Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Theoretical and experimental investigation of diesel engine performance, combustion and emissions analysis fuelled with the blends of ethanol, diesel and jatropha methyl ester

Authors: Senthilkumar Pachamuthu; Terese Løvås; Johan E. Hustad; Dhandapani Kannan; Md. Nurun Nabi;

Theoretical and experimental investigation of diesel engine performance, combustion and emissions analysis fuelled with the blends of ethanol, diesel and jatropha methyl ester

Abstract

Abstract In this work addition of ethanol to high viscosity jatropha methyl ester (JME) through port injection is investigated in order to determine its effect fuel viscosity reduction on diesel engine performance. In addition to viscosity alteration, the impact of ethanol addition on combustion characteristics such as combustion duration, ignition delay and emissions levels from diesel engines fuelled with blends of ethanol, diesel and JME is studied in particular. It is found that blending of oxygenated fuels with diesel modifies the chemical structure and physical properties which again alter the engine operating conditions, combustion parameters and emissions levels. However, the injection of only 5% ethanol through port injection allows for a total of 25% blending of biofuels into diesel yet keeping the fuel characteristics close to that of conventional diesel. However, both experimental and numerical results show that ethanol addition in JME blended diesel results in a slight increase in fuel consumption and thermal efficiency for the same power outputs as that of conventional diesel fuel. Also, the combustion characteristics with ethanol addition include improved maximum in-cylinder peak pressure, cumulative heat release (CHR) rate of heat release (ROHR), in-cylinder peak temperature and combustion duration. Regarding emission characteristics the experimental results show significant reduction in smoke, carbon monoxide (CO) and total hydrocarbon (THC) emissions with extended oxygen mass percentage in the fuel at higher engine loads. However, oxides of nitrogen (NOx) emissions are found to increase at high loads although the common tradeoff between smoke and NOx is found to be more prominent for the oxygenated fuels.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    116
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
116
Top 1%
Top 10%
Top 1%