- home
- Advanced Search
- Energy Research
- 2025-2025
- Open Source
- Embargo
- CN
- PK
- Energy Research
- 2025-2025
- Open Source
- Embargo
- CN
- PK
description Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | TOUGHEC| TOUGHJunwei Ding; Miao Du; Shiwen Wang; Linsen Zhang; Yuanzheng Yue; Morten M. Smedskjaer;doi: 10.1039/d4ee04566a
The recent developments of amorphous material based heterostructures with disordered heterointerfaces for advanced rechargeable batteries are reviewed, focusing on the relation between material structure and electrochemical performance.
Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Elsevier BV Asrar, B.; Hassam, M.; Rafi, S.; Ullah, I.; Homberg, J.R.; Haleem, D.J.;Chronic alcohol (ethanol) drinking changes central serotonin and dopamine levels, and thereby the functioning of brain circuits that support cognition and anxiety. Previously, it has been proven that Nigella sativa oil (NSO) improves cognition and reduces anxiety by regulating the neurotransmission but the underlying mechanisms are unknown.To address the knowledge gap, an in vivo experiment was done to investigate effects of NSO on behavior and neurotransmission in ethanol drinking Wistar male rats. Specifically, control, NSO treated, ethanol and ethanol + NSO treated groups were tested for changes in anxiety-like behavior, locomotor activity and learning and memory using the elevated plus-maze test (EPM) and light and dark (L&D) box test; open field test (OFT) and Morris water maze (MWM) test, respectively. Brain neurotransmitter concentrations were determined using HPLC-EC. To validate the in vivo findings, we assessed in silico the docking between NSO compounds and proteins using auto dock vina.Ethanol and NSO reduced weight in the ethanol and ethanol + NSO groups. Food intake, fluid consumption, calorie intake, and growth were similarly affected by ethanol and NSO. In the in behavioral tests, ethanol drinking rats spent less time in the open arms of the EPM and had fewer entries compared to controls, while ethanol + NSO group also showed reduced entries. Similar patterns were observed in the OFT. No differences were found in the L&D box test. In the memory tests, ethanol + NSO treatment increased latency in short-term memory, while ethanol consumption increased latency in retention. Neurochemical analysis revealed that ethanol + NSO treatment increased serotonin levels in the PFC and hippocampus while reducing dopamine levels in the PFC compared to all groups, and in the hippocampus compared to control and NSO groups. The in silico experiment revealed that NSO has nine main active compounds. By molecular docking, we found that all nine compounds showed good binding affinity with our target proteins but the best docking values were obtained with thymoquinone and dithymoquinone. The binding affinity estimations identified the superior binding affinity and efficiency of dithymoquinone over all nine NSO compounds for serotonin, dopamine receptors and MAO-enzymes.NSO partially modulated ethanol induced neurobehavioral and neurochemical alterations, improving serotonin levels but not fully reversing behavioral deficits. Further studies are needed to explore its protective potential.
Radboud Repository arrow_drop_down Behavioural Brain ResearchArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbr.2025.115494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Radboud Repository arrow_drop_down Behavioural Brain ResearchArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbr.2025.115494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Wiley Xiaoxiao Li; Wei Yang; Mark Novak; Lei Zhao; Peter C. de Ruiter; Zhifeng Yang; Christian Guill;doi: 10.1111/ele.70086
pmid: 39964095
ABSTRACTIdentifying species with disproportionate effects on other species under press perturbations is essential, yet how species traits and community context drive their ‘keystone‐ness’ remain unclear. We quantified keystone‐ness as linearly approximated per capita net effect derived from normalised inverse community matrices and as non‐linear per capita community biomass change from simulated perturbations in food webs with varying biomass structure. In bottom‐heavy webs (negative relationship between species' body mass and their biomass within the web), larger species at higher trophic levels tended to be keystone species, whereas in top‐heavy webs (positive body mass to biomass relationship), the opposite was true and the relationships between species' energetic traits and keystone‐ness were weakened or reversed compared to bottom‐heavy webs. Linear approximations aligned well with non‐linear responses in bottom‐heavy webs, but were less consistent in top‐heavy webs. These findings highlight the importance of community context in shaping species' keystone‐ness and informing effective conservation actions.
Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | TOUGHEC| TOUGHJunwei Ding; Miao Du; Shiwen Wang; Linsen Zhang; Yuanzheng Yue; Morten M. Smedskjaer;doi: 10.1039/d4ee04566a
The recent developments of amorphous material based heterostructures with disordered heterointerfaces for advanced rechargeable batteries are reviewed, focusing on the relation between material structure and electrochemical performance.
Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Elsevier BV Asrar, B.; Hassam, M.; Rafi, S.; Ullah, I.; Homberg, J.R.; Haleem, D.J.;Chronic alcohol (ethanol) drinking changes central serotonin and dopamine levels, and thereby the functioning of brain circuits that support cognition and anxiety. Previously, it has been proven that Nigella sativa oil (NSO) improves cognition and reduces anxiety by regulating the neurotransmission but the underlying mechanisms are unknown.To address the knowledge gap, an in vivo experiment was done to investigate effects of NSO on behavior and neurotransmission in ethanol drinking Wistar male rats. Specifically, control, NSO treated, ethanol and ethanol + NSO treated groups were tested for changes in anxiety-like behavior, locomotor activity and learning and memory using the elevated plus-maze test (EPM) and light and dark (L&D) box test; open field test (OFT) and Morris water maze (MWM) test, respectively. Brain neurotransmitter concentrations were determined using HPLC-EC. To validate the in vivo findings, we assessed in silico the docking between NSO compounds and proteins using auto dock vina.Ethanol and NSO reduced weight in the ethanol and ethanol + NSO groups. Food intake, fluid consumption, calorie intake, and growth were similarly affected by ethanol and NSO. In the in behavioral tests, ethanol drinking rats spent less time in the open arms of the EPM and had fewer entries compared to controls, while ethanol + NSO group also showed reduced entries. Similar patterns were observed in the OFT. No differences were found in the L&D box test. In the memory tests, ethanol + NSO treatment increased latency in short-term memory, while ethanol consumption increased latency in retention. Neurochemical analysis revealed that ethanol + NSO treatment increased serotonin levels in the PFC and hippocampus while reducing dopamine levels in the PFC compared to all groups, and in the hippocampus compared to control and NSO groups. The in silico experiment revealed that NSO has nine main active compounds. By molecular docking, we found that all nine compounds showed good binding affinity with our target proteins but the best docking values were obtained with thymoquinone and dithymoquinone. The binding affinity estimations identified the superior binding affinity and efficiency of dithymoquinone over all nine NSO compounds for serotonin, dopamine receptors and MAO-enzymes.NSO partially modulated ethanol induced neurobehavioral and neurochemical alterations, improving serotonin levels but not fully reversing behavioral deficits. Further studies are needed to explore its protective potential.
Radboud Repository arrow_drop_down Behavioural Brain ResearchArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbr.2025.115494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Radboud Repository arrow_drop_down Behavioural Brain ResearchArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbr.2025.115494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Wiley Xiaoxiao Li; Wei Yang; Mark Novak; Lei Zhao; Peter C. de Ruiter; Zhifeng Yang; Christian Guill;doi: 10.1111/ele.70086
pmid: 39964095
ABSTRACTIdentifying species with disproportionate effects on other species under press perturbations is essential, yet how species traits and community context drive their ‘keystone‐ness’ remain unclear. We quantified keystone‐ness as linearly approximated per capita net effect derived from normalised inverse community matrices and as non‐linear per capita community biomass change from simulated perturbations in food webs with varying biomass structure. In bottom‐heavy webs (negative relationship between species' body mass and their biomass within the web), larger species at higher trophic levels tended to be keystone species, whereas in top‐heavy webs (positive body mass to biomass relationship), the opposite was true and the relationships between species' energetic traits and keystone‐ness were weakened or reversed compared to bottom‐heavy webs. Linear approximations aligned well with non‐linear responses in bottom‐heavy webs, but were less consistent in top‐heavy webs. These findings highlight the importance of community context in shaping species' keystone‐ness and informing effective conservation actions.
Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu