- home
- Advanced Search
- Energy Research
- engineering and technology
- 7. Clean energy
- 12. Responsible consumption
- CN
- IN
- CA
- Energy Research
- engineering and technology
- 7. Clean energy
- 12. Responsible consumption
- CN
- IN
- CA
description Publicationkeyboard_double_arrow_right Article , Journal 1987Publisher:Elsevier BV Authors: B.C. Raychaudhuri; Ram Chandra; V.K. Goel;Abstract The reverse flat-plate collector is a non-concentrating collector. It can collect solar heat at high temperatures which cannot be achieved by conventional non-concentrating collectors. In this paper, the authors have proposed a number of modified versions of the originally proposed reverse flat-plate collector. The new designs are of single, as well as double, absorber type. The thermal performance of these modified reverse flat-plate collectors is compared with that of a single absorber reverse flat-plate collector, as well as with the corresponding normal flat-plate collector. It is found that the new design having two absorbers gives the best thermal performance as compared with other configurations. The analytical models presented in this paper very well describe the experimental results.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(87)90109-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(87)90109-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Aitian Tao; Ang Tian; He Yang; Jing An;doi: 10.3390/su132313205
In recent years, the rapid development of the rare earth industry has had a serious impact on the environment. Some enterprises have taken measures to improve the production process. In order to explore the sustainability of this industry and these improvements’ environmental benefits, this paper combines emergy analysis and lifecycle assessment to evaluate and compare the production process of rare-earth oxides considering the three aspects of emergy flow, pollutant emissions, and emergy-based indicators. Changes in the emergy of pollutant emissions before and after improvement of the production process are discussed. The results show that the greatest inputs in the mining and beneficiation stage and smelting separation stage are labor force and service and non-renewable resources, respectively. These two production stages are highly dependent on external input and have weak competitiveness. Both stages place great pressure on the environment, so the bastnasite production process would be unsustainable in the long term. After the improvement, the environmental impact of the production process for bastnaesite changed significantly, indicating that the improvement effect of the wastewater treatment facilities and the change of fuel from coal to natural gas is remarkable.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Authors: P. P. Tripathy;Drying experiments have been performed with potato cylinders and slices using a laboratory scale designed natural convection mixed-mode solar dryer. The drying data were fitted to eight different mathematical models to predict the drying kinetics, and the validity of these models were evaluated statistically through coefficient of determination (R(2)), root mean square error (RMSE) and reduced chi-square (χ (2)). The present investigation showed that amongst all the mathematical models studied, the Modified Page model was in good agreement with the experimental drying data for both potato cylinders and slices. A mathematical framework has been proposed to estimate the performance of the food dryer in terms of net CO2 emissions mitigation potential along with unit cost of CO2 mitigation arising because of replacement of different fossil fuels by renewable solar energy. For each fossil fuel replaced, the gross annual amount of CO2 as well as net amount of annual CO2 emissions mitigation potential considering CO2 emissions embodied in the manufacture of mixed-mode solar dryer has been estimated. The CO2 mitigation potential and amount of fossil fuels saved while drying potato samples were found to be the maximum for coal followed by light diesel oil and natural gas. It was inferred from the present study that by the year 2020, 23 % of CO2 emissions can be mitigated by the use of mixed-mode solar dryer for drying of agricultural products.
Journal of Food Scie... arrow_drop_down Journal of Food Science and TechnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13197-013-1170-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Food Scie... arrow_drop_down Journal of Food Science and TechnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13197-013-1170-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Ahmed, Asam; Ge, Tianshu; Peng, Jinqing; Yan, Wei-Cheng; Tee, Boon Tuan; You, Siming;Decarbonizing the building sector is extremely important to mitigating climate change as the sector contributes 40% of the overall energy consumption and 36% of the total greenhouse gas emissions in the world. Net-zero energy buildings are one of the promising decarbonization attempts due to their potential of decreasing the use of energy and increasing the total share of renewable energy. To achieve a net-zero energy building, it is necessary to decrease the energy demand by applying efficiency enhancement measures and using renewable energy sources. Net-zero energy buildings can be classified into four models (Net-Zero Site Energy buildings, Net-Zero Emissions buildings, Net-Zero Source Energy buildings, and Net-Zero Cost Energy buildings). A variety of technical, financial, and environmental factors should be considered during the decision-making process of net-zero energy building development, justifying the use of multi-criteria decision analysis methods for the design of net-zero energy buildings. This paper also discussed the contributions of renewable energy generation (hydropower, wind energy, solar, heat pumps, and bioenergy) to the development of net-zero energy buildings and reviewed its role in tackling the decarbonization challenge. Cost-benefit analysis and life cycle assessment of building designs were reviewed to shape the priorities of future development. It is important to develop a universal decision instrument for optimum design and operation of net-zero energy buildings.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2022License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 263 citations 263 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2022License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Pan Donghui; Guanyi Chen; Beibei Yan; Yanbin Li; Wang Yan;pmid: 23816312
Environment-friendly treatment of sewage sludge has become tremendously important. Conversion of sewage sludge into energy products by environment-friendly conversion process, with its energy recovery and environmental benefits, is being paid significant attention. Direct liquefaction of sewage sludge into bio-oils with supercritical water (SCW) was therefore put forward in this study, as de-water usually requiring intensive energy input is not necessary in this direct liquefaction. Supercritical water may act as a strong solvent and also a reactant, as well as catalyst promoting reaction process. Experiments were carried out in a self designed high-pressure reaction system with varying operating conditions. Through orthogonal experiments, it was found that temperature and residence time dominated on bio-oil yield compared with other operating parameters. Temperature from 350 to 500°C and reaction residence time of 0, 30, 60min were accordingly investigated in details, respectively. Under supercritical conversion, the maximum bio-oil yield could achieve 39.73%, which was performed at 375°C and 0min reaction residence time. Meanwhile, function of supercritical water was concluded. Fuel property analysis showed the potential of bio-oil application as crude fuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2013.05.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2013.05.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Yasir Habib; Shujahat Haider Hashmi; Adeel Riaz; Hongzhong Fan;Abstract This study investigates the non-linear relationship between urbanization paths and CO2 emissions in selected South, South-East, and East Asian countries over the period 1971–2014. Based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) framework, we applied the advanced and robust methods of dynamic seemingly unrelated regression (DSUR), dynamic OLS (DOLS), and fully modified OLS (FMOLS) to estimate the long-term effects. The empirical findings revealed the inverted U-shaped effects of urbanization and urban agglomeration and the U-shaped impact of the largest city ratio on CO2 emissions. Urbanization and urban agglomerations improve environmental quality in the long-run and support ecological modernization theory. However, excessive concentration in the largest cities have severely affected the environmental quality and violates the notion of compact-city efficiencies. Moreover, energy intensity and economic growth positively affect CO2 emissions, while trade openness negatively influences CO2 emissions. Our robustness analysis at the country-level applies the augmented mean group (AMG) panel ARDL technique, which further supports the non-linear effect of urbanization paths on CO2 emissions except for a few countries. The results of the panel Granger non-causality approach unveil bidirectional causality of energy efficiency, economic growth, urbanization, and largest city ratio with CO2 emissions. In contrast, unidirectional causality runs from urban agglomeration to CO2 emissions. Our findings have important policy implications as we suggest green urban infrastructures, eco-friendly dwellings, smart cities, country-specific trade policies, and renewable energy options to improve the environmental quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Senthilkumar Pachamuthu; Terese Løvås; Johan E. Hustad; Dhandapani Kannan; Md. Nurun Nabi;Abstract In this work addition of ethanol to high viscosity jatropha methyl ester (JME) through port injection is investigated in order to determine its effect fuel viscosity reduction on diesel engine performance. In addition to viscosity alteration, the impact of ethanol addition on combustion characteristics such as combustion duration, ignition delay and emissions levels from diesel engines fuelled with blends of ethanol, diesel and JME is studied in particular. It is found that blending of oxygenated fuels with diesel modifies the chemical structure and physical properties which again alter the engine operating conditions, combustion parameters and emissions levels. However, the injection of only 5% ethanol through port injection allows for a total of 25% blending of biofuels into diesel yet keeping the fuel characteristics close to that of conventional diesel. However, both experimental and numerical results show that ethanol addition in JME blended diesel results in a slight increase in fuel consumption and thermal efficiency for the same power outputs as that of conventional diesel fuel. Also, the combustion characteristics with ethanol addition include improved maximum in-cylinder peak pressure, cumulative heat release (CHR) rate of heat release (ROHR), in-cylinder peak temperature and combustion duration. Regarding emission characteristics the experimental results show significant reduction in smoke, carbon monoxide (CO) and total hydrocarbon (THC) emissions with extended oxygen mass percentage in the fuel at higher engine loads. However, oxides of nitrogen (NOx) emissions are found to increase at high loads although the common tradeoff between smoke and NOx is found to be more prominent for the oxygenated fuels.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Shigang Zhang; Lanbin Liu; Lin Fu;Abstract A great deal of heat is wasted in intensive public shower facilities, such as those in schools, barracks and natatoriums, which open up at specified time. It will contribute a lot to energy saving and environmental protection with significant economic benefits to recycle the exhaust heat. In this paper, we propose two different kinds of heat pumps (an electric heat pump and an absorption heat pump) in the heat recovery systems. In both system, the used shower water is drained through a pipe and collected in a gray water pool. When the wastewater reaches certain volume, the heat pump system will begin working and recycling heat. The wastewater is filtered and piped to the heat exchanger to exchange heat with the tap water whose temperature will increase from 12 °C to 25 °C with the wastewater temperature dropping from 30 °C to 17 °C. Then the wastewater is piped to the heat pump evaporator and the tap water is piped to the condenser for farther heating. According to the different characteristics of the electric heat pump and absorption heat pump, we also introduce the processes and control methods of different heat recovery systems in details in this paper. Based on a practical example, this paper analyzes and compares the economic and environmental benefits of three retrofitting schemes, including “exhaust heat recovery using electric heat pump”, “exhaust heat recovery using electric heat pump + gas boiler” and “exhaust heat recovery using direct-fired heat pump”. Then we find out that the heat recovery system using direct-fired absorption heat pump has lower energy consumption, less pollution, lower operating cost, and shorter payback period. And it has a promising practical application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Jilei Ye; Chao Wu; Changlong Ma; Zijie Yuan; Yilong Guo; Ruoyu Wang; Yuping Wu; Jinlei Sun; Lili Liu;doi: 10.3390/pr11082449
The battery power state (SOP) is the basic indicator for the Battery management system (BMS) of the battery energy storage system (BESS) to formulate control strategies. Although there have been many studies on state estimation of lithium-ion batteries (LIBs), aging and temperature variation are seldom considered in peak power prediction during the whole life of the battery. To fill this gap, this paper aims to propose an adaptive peak power prediction method for power lithium-ion batteries considering temperature and aging is proposed. First, the Thevenin equivalent circuit model is used to jointly estimate the state of charge (SOC) and SOP of the lithium-ion power battery, and the variable forgetting factor recursive least squares (VFF-RLS) algorithm and extended Kalman filter (EKF) are utilized to identify the battery parameters online. Then, multiple constraint parameters including current, voltage, and SOC were derived, considering the dependence of the polarization resistance of the battery on the battery current. Finally, the verification experiment was carried out with LiFePO4 battery. The experimental results under FUDS operating conditions show that the maximum SOC estimation error is 1.94%. And the power prediction errors at 20%, 50%, and 70% SOC were 5.0%, 8.1% and 4.5%, respectively. Our further work will focus on the joint estimation of battery state to further improve the accuracy.
Processes arrow_drop_down ProcessesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2227-9717/11/8/2449/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11082449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2227-9717/11/8/2449/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11082449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Rajender S. Sangwan; Sushil Kumar Kansal; Sandeep Kumar; Pranati Kundu; Troy Runge; Vivek Ahluwalia; Sasikumar Elumalai;pmid: 29274853
In this study, levulinic acid (LA) was produced from rice straw biomass in co-solvent biphasic reactor system consisting of hydrochloric acid and dichloromethane organic solvent. The modified protocol achieved a 15% wt LA yield through the synergistic effect of acid and acidic products (auto-catalysis) and the designed system allowed facile recovery of LA to the organic phase. Further purification of the resulting extractant was achieved through traditional column chromatography, which yielded a high purity LA product while recovering ∼85% wt. Upon charcoal treatment of the resultant fraction generated an industrial grade target molecule of ∼99% purity with ∼95% wt recovery. The system allows the solvent to be easily recovered, in excess of 90%, which was shown to be able to be recycled up to 5 runs without significant loss of final product concentrations. Overall, this system points to a method to significantly reduce manufacturing cost during large-scale LA preparation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 1987Publisher:Elsevier BV Authors: B.C. Raychaudhuri; Ram Chandra; V.K. Goel;Abstract The reverse flat-plate collector is a non-concentrating collector. It can collect solar heat at high temperatures which cannot be achieved by conventional non-concentrating collectors. In this paper, the authors have proposed a number of modified versions of the originally proposed reverse flat-plate collector. The new designs are of single, as well as double, absorber type. The thermal performance of these modified reverse flat-plate collectors is compared with that of a single absorber reverse flat-plate collector, as well as with the corresponding normal flat-plate collector. It is found that the new design having two absorbers gives the best thermal performance as compared with other configurations. The analytical models presented in this paper very well describe the experimental results.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(87)90109-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(87)90109-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Aitian Tao; Ang Tian; He Yang; Jing An;doi: 10.3390/su132313205
In recent years, the rapid development of the rare earth industry has had a serious impact on the environment. Some enterprises have taken measures to improve the production process. In order to explore the sustainability of this industry and these improvements’ environmental benefits, this paper combines emergy analysis and lifecycle assessment to evaluate and compare the production process of rare-earth oxides considering the three aspects of emergy flow, pollutant emissions, and emergy-based indicators. Changes in the emergy of pollutant emissions before and after improvement of the production process are discussed. The results show that the greatest inputs in the mining and beneficiation stage and smelting separation stage are labor force and service and non-renewable resources, respectively. These two production stages are highly dependent on external input and have weak competitiveness. Both stages place great pressure on the environment, so the bastnasite production process would be unsustainable in the long term. After the improvement, the environmental impact of the production process for bastnaesite changed significantly, indicating that the improvement effect of the wastewater treatment facilities and the change of fuel from coal to natural gas is remarkable.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Authors: P. P. Tripathy;Drying experiments have been performed with potato cylinders and slices using a laboratory scale designed natural convection mixed-mode solar dryer. The drying data were fitted to eight different mathematical models to predict the drying kinetics, and the validity of these models were evaluated statistically through coefficient of determination (R(2)), root mean square error (RMSE) and reduced chi-square (χ (2)). The present investigation showed that amongst all the mathematical models studied, the Modified Page model was in good agreement with the experimental drying data for both potato cylinders and slices. A mathematical framework has been proposed to estimate the performance of the food dryer in terms of net CO2 emissions mitigation potential along with unit cost of CO2 mitigation arising because of replacement of different fossil fuels by renewable solar energy. For each fossil fuel replaced, the gross annual amount of CO2 as well as net amount of annual CO2 emissions mitigation potential considering CO2 emissions embodied in the manufacture of mixed-mode solar dryer has been estimated. The CO2 mitigation potential and amount of fossil fuels saved while drying potato samples were found to be the maximum for coal followed by light diesel oil and natural gas. It was inferred from the present study that by the year 2020, 23 % of CO2 emissions can be mitigated by the use of mixed-mode solar dryer for drying of agricultural products.
Journal of Food Scie... arrow_drop_down Journal of Food Science and TechnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13197-013-1170-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Food Scie... arrow_drop_down Journal of Food Science and TechnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13197-013-1170-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Ahmed, Asam; Ge, Tianshu; Peng, Jinqing; Yan, Wei-Cheng; Tee, Boon Tuan; You, Siming;Decarbonizing the building sector is extremely important to mitigating climate change as the sector contributes 40% of the overall energy consumption and 36% of the total greenhouse gas emissions in the world. Net-zero energy buildings are one of the promising decarbonization attempts due to their potential of decreasing the use of energy and increasing the total share of renewable energy. To achieve a net-zero energy building, it is necessary to decrease the energy demand by applying efficiency enhancement measures and using renewable energy sources. Net-zero energy buildings can be classified into four models (Net-Zero Site Energy buildings, Net-Zero Emissions buildings, Net-Zero Source Energy buildings, and Net-Zero Cost Energy buildings). A variety of technical, financial, and environmental factors should be considered during the decision-making process of net-zero energy building development, justifying the use of multi-criteria decision analysis methods for the design of net-zero energy buildings. This paper also discussed the contributions of renewable energy generation (hydropower, wind energy, solar, heat pumps, and bioenergy) to the development of net-zero energy buildings and reviewed its role in tackling the decarbonization challenge. Cost-benefit analysis and life cycle assessment of building designs were reviewed to shape the priorities of future development. It is important to develop a universal decision instrument for optimum design and operation of net-zero energy buildings.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2022License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 263 citations 263 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2022License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Pan Donghui; Guanyi Chen; Beibei Yan; Yanbin Li; Wang Yan;pmid: 23816312
Environment-friendly treatment of sewage sludge has become tremendously important. Conversion of sewage sludge into energy products by environment-friendly conversion process, with its energy recovery and environmental benefits, is being paid significant attention. Direct liquefaction of sewage sludge into bio-oils with supercritical water (SCW) was therefore put forward in this study, as de-water usually requiring intensive energy input is not necessary in this direct liquefaction. Supercritical water may act as a strong solvent and also a reactant, as well as catalyst promoting reaction process. Experiments were carried out in a self designed high-pressure reaction system with varying operating conditions. Through orthogonal experiments, it was found that temperature and residence time dominated on bio-oil yield compared with other operating parameters. Temperature from 350 to 500°C and reaction residence time of 0, 30, 60min were accordingly investigated in details, respectively. Under supercritical conversion, the maximum bio-oil yield could achieve 39.73%, which was performed at 375°C and 0min reaction residence time. Meanwhile, function of supercritical water was concluded. Fuel property analysis showed the potential of bio-oil application as crude fuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2013.05.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2013.05.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Yasir Habib; Shujahat Haider Hashmi; Adeel Riaz; Hongzhong Fan;Abstract This study investigates the non-linear relationship between urbanization paths and CO2 emissions in selected South, South-East, and East Asian countries over the period 1971–2014. Based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) framework, we applied the advanced and robust methods of dynamic seemingly unrelated regression (DSUR), dynamic OLS (DOLS), and fully modified OLS (FMOLS) to estimate the long-term effects. The empirical findings revealed the inverted U-shaped effects of urbanization and urban agglomeration and the U-shaped impact of the largest city ratio on CO2 emissions. Urbanization and urban agglomerations improve environmental quality in the long-run and support ecological modernization theory. However, excessive concentration in the largest cities have severely affected the environmental quality and violates the notion of compact-city efficiencies. Moreover, energy intensity and economic growth positively affect CO2 emissions, while trade openness negatively influences CO2 emissions. Our robustness analysis at the country-level applies the augmented mean group (AMG) panel ARDL technique, which further supports the non-linear effect of urbanization paths on CO2 emissions except for a few countries. The results of the panel Granger non-causality approach unveil bidirectional causality of energy efficiency, economic growth, urbanization, and largest city ratio with CO2 emissions. In contrast, unidirectional causality runs from urban agglomeration to CO2 emissions. Our findings have important policy implications as we suggest green urban infrastructures, eco-friendly dwellings, smart cities, country-specific trade policies, and renewable energy options to improve the environmental quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Senthilkumar Pachamuthu; Terese Løvås; Johan E. Hustad; Dhandapani Kannan; Md. Nurun Nabi;Abstract In this work addition of ethanol to high viscosity jatropha methyl ester (JME) through port injection is investigated in order to determine its effect fuel viscosity reduction on diesel engine performance. In addition to viscosity alteration, the impact of ethanol addition on combustion characteristics such as combustion duration, ignition delay and emissions levels from diesel engines fuelled with blends of ethanol, diesel and JME is studied in particular. It is found that blending of oxygenated fuels with diesel modifies the chemical structure and physical properties which again alter the engine operating conditions, combustion parameters and emissions levels. However, the injection of only 5% ethanol through port injection allows for a total of 25% blending of biofuels into diesel yet keeping the fuel characteristics close to that of conventional diesel. However, both experimental and numerical results show that ethanol addition in JME blended diesel results in a slight increase in fuel consumption and thermal efficiency for the same power outputs as that of conventional diesel fuel. Also, the combustion characteristics with ethanol addition include improved maximum in-cylinder peak pressure, cumulative heat release (CHR) rate of heat release (ROHR), in-cylinder peak temperature and combustion duration. Regarding emission characteristics the experimental results show significant reduction in smoke, carbon monoxide (CO) and total hydrocarbon (THC) emissions with extended oxygen mass percentage in the fuel at higher engine loads. However, oxides of nitrogen (NOx) emissions are found to increase at high loads although the common tradeoff between smoke and NOx is found to be more prominent for the oxygenated fuels.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Shigang Zhang; Lanbin Liu; Lin Fu;Abstract A great deal of heat is wasted in intensive public shower facilities, such as those in schools, barracks and natatoriums, which open up at specified time. It will contribute a lot to energy saving and environmental protection with significant economic benefits to recycle the exhaust heat. In this paper, we propose two different kinds of heat pumps (an electric heat pump and an absorption heat pump) in the heat recovery systems. In both system, the used shower water is drained through a pipe and collected in a gray water pool. When the wastewater reaches certain volume, the heat pump system will begin working and recycling heat. The wastewater is filtered and piped to the heat exchanger to exchange heat with the tap water whose temperature will increase from 12 °C to 25 °C with the wastewater temperature dropping from 30 °C to 17 °C. Then the wastewater is piped to the heat pump evaporator and the tap water is piped to the condenser for farther heating. According to the different characteristics of the electric heat pump and absorption heat pump, we also introduce the processes and control methods of different heat recovery systems in details in this paper. Based on a practical example, this paper analyzes and compares the economic and environmental benefits of three retrofitting schemes, including “exhaust heat recovery using electric heat pump”, “exhaust heat recovery using electric heat pump + gas boiler” and “exhaust heat recovery using direct-fired heat pump”. Then we find out that the heat recovery system using direct-fired absorption heat pump has lower energy consumption, less pollution, lower operating cost, and shorter payback period. And it has a promising practical application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Jilei Ye; Chao Wu; Changlong Ma; Zijie Yuan; Yilong Guo; Ruoyu Wang; Yuping Wu; Jinlei Sun; Lili Liu;doi: 10.3390/pr11082449
The battery power state (SOP) is the basic indicator for the Battery management system (BMS) of the battery energy storage system (BESS) to formulate control strategies. Although there have been many studies on state estimation of lithium-ion batteries (LIBs), aging and temperature variation are seldom considered in peak power prediction during the whole life of the battery. To fill this gap, this paper aims to propose an adaptive peak power prediction method for power lithium-ion batteries considering temperature and aging is proposed. First, the Thevenin equivalent circuit model is used to jointly estimate the state of charge (SOC) and SOP of the lithium-ion power battery, and the variable forgetting factor recursive least squares (VFF-RLS) algorithm and extended Kalman filter (EKF) are utilized to identify the battery parameters online. Then, multiple constraint parameters including current, voltage, and SOC were derived, considering the dependence of the polarization resistance of the battery on the battery current. Finally, the verification experiment was carried out with LiFePO4 battery. The experimental results under FUDS operating conditions show that the maximum SOC estimation error is 1.94%. And the power prediction errors at 20%, 50%, and 70% SOC were 5.0%, 8.1% and 4.5%, respectively. Our further work will focus on the joint estimation of battery state to further improve the accuracy.
Processes arrow_drop_down ProcessesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2227-9717/11/8/2449/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11082449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2227-9717/11/8/2449/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11082449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Rajender S. Sangwan; Sushil Kumar Kansal; Sandeep Kumar; Pranati Kundu; Troy Runge; Vivek Ahluwalia; Sasikumar Elumalai;pmid: 29274853
In this study, levulinic acid (LA) was produced from rice straw biomass in co-solvent biphasic reactor system consisting of hydrochloric acid and dichloromethane organic solvent. The modified protocol achieved a 15% wt LA yield through the synergistic effect of acid and acidic products (auto-catalysis) and the designed system allowed facile recovery of LA to the organic phase. Further purification of the resulting extractant was achieved through traditional column chromatography, which yielded a high purity LA product while recovering ∼85% wt. Upon charcoal treatment of the resultant fraction generated an industrial grade target molecule of ∼99% purity with ∼95% wt recovery. The system allows the solvent to be easily recovered, in excess of 90%, which was shown to be able to be recycled up to 5 runs without significant loss of final product concentrations. Overall, this system points to a method to significantly reduce manufacturing cost during large-scale LA preparation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu