- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- Open Source
- US
- CN
- DE
- AU
- Energy Research
- Open Access
- Restricted
- Open Source
- US
- CN
- DE
- AU
description Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:The Royal Society Funded by:NSF | LTER: Environmental drive...NSF| LTER: Environmental drivers and ecological consequences of kelp forest dynamics (SBV IV)Authors: Stier, Adrian C.; Essington, Timothy E.; Samhouri, Jameal F.; Siple, Margaret C.; +5 AuthorsStier, Adrian C.; Essington, Timothy E.; Samhouri, Jameal F.; Siple, Margaret C.; Halpern, Benjamin S.; White, Crow; Lynham, John M.; Salomon, Anne K.; Levin, Phillip S.;A major challenge in sustainability science is identifying targets that maximize ecosystem benefits to humanity while minimizing the risk of crossing critical system thresholds. One critical threshold is the biomass at which populations become so depleted that their population growth rates become negative—depensation. Here, we evaluate how the value of monitoring information increases as a natural resource spends more time near the critical threshold. This benefit emerges because higher monitoring precision promotes higher yield and a greater capacity to recover from overharvest. We show that precautionary buffers that trigger increased monitoring precision as resource levels decline may offer a way to minimize monitoring costs and maximize profits. In a world of finite resources, improving our understanding of the trade-off between precision in estimates of population status and the costs of mismanagement will benefit stakeholders that shoulder the burden of these economic and social costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Ubiquity Press, Ltd. Bradley Patrick White; Suellen Breakey; Margaret J. Brown; Jenny Rand Smith; Amanda Tarbet; Patrice K. Nicholas; Ana M. Viamonte Ros;Background: Climate change has been shown to be directly linked to multiple physiological sequelae and to impact health consequences. However, the impact of climate change on mental health globally, particularly among vulnerable populations, is less well understood. Objective: To explore the mental health impacts of climate change in vulnerable populations globally. Methods: We performed an integrative literature review to identify published articles that addressed the research question: What are the mental health impacts of climate change among vulnerable populations globally? The Vulnerable Populations Conceptual Model served as a theoretical model during the review process and data synthesis. Findings/Results: One hundred and four articles were selected for inclusion in this review after a comprehensive review of 1828 manuscripts. Articles were diverse in scope and populations addressed. Land-vulnerable persons (either due to occupation or geographic location), Indigenous persons, children, older adults, and climate migrants were among the vulnerable populations whose mental health was most impacted by climate change. The most prevalent mental health responses to climate change included solastalgia, suicidality, depression, anxiety/eco-anxiety, PTSD, substance use, insomnia, and behavioral disturbance. Conclusions: Mental health professionals including physicians, nurses, physician assistants and other healthcare providers have the opportunity to mitigate the mental health impacts of climate change among vulnerable populations through assessment, preventative education and care. An inclusive and trauma-informed response to climate-related disasters, use of validated measures of mental health, and a long-term therapeutic relationship that extends beyond the immediate consequences of climate change-related events are approaches to successful mental health care in a climate-changing world.
Annals of Global Hea... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Annals of Global Hea... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Springer Science and Business Media LLC Mukhtar Ahmed; Claudio O. Stöckle; Roger Nelson; Stewart S. Higgins; Shakeel Ahmad; Muhammad Ali Raza;pmid: 31127159
pmc: PMC6534615
AbstractElevated carbon-dioxide concentration [eCO2] is a key climate change factor affecting plant growth and yield. Conventionally, crop modeling work has evaluated the effect of climatic parameters on crop growth, without considering CO2. It is conjectured that a novel multimodal ensemble approach may improve the accuracy of modelled responses to eCO2. To demonstrate the applicability of a multimodel ensemble of crop models to simulation of eCO2, APSIM, CropSyst, DSSAT, EPIC and STICS were calibrated to observed data for crop phenology, biomass and yield. Significant variability in simulated biomass production was shown among the models particularly at dryland sites (44%) compared to the irrigated site (22%). Increased yield was observed for all models with the highest average yield at dryland site by EPIC (49%) and lowest under irrigated conditions (17%) by APSIM and CropSyst. For the ensemble, maximum yield was 45% for the dryland site and a minimum 22% at the irrigated site. We concluded from our study that process-based crop models have variability in the simulation of crop response to [eCO2] with greater difference under water-stressed conditions. We recommend the use of ensembles to improve accuracy in modeled responses to [eCO2].
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Research , Other literature type 2013Embargo end date: 01 Jan 2013Publisher:Elsevier BV Authors: Peter Egger; Peter Egger; Sergey Nigai;handle: 10419/80836 , 20.500.11850/65057
KOF Working Papers, 327
SSRN Electronic Jour... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert SSRN Electronic Jour... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:Public Library of Science (PLoS) Antonio Di Franco; Marta Sales; Paolo Guidetti; Fiorenza Micheli; David G. Foley; David G. Foley; Alexandros A. Karamanlidis; Francesco Ferretti; Simone Mariani; Kimberly A. Selkoe; Panagiotis Dendrinos; Andrew Rosenberg; Antonio Pais; Mikel Zabala; Alan M. Friedlander; Kristin Riser; Simonetta Fraschetti; Luisa Mangialajo; Fiona Tomas; Enric Ballesteros; Zafer Kizilkaya; Enrique Macpherson; Enric Sala; Bernat Hereu; Richard M. Starr; Richard M. Starr; Benjamin S. Halpern; Harun Güçlüsoy; Joaquim Garrabou;pmid: 22393445
pmc: PMC3290621
handle: 2445/27842 , 10261/49834 , 11588/768572 , 11388/62629 , 11587/364763
pmid: 22393445
pmc: PMC3290621
handle: 2445/27842 , 10261/49834 , 11588/768572 , 11388/62629 , 11587/364763
Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m(-2)). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADokuz Eylul University Research Information SystemArticle . 2012Data sources: Dokuz Eylul University Research Information SystemDiposit Digital de la Universitat de BarcelonaArticle . 2012License: PDMData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2012Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIRecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: PDMData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 331 citations 331 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 139visibility views 139 download downloads 129 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADokuz Eylul University Research Information SystemArticle . 2012Data sources: Dokuz Eylul University Research Information SystemDiposit Digital de la Universitat de BarcelonaArticle . 2012License: PDMData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2012Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIRecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: PDMData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Authors: Zhangxiang Wu; Li Sha; Xiaochen Yang; Yufeng Zhang;Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2013Publisher:MDPI AG Ximing Wang; Hongwen He; Fengchun Sun; Xiaokun Sun; Henglu Tang;doi: 10.3390/en6115656
Plug-in hybrid electric vehicles (PHEVs) have a larger battery and can replace a certain amount of conventional fossil fuels with grid electricity, which differs from the traditional hybrid electric vehicles (HEVs). The application of the onboard electrical energy significantly influences the energy utilization efficiency and thus impacts the fuel economy. In this paper, the basic PHEV operation modes are defined as pure electric driving (PED), hybrid driving charge depleting (HDCD) and hybrid driving charge sustaining (HDCS) based on the battery state of charge (SoC) profile. For a plug-in hybrid electric bus (PHEB), three different energy management strategies, which are combined with two or three of the basic operation modes, are put forward and comparatively examined based on simulation models. If some trip information can be approximately known in advance such as the trip distance and the mean power demand, the PED + HDCD + HDCS strategy comprised optimally of the PED mode, the HDCD mode and the HDCS mode would be the best energy management strategy.
Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/11/5656/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/11/5656/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Funded by:EC | HIGREEW, EC | CompBat, EC | CUBER +1 projectsEC| HIGREEW ,EC| CompBat ,EC| CUBER ,EC| SONARDieterle, M; Fischer, P; Pons, MN; Blume, N; Minke, C; Bischi, A;handle: 11568/1153121
A transition from fossil to renewable energy requires the development of sustainable electric energy storage systems capable to accommodate an increasing amount of energy, at larger power and for a longer time. Flow batteries are seen as one promising technology to face this challenge. As different innovations in this field of technology are still under development, reproducible, comparable and verifiable life cycle assessment studies are crucial to providing clear evidence on the sustainability of different flow battery systems. Based on a review of 20 relevant life cycle assessment studies for different flow battery systems, published between 1999 and 2021, this contribution explored relevant methodological choices regarding the sequence of phases defined in the ISO 14,040 series: goal and scope definition, inventory analysis, impact assessment and interpretation. Inspired by good practice examples, common gaps and weaknesses were identified and recommendations for comparative life cycle assessment studies were derived. This includes suggestions for an expanded functional unit definition, a provision of more detailed and transparent reporting of LCI data while using input/output tables. Outcomes of this study are also of relevance for the amendment of the Batteries Directive 2006/66/EC, where first drafts are under revision in the European Council, including the introduction of a battery passport, which should encourage battery producers to reduce their carbon footprint and avoid problematic materials.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchivio della Ricerca - Università di PisaArticle . 2022Data sources: Archivio della Ricerca - Università di PisaSustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchivio della Ricerca - Università di PisaArticle . 2022Data sources: Archivio della Ricerca - Università di PisaSustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2017Publisher:Springer Science and Business Media LLC Funded by:ANR | VIRGOANR| VIRGOAuthors: Mathias, Jean-Denis; Anderies, J.M.; Janssen, M.A.;AbstractThe planetary boundary framework constitutes an opportunity for decision makers to define climate policy through the lens of adaptive governance. Here, we use the DICE model to analyze the set of adaptive climate policies that comply with the two planetary boundaries related to climate change: (1) staying below a CO2 concentration of 550 ppm until 2100 and (2) returning to 350 ppm in 2100. Our results enable decision makers to assess the following milestones: (1) a minimum of 33% reduction of CO2 emissions by 2055 in order to stay below 550 ppm by 2100 (this milestone goes up to 46% in the case of delayed policies); and (2) carbon neutrality and the effective implementation of innovative geoengineering technologies (10% negative emissions) before 2060 in order to return to 350 ppm in 2100, under the assumption of getting out of the baseline scenario without delay. Finally, we emphasize the need to use adaptive path-based approach instead of single point target for climate policy design.
Arizona State Univer... arrow_drop_down Arizona State University: ASU Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.44365Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1038/srep42...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Arizona State Univer... arrow_drop_down Arizona State University: ASU Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.44365Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1038/srep42...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Annalisa Manera; Mingjun Wang; Mingjun Wang; Suizheng Qiu; Guanghui Su;Abstract The improvement of thermodynamic efficiency of power plants is of great interest for the whole energy industry. The use of Kalina cycle has a great potential to improve the thermal efficiency of a nuclear power plant. This cycle uses a mixture of ammonia and water as working fluid. In this paper, we discuss the development of an Ammonia-Water mixture Property Code (AWProC). The estimation of the mixture properties are based on the Gibbs free energy functions. The code is verified and validated against experimental data available in the literature and REFPROP code. It is shown that AWProC can accurately estimate the thermodynamic properties of ammonia-water mixtures over a wide range of conditions, including high temperature and pressure regions. The code is then used to investigate the feasibility of applying the Kalina cycle to a typical Pressurizer Water Reactor (PWR) plant as an effective way to improve the plant efficiency. The fundamental of Basic-Kalina (B-K) cycle is described in detail firstly. Then, two modified configurations, Recuperation-Kalina (R-K) and Flash-Kalina (F-K) cycles respectively, are proposed for a typical 1000 MWe PWR. The simulation results indicate that the R-K type cycle can reach about 31.2% efficiency with simple equipment requirements, while the F-K type cycle can reach efficiencies up to about 34.8%, but at the expenses of a slightly more complex design. The present work demonstrates the applicability of the Kalina cycle as a way to improve the thermal efficiency of a nuclear power plant. This concept is meaningful for improving nuclear power plants economic and competitiveness.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Progress in Nuclear EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Progress in Nuclear EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:The Royal Society Funded by:NSF | LTER: Environmental drive...NSF| LTER: Environmental drivers and ecological consequences of kelp forest dynamics (SBV IV)Authors: Stier, Adrian C.; Essington, Timothy E.; Samhouri, Jameal F.; Siple, Margaret C.; +5 AuthorsStier, Adrian C.; Essington, Timothy E.; Samhouri, Jameal F.; Siple, Margaret C.; Halpern, Benjamin S.; White, Crow; Lynham, John M.; Salomon, Anne K.; Levin, Phillip S.;A major challenge in sustainability science is identifying targets that maximize ecosystem benefits to humanity while minimizing the risk of crossing critical system thresholds. One critical threshold is the biomass at which populations become so depleted that their population growth rates become negative—depensation. Here, we evaluate how the value of monitoring information increases as a natural resource spends more time near the critical threshold. This benefit emerges because higher monitoring precision promotes higher yield and a greater capacity to recover from overharvest. We show that precautionary buffers that trigger increased monitoring precision as resource levels decline may offer a way to minimize monitoring costs and maximize profits. In a world of finite resources, improving our understanding of the trade-off between precision in estimates of population status and the costs of mismanagement will benefit stakeholders that shoulder the burden of these economic and social costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Ubiquity Press, Ltd. Bradley Patrick White; Suellen Breakey; Margaret J. Brown; Jenny Rand Smith; Amanda Tarbet; Patrice K. Nicholas; Ana M. Viamonte Ros;Background: Climate change has been shown to be directly linked to multiple physiological sequelae and to impact health consequences. However, the impact of climate change on mental health globally, particularly among vulnerable populations, is less well understood. Objective: To explore the mental health impacts of climate change in vulnerable populations globally. Methods: We performed an integrative literature review to identify published articles that addressed the research question: What are the mental health impacts of climate change among vulnerable populations globally? The Vulnerable Populations Conceptual Model served as a theoretical model during the review process and data synthesis. Findings/Results: One hundred and four articles were selected for inclusion in this review after a comprehensive review of 1828 manuscripts. Articles were diverse in scope and populations addressed. Land-vulnerable persons (either due to occupation or geographic location), Indigenous persons, children, older adults, and climate migrants were among the vulnerable populations whose mental health was most impacted by climate change. The most prevalent mental health responses to climate change included solastalgia, suicidality, depression, anxiety/eco-anxiety, PTSD, substance use, insomnia, and behavioral disturbance. Conclusions: Mental health professionals including physicians, nurses, physician assistants and other healthcare providers have the opportunity to mitigate the mental health impacts of climate change among vulnerable populations through assessment, preventative education and care. An inclusive and trauma-informed response to climate-related disasters, use of validated measures of mental health, and a long-term therapeutic relationship that extends beyond the immediate consequences of climate change-related events are approaches to successful mental health care in a climate-changing world.
Annals of Global Hea... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Annals of Global Hea... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Springer Science and Business Media LLC Mukhtar Ahmed; Claudio O. Stöckle; Roger Nelson; Stewart S. Higgins; Shakeel Ahmad; Muhammad Ali Raza;pmid: 31127159
pmc: PMC6534615
AbstractElevated carbon-dioxide concentration [eCO2] is a key climate change factor affecting plant growth and yield. Conventionally, crop modeling work has evaluated the effect of climatic parameters on crop growth, without considering CO2. It is conjectured that a novel multimodal ensemble approach may improve the accuracy of modelled responses to eCO2. To demonstrate the applicability of a multimodel ensemble of crop models to simulation of eCO2, APSIM, CropSyst, DSSAT, EPIC and STICS were calibrated to observed data for crop phenology, biomass and yield. Significant variability in simulated biomass production was shown among the models particularly at dryland sites (44%) compared to the irrigated site (22%). Increased yield was observed for all models with the highest average yield at dryland site by EPIC (49%) and lowest under irrigated conditions (17%) by APSIM and CropSyst. For the ensemble, maximum yield was 45% for the dryland site and a minimum 22% at the irrigated site. We concluded from our study that process-based crop models have variability in the simulation of crop response to [eCO2] with greater difference under water-stressed conditions. We recommend the use of ensembles to improve accuracy in modeled responses to [eCO2].
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Research , Other literature type 2013Embargo end date: 01 Jan 2013Publisher:Elsevier BV Authors: Peter Egger; Peter Egger; Sergey Nigai;handle: 10419/80836 , 20.500.11850/65057
KOF Working Papers, 327
SSRN Electronic Jour... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert SSRN Electronic Jour... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:Public Library of Science (PLoS) Antonio Di Franco; Marta Sales; Paolo Guidetti; Fiorenza Micheli; David G. Foley; David G. Foley; Alexandros A. Karamanlidis; Francesco Ferretti; Simone Mariani; Kimberly A. Selkoe; Panagiotis Dendrinos; Andrew Rosenberg; Antonio Pais; Mikel Zabala; Alan M. Friedlander; Kristin Riser; Simonetta Fraschetti; Luisa Mangialajo; Fiona Tomas; Enric Ballesteros; Zafer Kizilkaya; Enrique Macpherson; Enric Sala; Bernat Hereu; Richard M. Starr; Richard M. Starr; Benjamin S. Halpern; Harun Güçlüsoy; Joaquim Garrabou;pmid: 22393445
pmc: PMC3290621
handle: 2445/27842 , 10261/49834 , 11588/768572 , 11388/62629 , 11587/364763
pmid: 22393445
pmc: PMC3290621
handle: 2445/27842 , 10261/49834 , 11588/768572 , 11388/62629 , 11587/364763
Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m(-2)). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADokuz Eylul University Research Information SystemArticle . 2012Data sources: Dokuz Eylul University Research Information SystemDiposit Digital de la Universitat de BarcelonaArticle . 2012License: PDMData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2012Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIRecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: PDMData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 331 citations 331 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 139visibility views 139 download downloads 129 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADokuz Eylul University Research Information SystemArticle . 2012Data sources: Dokuz Eylul University Research Information SystemDiposit Digital de la Universitat de BarcelonaArticle . 2012License: PDMData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2012Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIRecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: PDMData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Authors: Zhangxiang Wu; Li Sha; Xiaochen Yang; Yufeng Zhang;Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2013Publisher:MDPI AG Ximing Wang; Hongwen He; Fengchun Sun; Xiaokun Sun; Henglu Tang;doi: 10.3390/en6115656
Plug-in hybrid electric vehicles (PHEVs) have a larger battery and can replace a certain amount of conventional fossil fuels with grid electricity, which differs from the traditional hybrid electric vehicles (HEVs). The application of the onboard electrical energy significantly influences the energy utilization efficiency and thus impacts the fuel economy. In this paper, the basic PHEV operation modes are defined as pure electric driving (PED), hybrid driving charge depleting (HDCD) and hybrid driving charge sustaining (HDCS) based on the battery state of charge (SoC) profile. For a plug-in hybrid electric bus (PHEB), three different energy management strategies, which are combined with two or three of the basic operation modes, are put forward and comparatively examined based on simulation models. If some trip information can be approximately known in advance such as the trip distance and the mean power demand, the PED + HDCD + HDCS strategy comprised optimally of the PED mode, the HDCD mode and the HDCS mode would be the best energy management strategy.
Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/11/5656/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/11/5656/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Funded by:EC | HIGREEW, EC | CompBat, EC | CUBER +1 projectsEC| HIGREEW ,EC| CompBat ,EC| CUBER ,EC| SONARDieterle, M; Fischer, P; Pons, MN; Blume, N; Minke, C; Bischi, A;handle: 11568/1153121
A transition from fossil to renewable energy requires the development of sustainable electric energy storage systems capable to accommodate an increasing amount of energy, at larger power and for a longer time. Flow batteries are seen as one promising technology to face this challenge. As different innovations in this field of technology are still under development, reproducible, comparable and verifiable life cycle assessment studies are crucial to providing clear evidence on the sustainability of different flow battery systems. Based on a review of 20 relevant life cycle assessment studies for different flow battery systems, published between 1999 and 2021, this contribution explored relevant methodological choices regarding the sequence of phases defined in the ISO 14,040 series: goal and scope definition, inventory analysis, impact assessment and interpretation. Inspired by good practice examples, common gaps and weaknesses were identified and recommendations for comparative life cycle assessment studies were derived. This includes suggestions for an expanded functional unit definition, a provision of more detailed and transparent reporting of LCI data while using input/output tables. Outcomes of this study are also of relevance for the amendment of the Batteries Directive 2006/66/EC, where first drafts are under revision in the European Council, including the introduction of a battery passport, which should encourage battery producers to reduce their carbon footprint and avoid problematic materials.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchivio della Ricerca - Università di PisaArticle . 2022Data sources: Archivio della Ricerca - Università di PisaSustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchivio della Ricerca - Università di PisaArticle . 2022Data sources: Archivio della Ricerca - Università di PisaSustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2017Publisher:Springer Science and Business Media LLC Funded by:ANR | VIRGOANR| VIRGOAuthors: Mathias, Jean-Denis; Anderies, J.M.; Janssen, M.A.;AbstractThe planetary boundary framework constitutes an opportunity for decision makers to define climate policy through the lens of adaptive governance. Here, we use the DICE model to analyze the set of adaptive climate policies that comply with the two planetary boundaries related to climate change: (1) staying below a CO2 concentration of 550 ppm until 2100 and (2) returning to 350 ppm in 2100. Our results enable decision makers to assess the following milestones: (1) a minimum of 33% reduction of CO2 emissions by 2055 in order to stay below 550 ppm by 2100 (this milestone goes up to 46% in the case of delayed policies); and (2) carbon neutrality and the effective implementation of innovative geoengineering technologies (10% negative emissions) before 2060 in order to return to 350 ppm in 2100, under the assumption of getting out of the baseline scenario without delay. Finally, we emphasize the need to use adaptive path-based approach instead of single point target for climate policy design.
Arizona State Univer... arrow_drop_down Arizona State University: ASU Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.44365Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1038/srep42...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Arizona State Univer... arrow_drop_down Arizona State University: ASU Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.44365Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1038/srep42...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Annalisa Manera; Mingjun Wang; Mingjun Wang; Suizheng Qiu; Guanghui Su;Abstract The improvement of thermodynamic efficiency of power plants is of great interest for the whole energy industry. The use of Kalina cycle has a great potential to improve the thermal efficiency of a nuclear power plant. This cycle uses a mixture of ammonia and water as working fluid. In this paper, we discuss the development of an Ammonia-Water mixture Property Code (AWProC). The estimation of the mixture properties are based on the Gibbs free energy functions. The code is verified and validated against experimental data available in the literature and REFPROP code. It is shown that AWProC can accurately estimate the thermodynamic properties of ammonia-water mixtures over a wide range of conditions, including high temperature and pressure regions. The code is then used to investigate the feasibility of applying the Kalina cycle to a typical Pressurizer Water Reactor (PWR) plant as an effective way to improve the plant efficiency. The fundamental of Basic-Kalina (B-K) cycle is described in detail firstly. Then, two modified configurations, Recuperation-Kalina (R-K) and Flash-Kalina (F-K) cycles respectively, are proposed for a typical 1000 MWe PWR. The simulation results indicate that the R-K type cycle can reach about 31.2% efficiency with simple equipment requirements, while the F-K type cycle can reach efficiencies up to about 34.8%, but at the expenses of a slightly more complex design. The present work demonstrates the applicability of the Kalina cycle as a way to improve the thermal efficiency of a nuclear power plant. This concept is meaningful for improving nuclear power plants economic and competitiveness.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Progress in Nuclear EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Progress in Nuclear EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
