pollutant that adversely affects plant growth and productivity. While the impacts of O3 have previously been examined for some tropical commodity crops, no information is available for the pantropical crop, banana (Musa spp.). In this study, we exposed Australia’s major banana cultivar, Williams, to a range of [O3] in open-top chambers. In addition, we examined 46 diverse Musa lines growing in a common garden for variation in traits that are hypothesized to shape responses to O3: leaf mass per area, intrinsic water-use-efficiency, and total antioxidant capacity. Banana cv. Williams showed substantial susceptibility to O3. Combined our results from open-top chambers and common garden conditions suggest a substantial risk of O3 to banana production and food security throughout the tropics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.fbg79cp26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.fbg79cp26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2018Embargo end date: 18 Jan 2018Publisher:Dryad Authors: Lanjekar, Rajan D.; Deshmukh, Devendra;doi: 10.5061/dryad.f7r7b
The comparative experimental and numerical study is conducted to establish the significance of the use of single component over the multi-component representative of the biodiesel, diesel and their blend for predicting the spray tip penetration. The single component representatives of biodiesel, methyl oleate and methyl laurate and for the diesel are n-heptane, n-dodecane and n-tetradecane are studied. The methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single component representative of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment. Data of the graphs in the paperFull form of abbreviation used in the data and the operating conditions of the data is explained in README file.data.xls
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.f7r7b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.f7r7b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 15 Sep 2023Publisher:Dryad Authors: Marzinelli, Ezequiel;# Heatwave grazing kelp microbes sequences [https://doi.org/10.5061/dryad.vhhmgqns7](https://doi.org/10.5061/dryad.vhhmgqns7) We experimentally simulated ocean warming and marine heatwaves (MHWs) to quantify effects on two dominant temperate seaweed species and their microbiota, as well as grazing by a tropical herbivore. The kelp *Ecklonia radiata*’s microbiota in sustained warming and MHW treatments were enriched with microorganisms associated with seaweed disease and tissue degradation. In contrast, the fucoid *Sargassum linearifolium*’s microbiota was unaffected by temperature\*.\* Consumption by the tropical sea-urchin *Tripneustes gratilla* was greater on *Ecklonia* where the microbiota had been altered by higher temperatures, while *Sargassum*’s consumption was unaffected. Elemental traits (carbon, nitrogen), chemical defences (phenolics) and tissue bleaching of both seaweeds were generally unaffected by temperature. ## Description of the data and file structure Juvenile *Ecklonia radiata* (length \~15cm; N=140) and *Sargassum linearifolium* (length \~10cm; N=140) were collected haphazardly (>2m apart) at Cronulla rocky reef, Sydney, Australia. We exposed seaweeds to one of four temperature profiles over seven weeks: Ambient, Warming, marine heatwave MHW, MHW variable. After seven weeks of exposure to temperature treatments, a subset of individuals from each species/temperature treatment (*Ecklonia*: n=4-6; *Sargassum*: n=3) were randomly selected. Sterile cotton swabs were used to sample microbiota on algal surfaces, with the same area (20cm2) and swabbing time (30s) sampled for all individuals. Swabs were immediately stored in liquid nitrogen and transported to the University of New South Wales (UNSW, Sydney) and kept at -80°C until DNA extraction. DNA was extracted from swabs using the DNeasy PowerSoil Kit (Qiagen) and amplified using Polymerase Chain Reaction (PCR) primers 341F (5’-CCTACGGGNGGCWGCAG-3’) and 785R (5’-GACTACHVGGGTATCTAATCC-3’), targeting the 16S rRNA gene V3-V4 regions (bacteria and archaea), and were sequenced with a 2x250bp MiSeq reagent kit v2 on the Illumina MiSeq2000 Platform. The range-expansion of tropical herbivores due to ocean warming can profoundly alter temperate reef communities by overgrazing the seaweed forests that underpin them. Such ecological interactions may be mediated by changes to seaweed-associated microbiota in response to warming, but empirical evidence demonstrating this is rare. We experimentally simulated ocean warming and marine heatwaves (MHWs) to quantify effects on two dominant temperate seaweed species and their microbiota, as well as grazing by a tropical herbivore. The kelp Ecklonia radiata’s microbiotain sustained warming and MHW treatments were enriched with microorganisms associated with seaweed disease and tissue degradation. In contrast, the fucoid Sargassum linearifolium’s microbiota was unaffected by temperature. Consumption by the tropical sea-urchin Tripneustes gratilla was greater on Ecklonia where the microbiota had been altered by higher temperatures, while Sargassum’s consumption was unaffected. Elemental traits (carbon, nitrogen), chemical defences (phenolics) and tissue bleaching of both seaweeds were generally unaffected by temperature. Effects of warming and MHWs on seaweed holobionts (host plus its microbiota) are likely species-specific. The effect of increased temperature on Ecklonia’s microbiota and subsequent increased consumption suggest that changes to kelp microbiota may underpin kelp-herbivore interactions, providing novel insights into potential mechanisms driving change in species’ interactions in warming oceans.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vhhmgqns7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vhhmgqns7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Dongqin Xia; Yazhou Li; Tingting Zhang; Yanling He; Yongliang Wang; Jibao Gu;Public acceptance (PA) is nowadays essential for the sustainable development of nuclear energy and becomes animportant issue for research community. Although some studies had investigated the factors influencing PA ofnuclear energy, few researches were founded to verify the impact of cultural values. This research proposed atheoretical model to explore how individualism and collectivism, as an important dimension of culture, moderated the relevance between perceived risk/benefit and PA. A questionnaire survey was conducted nationwidein China whose number of under-construction nuclear power plants ranks first in the world, and received 887valid responses. The analysis of moderating effect showed individualism weakened the relevance betweenperceived benefit and PA, whereas collectivism had no significant moderating role on the relevance betweenperceived benefit and PA. Collectivism strengthened the relevance between perceived risk and PA, whereasindividualism had no significant moderating role on the relevance between perceived risk and PA. Moreover,perceived benefit was confirmed to be a more important predictor for PA than perceived risk. The abovementioned findings could not only provide new insights that help to understand the difference in energy policiesbetween China and the developed countries, but also provide new reference and guidance for the future policymaking. Public acceptance (PA) is nowadays essential for the sustainable development of nuclear energy and becomes animportant issue for research community. Although some studies had investigated the factors influencing PA ofnuclear energy, few researches were founded to verify the impact of cultural values. This research proposed atheoretical model to explore how individualism and collectivism, as an important dimension of culture, moderated the relevance between perceived risk/benefit and PA. A questionnaire survey was conducted nationwidein China whose number of under-construction nuclear power plants ranks first in the world, and received 887valid responses. The analysis of moderating effect showed individualism weakened the relevance betweenperceived benefit and PA, whereas collectivism had no significant moderating role on the relevance betweenperceived benefit and PA. Collectivism strengthened the relevance between perceived risk and PA, whereasindividualism had no significant moderating role on the relevance between perceived risk and PA. Moreover,perceived benefit was confirmed to be a more important predictor for PA than perceived risk. The abovementioned findings could not only provide new insights that help to understand the difference in energy policiesbetween China and the developed countries, but also provide new reference and guidance for the future policymaking.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.03027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.03027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 22 Feb 2021Publisher:Dryad Chua, Kenny; Liew, Jia Huan; Wilkinson, Clare; Ahmad, Amirrudin; Tan, Heok Hui; Yeo, Darren;Studies have shown that food chain length is governed by interactions between species richness, ecosystem size, and resource availability. While redundant trophic links may buffer impacts of species loss on food chain length, higher extinction risks associated with predators may result in bottom-heavy food webs with shorter food chains. The lack of consensus in earlier empirical studies relating species richness and food chain length reflects the need to account robustly for the factors described above. In response to this, we conducted an empirical study to elucidate impacts of land-use change on food chain length in tropical forest streams of Southeast Asia. Despite species losses associated with forest loss at our study areas, results from amino acid isotope analyses showed that food chain length was not linked to land use, ecosystem size or resource availability. Correspondingly, species losses did not have a significant effect on occurrence likelihoods of all trophic guilds except herbivores. Impacts of species losses were likely buffered by high levels of initial trophic redundancy, which declined with canopy cover. Declines in trophic redundancy were most drastic amongst invertivorous fishes. Declines in redundancy across trophic guilds were also more pronounced in wider and more resource-rich streams. While our study found limited evidence for immediate land-use impacts on stream food chains, the potential loss of trophic redundancy in the longer term implies increasing vulnerability of streams to future perturbations, as long as land conversion continues unabated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.k0p2ngf5g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 19visibility views 19 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.k0p2ngf5g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Zhang, Jie; Wu, Tongwen; Shi, Xueli; Zhang, Fang; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.BCC.BCC-ESM1.amip' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The BCC-ESM 1 climate model, released in 2017, includes the following components: atmos: BCC_AGCM3_LR (T42; 128 x 64 longitude/latitude; 26 levels; top level 2.19 hPa), atmosChem: BCC-AGCM3-Chem, land: BCC_AVIM2, ocean: MOM4 (1/3 deg 10S-10N, 1/3-1 deg 10-30 N/S, and 1 deg in high latitudes; 360 x 232 longitude/latitude; 40 levels; top grid cell 0-10 m), seaIce: SIS2. The model was run by the Beijing Climate Center, Beijing 100081, China (BCC) in native nominal resolutions: atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmbcbeam&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmbcbeam&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Yun, Hanbo; Qingbai, Wu; Elberling, Bo; Zohner, Constantin M.;Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values based on 3,013 plots and 26,337 plant-specific measurements representing eight sites across the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Four process-based biogeochemical models failed to simulate the observed changes in η, which highlights the importance of improved process understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.11218337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.11218337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Biological and Chemical Oceanography Data Management Office (BCO-DMO) Schenck, Forest; DuBois, Katherine; Kardish, Melissa; Stachowicz, John J.; Hughes, A. Randall;handle: 1912/29524
This dataset includes outputs from statistical analyses of differences in microbial taxa (amplicon sequence variant or ASV) abundance among two groups of seagrass, Zostera marina, genotypes: those that showed reduced Labyrinthula zosterae parasites when warmed vs those that showed increased L. zosterae parasites when warmed; and two seawater temperature treatments: ambient or elevated +3.2oC. Data were collected as part of a mesocosm study at the Bodega Marine Laboratory examining the independent and interactive effects of warming, host genotypic identity, and host genotypic diversity on the prevalence and intensity of infections of seagrass by the wasting disease parasite L. zosterae. These data were published in Schenck et al (2022). Related sequence data from this experiment is accessible from the National Center for Biotechnology Information (NCBI) BioProject PRJNA716355.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerDataset . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26008/1912/bco-dmo.883070.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerDataset . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26008/1912/bco-dmo.883070.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Li, Lijuan;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAS.FGOALS-g3' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The FGOALS-g3 climate model, released in 2017, includes the following components: atmos: GAMIL3 (180 x 80 longitude/latitude; 26 levels; top level 2.19hPa), land: CAS-LSM, ocean: LICOM3.0 (LICOM3.0, tripolar primarily 1deg; 360 x 218 longitude/latitude; 30 levels; top grid cell 0-10 m), seaIce: CICE4.0. The model was run by the Chinese Academy of Sciences, Beijing 100029, China (CAS) in native nominal resolutions: atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcasfgo&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcasfgo&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 24 Oct 2022Publisher:Dryad Xue, Xiao-Feng; Li, Ni; Sun, Jing-Tao; Yin, Yue; Hong, Xiao-Yue;Aim: Environmental drivers and host richness play key roles in affecting herbivore diversity. However, the relative effects of these factors and their effects on lineages characterized by high host specificity are not well known. In this study, we explored the extent to which contemporary climate, Quaternary climate change, habitat heterogeneity, and host plants determine the species richness and endemism patterns of herbivorous eriophyoid mites. Location: Global. Taxon: Eriophyoid mites (Acari: Eriophyoidea). Methods: We compiled a dataset comprising 4,278 eriophyoid mite species from 22,973 occurrence sites based on a comprehensive search of the published literature and the Global Biodiversity Information Facility (GBIF) as a basis for predicting their global distribution patterns. We measured the association of environmental variables and host plant richness with species richness and endemism of eriophyoid mites through multiple regression analyses using a simultaneous autoregressive (SAR) model, an ordinary least squares (OLS) model, and a random forest model. We examined the direct and indirect effects of these environmental variables and the host plant richness on eriophyoid mite diversity using structural equation models (SEMs). Results: The species richness and endemism patterns of eriophyoid mites are concentrated in temperate regions. Contemporary climate, Quaternary climate change, habitat heterogeneity, and host plants all significantly affected eriophyoid mite richness, while Quaternary climate change, habitat heterogeneity, and host plants contributed to the eriophyoid mite endemism. Abiotic factors indirectly influenced the species richness and endemism of eriophyoid mites, via biotic factors—host plants. Main conclusions: The species richness and endemism of eriophyoid mites peak in temperate regions, opposite to the patterns of plants and some other organisms. Complex interactions among biotic and abiotic factors shape the current eriophyoid mite species diversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1ns1rn8v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 51visibility views 51 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1ns1rn8v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 25 Oct 2023Publisher:Dryad Farha, Mst Nahid; Daniells, Jeff; Cernusak, Lucas; Ritmejerytė, Edita; Wangchuk, Phurpa; Sitch, Stephen; Mercado, Lina; Hayes, Felicity; Brown, Flossie; Cheesman, Alexander;The ozone (O3) susceptibility of cv. Williams was tested in nine independently controlled and monitored open-top chambers (OTC) built at the UK University of Exeter’s TropOz Research facility located at James Cook University’s Environmental Research Complex (ERC) on the Nguma-bada campus in far-north Queensland, Australia (www.tropoz.org). The plants (27 cv. Williams) were grown under O3 fumigation in OTCs for about three months. At the end of the O3 fumigation period and when the plants were on average 97 cm in height, two leaves were collected from every plant, specifically the third most recently expanded and therefore newly mature leaf (new leaf) and the eighth-most recently expanded (old leaf) both new and old leaves having fully developed under O3 fumigation. From each leaf, two mid-lamina leaf sections ~300 cm2 from both sides of the midrib were taken and measured for total fresh weight. After weighing, and scanning to determine area, one section was, wrapped in tinfoil, snap-frozen in liquid N2 and stored at –20°C before freeze-drying for biochemical analyses; the other was dried at 70 °C to account for leaf mass lost to sampling. At the end of the experiment, leaves, midrib, pseudostem, corm and small suckers were harvested separately, and dried in an oven at 70 °C until constant weight for biomass determination. For all lamina samples collected from the OTC experiment, leaf mass per area (LMA) was calculated using the leaf dry mass (DM) obtained on freeze-dried samples and the leaf area (LA) determined by image analyser software (Image-J, NIH, Bethesda, Maryland, USA). LMA was calculated as LMA= DM/LA in units of g m−2. Freeze-dried leaf samples were subsequently ground into fine powder (Rocklabs Bench Top Ring Mill) and stored in airtight vials until determination of leaf biochemistry and stable isotope concentrations. Powdered leaf samples (~30 mg) were extracted in cold 50% acetone (Ritmejerytė et al. 2019). Total antioxidant capacity (TAC) was determined in the leaf extract by the ferric reducing antioxidant power (FRAP) assay. The assay was carried out according to Benzie and Strain (1996) with some modifications. Ascorbic acid was used as the standard and TAC was expressed as ascorbic acid equivalents (mg AAE g−1 dry weight). Total phenolic content (TPC) was measured in the same leaf extract by the Folin–Ciocalteau method (Cork and Krockenberger 1991; Singleton and Rossi 1965) with some modifications (Ritmejerytė et al. 2019). Gallic acid was used as a standard and TPC was expressed as Gallic acid equivalents (mg GAE g–1 dry weight). The carbon stable isotope ratio (δ13C, ‰) and weight percent (%C) were determined using a Costech Elemental Analyser fitted with a zero-blank auto-sampler coupled via a ConFloIV to a ThermoFinnigan DeltaVPLUS using Continuous-Flow Isotope Ratio Mass Spectrometry (EA-IRMS) at James Cook University’s Advanced Analytical Centre. Stable isotope results are reported as per mil (‰) deviations from the VPDB reference. Precisions (S.D.) on internal standards were better than 0.1‰ for δ13C. The iWUE was calculated from δ13C according to the equation of Farquhar et al. (1989). Environmental variables such as air temperature (T), air relative humidity (RH), shortwave radiation and photosynthetically active radiation (PAR) were monitored using a single meteorological monitoring station (Campbell Scientific, Logan, UT, USA) established in the central OTC. Hourly values of O3 and meteorological conditions were measured for the DO3SE (Deposition of O3 for Stomatal Exchange) model. The DO3SE model was used to estimate the O3 flux into leaves. References Benzie IF, Strain JJ (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76. Cork SJ, Krockenberger AK (1991). Methods and pitfalls of extracting condensed tannins and other phenolics from plants: insights from investigations on Eucalyptus leaves. Journal of chemical ecology, 17(1), 123-134. Farquhar GD, Ehleringer JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis. Annual review of plant biology, 40(1), 503-537. Ritmejerytė E, Boughton BA, Bayly MJ, Miller RE (2019). Divergent responses of above-and below-ground chemical defence to nitrogen and phosphorus supply in waratahs (Telopea speciosissima). Functional Plant Biology, 46(12), 1134-1145. Singleton VL, Rossi JA (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. # Examining ozone susceptibility in the genus Musa (bananas) [https://doi.org/10.5061/dryad.fbg79cp26](https://doi.org/10.5061/dryad.fbg79cp26) The ozone (O3) susceptibility of cv. Williams was tested in nine independently controlled and monitored open top chambers (OTC) built at the UK University of Exeter’s TropOz Research facility located at James Cook University’s Environmental Research Complex (ERC) on the Nguma-bada campus in far-north Queensland, Australia ([www.tropoz.org](https://tropoz.org/)). The plants (27 cv. Williams) were grown under O3 fumigation in OTCs for about three months. At the end of the O3 fumigation period, two leaves were collected from every plant, specifically the third most recently expanded and therefore newly mature leaf (new leaf) and the eighth-most recently expanded (old leaf) both new and old leaves having fully developed under O3 fumigation from every plant for the determination of leaf functional traits such as leaf mass per area (LMA), intrinsic water-use-efficiency (iWUE), total antioxidant capacity (TAC), and total phenolic contents (TPC). LMA was calculated using the leaf dry mass (DM) obtained on freeze-dried samples and the leaf area (LA) determined by image analyser software (Image-J, NIH, [Bethesda, Maryland](https://en.wikipedia.org/wiki/Bethesda,_Maryland), USA). LMA was calculated as LMA= DM/LA in units of g m−2. TAC was determined in the leaf extract by the ferric reducing antioxidant power (FRAP) assay. TAC was expressed as ascorbic acid equivalents (mg AAE g−1 dry weight). Ascorbic acid was used as the standard. TPC was measured in the same leaf extract by the Folin–Ciocalteau method with some modifications. Gallic acid was used as a standard and TPC was expressed as Gallic acid equivalents (mg GAE g–1 dry weight). The carbon stable isotope ratio (δ13C, ‰) was determined using a Costech Elemental Analyser fitted with a zero-blank auto-sampler coupled via a ConFloIV to a ThermoFinnigan DeltaVPLUS using Continuous-Flow Isotope Ratio Mass Spectrometry (EA-IRMS) at James Cook University’s Advanced Analytical Centre. The δ13C values were used to calculate the iWUE. At the end of the experiment, leaves, midrib, pseudostem, corm and small suckers were harvested separately, and dried in an oven at 70 °C until constant weight for biomass determination. Values (dataset 1) represent OTC of three plants (n=3). Environmental variables such as air temperature (T), air relative humidity (RH), shortwave radiation and photosynthetically active radiation (PAR) were monitored using a single meteorological monitoring station (Campbell Scientific, Logan, UT, USA) established in the central OTC. Hourly values of O3 concentration and meteorological conditions were measured for the DO3SE (Deposition of O3 for Stomatal Exchange) model. The DO3SE model was used to estimate the O3 flux into leaves. ## Description of the data and file structure Dataset was uploaded in three different excel sheets, Data1, Data2 and Data3 with their metadata (Data1\_Metadata, Data2\_Metadata, and Data3\_Metadata). Metadata sheets represents the parameter names, description, and units. Data1 sheet contains open top chamber averages data. Data2 sheet contains environmental variables during experimental period. Data3 sheet contains hourly values of O3 concentration and meteorological conditions that were measured for the DO3SE (Deposition of O3 for Stomatal Exchange) model. ## Sharing/Access information Data was produced from our own experimental open top chambers (OTC) built at the UK University of Exeter’s TropOz Research facility located at James Cook University’s Environmental Research Complex (ERC) on the Nguma-bada campus in far-north Queensland, Australia ([www.tropoz.org](https://tropoz.org/)). ## Code/Software Tropospheric ozone (O3) is a global air pollutant that adversely affects plant growth and productivity. While the impacts of O3 have previously been examined for some tropical commodity crops, no information is available for the pantropical crop, banana (Musa spp.). In this study, we exposed Australia’s major banana cultivar, Williams, to a range of [O3] in open-top chambers. In addition, we examined 46 diverse Musa lines growing in a common garden for variation in traits that are hypothesized to shape responses to O3: leaf mass per area, intrinsic water-use-efficiency, and total antioxidant capacity. Banana cv. Williams showed substantial susceptibility to O3. Combined our results from open-top chambers and common garden conditions suggest a substantial risk of O3 to banana production and food security throughout the tropics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.fbg79cp26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.fbg79cp26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu