- home
- Advanced Search
- Energy Research
- 6. Clean water
- CN
- US
- GB
- ES
- Energy Research
- 6. Clean water
- CN
- US
- GB
- ES
Research data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Yucui Zhang; Huimin Lei; Wenguang Zhao; Yanjun Shen; Dengpan Xia;Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 26 Sep 2017 SpainPublisher:Digital.CSIC Ramirez F; Rodriguez C; Seoane J; Figuerola J; Bustamante J;handle: 10261/155634
Global warming and direct anthropogenic impacts, such as water extraction, are largely affecting water budgets in Mediterranean wetlands, thereby increasing wetland salinities and isolation, and decreasing water depths and hydroperiods (duration of the inundation period). These wetland features are key elements structuring waterbird communities. However, the ultimate and net consequences of these dynamic conditions on waterbird assemblages are largely unknown. We combined a regular sampling on waterbird presence through the 2008 annual cycle with in-situ data on these relevant environmental predictors of waterbird distribution to model habitat selection for 69 individual species in a typical Mediterranean wetland network in south-western Spain. Species association with environmental features were subsequently used to predict changes in habitat suitability for each species under three climate change scenarios (encompassing changes in environment that ranged from 10% to 50% change as predicted by climatic models). Waterbirds distributed themselves unevenly throughout environmental gradients and water salinity was the most important gradient structuring the distribution of the community. Environmental suitability for the guilds of diving birds and vegetation gleaners will be reduced according to future climate scenarios, while most small wading birds will benefit from changing conditions. Resident species and those that breed in this wetland network will be also more impacted than those using this area for wintering or stopover. We provide here a tool that can be used in a horizon-scanning framework to identify emerging issues on waterbird conservation and to anticipate suitable management actions : Datasets as supporting information to article “How will climate change affect endangered Mediterranean waterbirds?” to be published in PLOS ONE. Address questions to Francisco Ramírez: ramirez@ub.edu
Digital.CSIC arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20350/digitalcsic/8519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 85visibility views 85 download downloads 13 Powered bymore_vert Digital.CSIC arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20350/digitalcsic/8519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 PortugalPublisher:MDPI AG Luís Resende; Juan Flores; Cláudia Moreira; Diana Pacheco; Alexandra Baeta; Ana Carla Garcia; Ana Cristina Silva Rocha;doi: 10.3390/app12010398
Integrated multitrophic aquaculture (IMTA) is a versatile technology emerging as an ecological and sustainable solution for traditional monoculture aquacultures in terms of effluent treatment. Nevertheless, IMTA is still poorly applied in aquaculture industry due to, among other reasons, the lack of effective, low-investment and low-maintenance solutions. In this study, one has developed a practical and low maintenance IMTA-pilot system, settled in a semi-intensive coastal aquaculture. The optimisation and performance of the system was validated using Ulva spp., a macroalgae that naturally grows in the fishponds of the local aquaculture. Several cultivation experiments were performed at lab-scale and in the IMTA-pilot system, in static mode. The specific growth rate (SGR), yield, nutrient removal, N and C enrichment, protein and pigment content were monitored. Ulva spp. successfully thrived in effluent from the fish species sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) production tanks and significantly reduced inorganic nutrient load in the effluent, particularly, NH4+, PO43− and NO3−. The enrichment of nitrogen in Ulva spp.’s tissues indicated nitrogen assimilation by the algae, though, the cultivated Ulva spp. showed lower amounts of protein and pigments in comparison to the wild type. This study indicates that the designed IMTA-pilot system is an efficient solution for fish effluent treatment and Ulva spp., a suitable effluent remediator.
Applied Sciences arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12010398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12010398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Yike Xu; Guiliang Tian; Shuwen Xu; Qing Xia;doi: 10.3390/su15054393
Virtual water flows have a profound impact on the natural water system of a country or region, and they may help conserve local water resources or exacerbate water scarcity in some areas. However, current research has only focused on the measurement of virtual water flows, without analysis of the causes of virtual water flow patterns. This study first obtained virtual water flow patterns across provinces by constructing a multi-regional input–-output (MRIO) model of the Yellow River basin in 2012 and 2017, and then analyzed its driving factors by applying the extended STIRPAT model to provide directions for using virtual water trade to alleviate water shortages in water-scarce areas of the basin. We found the following: (1) The Yellow River basin as a whole had a net virtual water inflow in 2012 and 2017, and the net inflow has increased from 2.14 billion m3 to 33.67 billion m3. (2) Different provinces or regions assume different roles in the virtual water trade within the basin. (3) There is an obvious regional heterogeneity in the virtual water flows in different subsectors. (4) Per capita GDP, tertiary industry contribution rate, consumer price index, and water scarcity are the main positive drivers of virtual water inflow in the Yellow River Basin provinces, while primary industry contribution rate, per capita water resources, and water use per unit arable area promote virtual water outflow. The results of this paper present useful information for understanding the driving factors of virtual water flow, which could promote the optimal allocation of water resources in the Yellow River basin and achieve ecological protection and high-quality development in this area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15054393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15054393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Informa UK Limited Junwen Bai; Zhen Pan; Liyan Shang; Zhenbo Lv; Jiaqi Zhai; Yanjun Qu; Haijuan Yu;As a porous medium with rich pore structure, activated carbon (AC) was once considered the best carrier for hydrate storage and transportation. However, the harsh conditions of the hydrate reaction in the wet carbon environment have always limited the sufficient and rapid formation of hydrate. Therefore, the influences of particle size (4–8, 8–16, 20–40 and 100 mesh) and liquid phase saturation (fully/partially saturated) in the sodium dodecyl sulfate system on hydrate reaction were investigated. The results showed that small particle in the fully saturated liquid phase system led to the increase in hydrate generation rate, with the highest hydrate reaction rate of 3.16 mmol/min in the 100 mesh AC layer, which was 1.7–2.9 times higher than other AC layers. The gas storage capability of the 4–8 mesh AC layer with a water saturation of 70% was the highest among all systems, reaching 0.198 mol/mol. The saturation of the liquid phase induced the nucleation and growth of hydrates. Adherently growing hydrates of fully saturated liquid phase systems and mushroom-like hydrates of partially saturated liquid phase systems were found in turn. This research facilitates the commercialization of AC-based hydrate technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2023.2205363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2023.2205363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Wahyu Prasetyo Utomo; Hao Wu; Yun Hau Ng;doi: 10.3390/en16010027
Nitrogen reduction reaction (NRR) and nitrate reduction reaction (NO3−RR) provide a potential sustainable route by which to produce ammonia, a next-generation energy carrier. Many studies have been conducted over the years, mainly emphasizing material design and strategies to improve catalytic performance. Despite significant achievements in material design and corresponding fundamental knowledge, the produced ammonia is still very limited, which makes it prone to bias. The presence of interferants (e.g., cations and sacrificial reagents), the pH of the solution, and improper analytical procedure can lead to the over or underestimation of ammonia quantification. Therefore, the selection of the appropriate ammonia quantification method, which meets the sample solution condition, along with the proper analytical procedures, is of great importance. In this review, the state-of-the-art ammonia quantification method is summarized, emphasizing the advantages, limitations, and practicality for NRR and NO3−RR studies. Fundamental knowledge of the quantification method is introduced. Perspective on the considerations for selecting the suitable quantification method and for performing the quantification process is also provided. Although non exhaustive, this focused review can be useful as a guide to design the experimental setup and procedure for more reliable ammonia quantification results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 26 Mar 2021Publisher:Dryad Authors: Nelson, Daniel; Busch, Michelle; Kopp, Darin; Allen, Daniel;1. While climate change is altering ecosystems on a global scale, not all ecosystems are responding in the same way. The resilience of ecological communities may depend on whether food webs are producer- or detritus-based (i.e. “green” or “brown” food webs, respectively), or both (i.e. “multi-channel” food web). 2. Food web theory suggests that the presence of multiple energy pathways can enhance community stability and resilience and may modulate the responses of ecological communities to disturbances such as climate change. Despite important advances in food web theory, few studies have empirically investigated the resilience of ecological communities to climate change stressors in ecosystems with different primary energy channels. 3. We conducted a factorial experiment using outdoor stream mesocosms to investigate the independent and interactive effects of warming and drought on invertebrate communities in food webs with different energy channel configurations. Warming had little effect on invertebrates, but stream drying negatively impacted total invertebrate abundance, biomass, richness, and diversity. 4. Although resistance to drying did not differ among energy channel treatments, recovery and overall resilience were higher in green mesocosms than in mixed and brown mesocosms. Resilience to drying also varied widely among taxa, with larger predatory taxa exhibiting lower resilience. 5. Our results suggest that the effects of drought on stream communities may vary regionally and depend on whether food webs are fueled by autochthonous or allochthonous basal resources. Communities inhabiting streams with large amounts of organic matter and more complex substrates that provide refugia may be more resilient to the loss of surface water than communities inhabiting streams with simpler, more homogeneous substrates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qfttdz0gk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 download downloads 19 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qfttdz0gk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors: Reza Shojaei Ghadikolaei; Mohammad Hasan Khoshgoftar Manesh; Hossein Vazini Modabber; Viviani Caroline Onishi;AbstractThe integration of power plants and desalination systems has attracted increasing attention over the past few years as an effective solution to tackle sustainable development and climate change issues. In this light, this paper introduces a novel modelling and optimization approach for a combined-cycle power plant (CCPP) integrated with reverse osmosis (RO) and multi-effect distillation (MED) desalination systems. The integrated CCPP and RO–MED desalination system is thermodynamically modelled utilizing MATLAB and EES software environments, and the results are validated via Thermoflex software simulations. Comprehensive energy, exergic, exergoeconomic, and exergoenvironmental (4E) analyses are performed to assess the performance of the integrated system. Furthermore, a new multi-objective water cycle algorithm (MOWCA) is implemented to optimize the main performance parameters of the integrated system. Finally, a real-world case study is performed based on Iran's Shahid Salimi Neka power plant. The results reveal that the system exergy efficiency is increased from 8.4 to 51.1% through the proposed MOWCA approach, and the energy and freshwater costs are reduced by 8.4% and 29.4%, respectively. The latter results correspond to an environmental impact reduction of 14.2% and 33.5%. Hence, the objective functions are improved from all exergic, exergoeconomic, and exergoenvironmental perspectives, proving the approach to be a valuable tool towards implementing more sustainable combined power plants and desalination systems.
Iranian Journal of S... arrow_drop_down Iranian Journal of Science and Technology Transactions of Mechanical EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40997-023-00668-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Iranian Journal of S... arrow_drop_down Iranian Journal of Science and Technology Transactions of Mechanical EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40997-023-00668-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: ZHANG Jing; SHEN Yanjun;Spatio-temporal variations in extreme drought in China during 1961–2015 Spatio-temporal variations in extreme drought in China during 1961–2015
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.05856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.05856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 06 Feb 2023Publisher:Dryad Parks, Sean; Holsinger, Lisa; Abatzoglou, John; Littlefield, Caitlin; Zeller, Katherine;Identifying climate analogs We followed the methods of Abatzoglou et al. (2020) and Parks et al. (2022) to characterize climate and identify backward and forward climate analogs. The specific climate variables we used were average minimum temperature of the coldest month (Tmin), average maximum temperature of the warmest month (Tmax), annual actual evapotranspiration (AET), and annual climate water deficit (CWD). AET and CWD concurrently account for evaporative demand and availability of water (N. L. Stephenson, 1990). These four variables provide complementary information pertinent to ecological systems and collectively capture the major climatic constraints on species distributions and ecological processes across a range of taxa (Dobrowski et al., 2021; Lutz et al., 2010; Parker & Abatzoglou, 2016; N. Stephenson, 1998; C. M. Williams et al., 2015). Monthly data acquired from TerraClimate (Abatzoglou et al., 2018) were used to produce these annual summaries from 1961-1990 (resolution = ~4km), which were then averaged over the same time period to represent reference period climate normals. The reference time period (1961–1990) is meant to represent climate conditions and climate niches prior to the bulk of recent warming. Future climate conditions were also computed from TerraClimate (available from www.climatologylab.org/terraclimate.html) and correspond to a 2°C increase above pre-industrial levels that are likely to manifest by mid-21st century without immediate and massive changes in global climate policies (Friedlingstein et al., 2014). As with the reference period climate, we summarized the four +2°C climate metrics annually and over a 30-year time period to represent future climate normals. All analyses in this study were conducted in the R statistical platform (R Core Team, 2020). We identified backwards and forwards analogs by estimating the climatic dissimilarity between each protected focal pixel (resolution = ~4km to match gridded climate data) and all protected pixels within a 500-km radius using a standardized Mahalanobis distance (Mahony et al., 2017). We chose the 500-km search radius as it encompasses an upper range of dispersal for some terrestrial animals and plants (Chen et al., 2011) when assuming 2°C warming by the mid-21st century; this search radius has also been used in previous studies (Bellard et al., 2014; Parks et al., 2022; J. W. Williams et al., 2007). The Mahalanobis distance metric synthesized the four climate variables (i.e. Tmin, Tmax, AET, and CWD; fig. 2a) by measuring distance in multivariate space away from a centroid using principal components analysis of standardized anomalies. Mahalanobis distance scales multivariate mean climate conditions between a pixel and those within the search radius by the focal pixel’s covariance and magnitude of interannual climate variability (ICV) across the four metrics. For backwards analogs, we characterized +2°C ICV and reference period climate normals to calculate climatic dissimilarity; for forward analogs, we used reference period ICV and +2°C climatic normals to calculate climatic dissimilarity. We standardized Mahalanobis distance to account for data dimensionality by calculating a multivariate z-score (σd) based on a Chi distribution (Mahony et al., 2017). σd represents the climate similarity between each focal pixel and its candidate backward and forward analogs (i.e. all other protected terrestrial pixels within 500 km), and we considered any protected pixels with σd ≤ 0.5 as climate analogs (fig. 2b) (following Parks et al., 2022). We were unable to calculate Mahalanobis distance when there was no ICV for any one of the four variables, and as a consequence, these areas are omitted from all analyses; this affects, for example, a relatively small tropical area in South America (CWD=0 each year) and areas perennially covered by snow (CWD=0 each year; e.g. most of Greenland). We focused our analyses on protected areas as defined by the World Database on Protected Areas (WDPA) (IUCN & UNEP-WCMC, 2019) and included protected areas classified as IUCN (International Union of Conservation for Nature) Management Categories I-VI, except those identified as ‘proposed’, ‘marine’, or otherwise aquatic (e.g. wetland, riverine, endorheic). A large number of protected areas, however, were not assigned an IUCN category in the WDPA (identified as ‘Not Reported’, ‘Not Assigned’, or ‘Not Applicable’) but are likely to have reasonably high levels of protection (e.g. Kruger National Park in South Africa). We included these additional protected areas if the level of human modification was similar or less than that observed within IUCN category I-VI protected areas. To do so, we measured mean land-use intensity within each IUCN category I-VI protected area using the Human Modification Gradient (HMG) raster dataset (Kennedy et al., 2019) and calculated the 80th percentile of the resulting distribution. Any unassigned protected areas with a mean HMG less than or equal to this identified threshold were included in our study (following Dobrowski et al., 2021). We then converted this vector-based polygon dataset to raster format (resolution = ~4km to match gridded climate data; n=1,063,748 pixels). It is well-recognized that the WDPA contains a large number of duplicate and overlapping polygons (Palfrey et al., 2022; Vimal et al., 2021). Although this does not affect summaries across the globe or for individual countries (described below), it provides a challenge when trying to summarize by individual protected areas (due to double-counting). Consequently, we ‘cleaned’ the WDPA prior to summarizing the climate connectivity metrics for individual protected areas by removing polygons that exhibited ≥ 90% overlap with another; this resulted in 29,752 individual protected areas (available in the Electronic Supplemental Material). Least-cost path modelling Following Dobrowski and Parks (2016) and Carroll et al. (2018), we used least-cost path modelling (Adriaensen et al. 2003) to build potential climate-induced movement routes between each protected focal pixel and its backward and forward analogs. The least-cost models were parameterized with resistance surfaces based on climate dissimilarity and the human modification gradient (HMG) (Kennedy et al., 2019). For backward analog modelling, we characterized climatic dissimilarity (i.e. climatic resistance) using two intermediate surfaces, the first being the Mahalanobis distance between each focal pixel (using +2°C ICV) and all other pixels using reference period climate normals (fig. 2c) and the second being the Mahalanobis distance (using +2°C ICV) and all other pixels using +2°C climate normals (fig. 2d). These two surfaces provide a proxy for climate similarity designed to capture transient changes between the reference period and +2°C climate; these were then averaged to characterize the overall climatic resistance across time and space (fig. 2d). For forward analog modelling, the process is similar except we used reference period ICV when characterizing climatic resistance (fig. 2a-2d). We then multiplied the climatic resistance (fig. 2d) by HMG (fig. 2e) to create the final resistance surface for least-cost path modeling (cf. Parks et al., 2020). Prior to this step, we rescaled HMG from its native range (0–1) to 1–25 to correspond with the range of Mahalanobis distance values and thereby grant comparable weights to climatic resistance and HMG resistance (~95% of all Mahalanobis distance values are below 25 within a 500km radius). Open water was given a resistance=25 so that paths would avoid water when possible. Least-cost path modelling was achieved using the gdistance package (van Etten, 2017); paths represent the least accumulated cost across the final resistance surface (fig. 2f) between each focal pixel and analog (fig. 2g). Because paths were rarely straight lines, some were longer than the 500km that we established as a search radius. We removed these longer paths to abide by the biologically informed upper dispersal constraint. Calculating climate connectivity metrics and climate connectivity failure We calculated the length (i.e. dispersal exposure), land-use modification (i.e. human exposure), and climatic resistance (i.e. climate exposure) for each path, remembering that each focal pixel may have many analogs and resultant paths. Human exposure represents cumulative HMG (fig. 2e) across all pixels in a path and climate exposure represents cumulative climate resistance (fig. 2d) along a path. Human exposure and climate exposure were calculated by multiplying the mean HMG (unscaled; fig. 2f) and mean climate resistance (fig. 2d) along each path by the length of each path, respectively. Each path’s climate connectivity metric (dispersal, human, and climate exposure) was converted to a percentile (range = 0–100) to facilitate easier interpretation and comparison among metrics; relative to other protected pixels, small percentiles represent low exposure and large percentiles represent elevated exposure. We summarized (i.e. averaged the percentiles) dispersal exposure, human exposure, and climate exposure across each protected focal pixel (again, remembering that each pixel may have multiple analogs and resultant paths). Our fourth climate connectivity metric, analog exposure, can’t be summarized on a per-path basis, because by definition, there is no least-cost path when there are no protected climate analogs. Instead, protected pixels either do or do not have protected climate analogs. Focal pixels were identified as exhibiting climate connectivity failure when they exceeded the 75th percentile for dispersal or climate exposure, exceeded the 90th percentile for human exposure, or had no protected climate analog. We assumed that focal pixels exceeding these percentiles are located in landscapes that hinder successful range shifts among protected areas (i.e. climate connectivity failure) for a non-negligible proportion of extant species, considering that the biodiversity at a given site comprises mammals, birds, insects, mollusks, amphibians, reptiles, fish, crustaceans, annelids, vascular plants (e.g. trees grasses, shrubs), and non-vascular plants (e.g. fungi, mosses, lichens). The numerous and diverse species at a given site have a wide range of dispersal abilities, sensitivities to human land uses, and climatic tolerances. We used a higher threshold (90th percentile) for describing climate connectivity failure due to human exposure because large, remote protected areas in the network skew human exposure towards lower values from a global perspective. These percentile thresholds are likely conservative when considering the large number and diversity of species at a given site. In terms of dispersal, for example, many species have maximum dispersal capabilities on the range of 1 km/year or less (Jenkins et al., 2007; McLachlan et al., 2005; Schwartz et al., 2001). This represents dispersal of 75 km under 2°C warming in the 75 years covering the midpoint of the reference period (1975) to mid-21st century. In our study, the 75th percentile path length, corresponding to dispersal exposure, is ~385 km, well above such dispersal limits, supporting our assertion that the 75th percentile is conservative for estimating climate connectivity failure. Furthermore, the mean HMG value for a 100km path at the 90th percentile threshold is 0.22, which is well above the 0.1 threshold that Brennen et al. (2022) used to identify areas moderately to highly impacted by human land-uses. Lastly, the mean climatic distance for a 100km path at the 75th percentile is well over two standard deviations different, on average, from the focal pixel and analog. We report the percent of protected pixels across the globe and within each country that exhibits climate connectivity failure. We also assessed the potential for each of the 29,752 individual protected areas (e.g. Yellowstone National Park, Serengeti National Park) to undergo climate connectivity failure using a slightly different method. To do so, we calculated the mean percentile among pixels within each protected area for each of dispersal exposure, human exposure, and climate exposure (each metric was averaged across a protected area; the metrics themselves were not averaged with each other). We then calculated the percent of each protected area that did not have a protected climate analog (analog exposure). Although a binary approach (has or does not have an analog) is appropriate when evaluating individual focal pixels, a percent-based valuation is most appropriate and informative when evaluating individual protected areas with up to thousands of pixels. Individual protected areas exhibited climate connectivity failure if the mean dispersal exposure or climate exposure exceeded the 75th percentile, mean human exposure exceeded the 90th percentile, or the analog exposure exceeded 75%. References Abatzoglou, J. T., Dobrowski, S. Z., & Parks, S. A. (2020). Multivariate climate departures have outpaced univariate changes across global lands. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-60270-5 Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data, 5(1), Article 1. https://doi.org/10.1038/sdata.2017.191 Bellard, C., Leclerc, C., Leroy, B., Bakkenes, M., Veloz, S., Thuiller, W., & Courchamp, F. (2014). Vulnerability of biodiversity hotspots to global change. Global Ecology and Biogeography, 23(12), 1376–1386. https://doi.org/10.1111/geb.12228 Brennan, A., Naidoo, R., Greenstreet, L., Mehrabi, Z., Ramankutty, N., & Kremen, C. (2022). Functional connectivity of the world’s protected areas. Science, 376(6597), 1101–1104. https://doi.org/10.1126/science.abl8974 Carroll, C., Parks, S. A., Dobrowski, S. Z., & Roberts, D. R. (2018). Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Global Change Biology, 24(11), 5318–5331. https://doi.org/10.1111/gcb.14373 Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 333(6045), 1024–1026. https://doi.org/10.1126/science.1206432 Dobrowski, S. Z., Littlefield, C. E., Lyons, D. S., Hollenberg, C., Carroll, C., Parks, S. A., Abatzoglou, J. T., Hegewisch, K., & Gage, J. (2021). Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Communications Earth & Environment, 2(1), Article 1. https://doi.org/10.1038/s43247-021-00270-z Dobrowski, S. Z., & Parks, S. A. (2016). Climate change velocity underestimates climate change exposure in mountainous regions. Nature Communications, 7(1), Article 1. https://doi.org/10.1038/ncomms12349 Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R., Luderer, G., Raupach, M. R., Schaeffer, M., van Vuuren, D. P., & Le Quéré, C. (2014). Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geoscience, 7(10), Article 10. https://doi.org/10.1038/ngeo2248 IUCN & UNEP-WCMC. (2019). Protected Planet: World Database on Protected Areas (WDPA). Accessed September 2019. Available at www.protectedplanet.net. (Accessed September 2019) [Map]. www.protected.planet.net Jenkins, D. G., Brescacin, C. R., Duxbury, C. V., Elliott, J. A., Evans, J. A., Grablow, K. R., Hillegass, M., Lyon, B. N., Metzger, G. A., Olandese, M. L., Pepe, D., Silvers, G. A., Suresch, H. N., Thompson, T. N., Trexler, C. M., Williams, G. E., Williams, N. C., & Williams, S. E. (2007). Does size matter for dispersal distance? Global Ecology and Biogeography, 16(4), 415–425. https://doi.org/10.1111/j.1466-8238.2007.00312.x Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S., & Kiesecker, J. (2019). Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology, 25(3), 811–826. https://doi.org/10.1111/gcb.14549 Lutz, J. A., van Wagtendonk, J. W., & Franklin, J. F. (2010). Climatic water deficit, tree species ranges, and climate change in Yosemite National Park. Journal of Biogeography, 37(5), 936–950. https://doi.org/10.1111/j.1365-2699.2009.02268.x Mahony, C. R., Cannon, A. J., Wang, T., & Aitken, S. N. (2017). A closer look at novel climates: New methods and insights at continental to landscape scales. Global Change Biology, 23(9), 3934–3955. https://doi.org/10.1111/gcb.13645 McLachlan, J. S., Clark, J. S., & Manos, P. S. (2005). Molecular indicators of tree migration capacity under rapid climate change. Ecology, 86(8), 2088–2098. https://doi.org/10.1890/04-1036 Palfrey, R., Oldekop, J. A., & Holmes, G. (2022). Privately protected areas increase global protected area coverage and connectivity. Nature Ecology & Evolution, 6(6), Article 6. https://doi.org/10.1038/s41559-022-01715-0 Parker, L. E., & Abatzoglou, J. T. (2016). Projected changes in cold hardiness zones and suitable overwinter ranges of perennial crops over the United States. Environmental Research Letters, 11(3), 034001. https://doi.org/10.1088/1748-9326/11/3/034001 Parks, S. A., Carroll, C., Dobrowski, S. Z., & Allred, B. W. (2020). Human land uses reduce climate connectivity across North America. Global Change Biology, 26(5), 2944–2955. https://doi.org/10.1111/gcb.15009 Parks, S. A., Holsinger, L. M., Littlefield, C. E., Dobrowski, S. Z., Zeller, K. A., Abatzoglou, J. T., Besancon, C., Nordgren, B. L., & Lawler, J. J. (2022). Efficacy of the global protected area network is threatened by disappearing climates and potential transboundary range shifts. Environmental Research Letters, 17(5), 054016. https://doi.org/10.1088/1748-9326/ac6436 R Core Team. (2020). R: A language and environment for statistical computing. Schwartz, M. W., Iverson, L. R., & Prasad, A. M. (2001). Predicting the potential future distribution of four tree species in Ohio using current habitat availability and climatic forcing. Ecosystems, 4(6), 568–581. https://doi.org/10.1007/s10021-001-0030-3 Stephenson, N. (1998). Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography, 25(5), 855–870. https://doi.org/10.1046/j.1365-2699.1998.00233.x Stephenson, N. L. (1990). Climatic Control of Vegetation Distribution: The Role of the Water Balance. The American Naturalist, 135(5), 649–670. https://doi.org/10.1086/285067 van Etten, J. (2017). R Package gdistance: Distances and Routes on Geographical Grids. Journal of Statistical Software, 76, 1–21. https://doi.org/10.18637/jss.v076.i13 Vimal, R., Navarro, L. M., Jones, Y., Wolf, F., Le Moguédec, G., & Réjou-Méchain, M. (2021). The global distribution of protected areas management strategies and their complementarity for biodiversity conservation. Biological Conservation, 256, 109014. https://doi.org/10.1016/j.biocon.2021.109014 Williams, C. M., Henry, H. A. L., & Sinclair, B. J. (2015). Cold truths: How winter drives responses of terrestrial organisms to climate change. Biological Reviews, 90(1), 214–235. https://doi.org/10.1111/brv.12105 Williams, J. W., Jackson, S. T., & Kutzbach, J. E. (2007). Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences, 104(14), 5738–5742. https://doi.org/10.1073/pnas.0606292104 Species across the planet are shifting their ranges to track suitable climate conditions in response to climate change. Given that protected areas have higher quality habitat and often harbor higher levels of biodiversity compared to unprotected lands, it is often assumed that protected areas can serve as steppingstones for species undergoing climate-induced range shifts. However, there are several factors that may impede successful range shifts among protected areas, including the distance that must be travelled, unfavorable human land uses and climate conditions along potential movement routes, and lack of analogous climates. Through a species-agnostic lens, we evaluate these factors across the global terrestrial protected area network as measures of climate connectivity, which is defined as the ability of a landscape to facilitate or impede climate-induced movement. We found that over half of protected land areas and two-thirds of the number of protected units across the globe are at risk of climate connectivity failure, casting doubt on whether many species can successfully undergo climate-induced range shifts among protected areas. Consequently, protected areas are unlikely to serve as steppingstones for a large number of species under a warming climate. As species disappear from protected areas without commensurate immigration of species suited to the emerging climate (due to climate connectivity failure), many protected areas may be left with a depauperate suite of species under climate change. Our findings are highly relevant given recent pledges to conserve 30% of the planet by 2030 (30x30), underscore the need for innovative land management strategies that allow for species range shifts, and suggest that assisted colonization may be necessary to promote species that are adapted to the emerging climate. There are three files in this repository: 1) backward.analogs - master.table.xlsx – results for backward analogs: · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by country; percent protected lands in each country that exhibit climate connectivity failure is also indicated. · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by protected area. Values represent the mean pixel-based percentile. Also included is a binary (0, 1) indicator of whether the protected area exhibits climate connectivity failure. 2) forward.analogs - master.table.xlsx – results for forward analogs: · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by country; percent protected lands in each country that exhibit climate connectivity failure is also indicated. · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by protected area. Values represent the mean pixel-based percentile. Also included is a binary (0, 1) indicator of whether the protected area exhibits climate connectivity failure. 3) PA_shapefile - cleaned.zip: This is the ‘cleaned’ (see Methods) protected area shapefile we used as a way to summarize dispersal exposure, human exposure, climate exposure, and analog exposure for each protected area. Note that two of these files are Microsoft Excel; they should be accessible via LibreOffice and R and potentially other open-source alternatives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1rn8pk0zf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1rn8pk0zf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Yucui Zhang; Huimin Lei; Wenguang Zhao; Yanjun Shen; Dengpan Xia;Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 26 Sep 2017 SpainPublisher:Digital.CSIC Ramirez F; Rodriguez C; Seoane J; Figuerola J; Bustamante J;handle: 10261/155634
Global warming and direct anthropogenic impacts, such as water extraction, are largely affecting water budgets in Mediterranean wetlands, thereby increasing wetland salinities and isolation, and decreasing water depths and hydroperiods (duration of the inundation period). These wetland features are key elements structuring waterbird communities. However, the ultimate and net consequences of these dynamic conditions on waterbird assemblages are largely unknown. We combined a regular sampling on waterbird presence through the 2008 annual cycle with in-situ data on these relevant environmental predictors of waterbird distribution to model habitat selection for 69 individual species in a typical Mediterranean wetland network in south-western Spain. Species association with environmental features were subsequently used to predict changes in habitat suitability for each species under three climate change scenarios (encompassing changes in environment that ranged from 10% to 50% change as predicted by climatic models). Waterbirds distributed themselves unevenly throughout environmental gradients and water salinity was the most important gradient structuring the distribution of the community. Environmental suitability for the guilds of diving birds and vegetation gleaners will be reduced according to future climate scenarios, while most small wading birds will benefit from changing conditions. Resident species and those that breed in this wetland network will be also more impacted than those using this area for wintering or stopover. We provide here a tool that can be used in a horizon-scanning framework to identify emerging issues on waterbird conservation and to anticipate suitable management actions : Datasets as supporting information to article “How will climate change affect endangered Mediterranean waterbirds?” to be published in PLOS ONE. Address questions to Francisco Ramírez: ramirez@ub.edu
Digital.CSIC arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20350/digitalcsic/8519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 85visibility views 85 download downloads 13 Powered bymore_vert Digital.CSIC arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20350/digitalcsic/8519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 PortugalPublisher:MDPI AG Luís Resende; Juan Flores; Cláudia Moreira; Diana Pacheco; Alexandra Baeta; Ana Carla Garcia; Ana Cristina Silva Rocha;doi: 10.3390/app12010398
Integrated multitrophic aquaculture (IMTA) is a versatile technology emerging as an ecological and sustainable solution for traditional monoculture aquacultures in terms of effluent treatment. Nevertheless, IMTA is still poorly applied in aquaculture industry due to, among other reasons, the lack of effective, low-investment and low-maintenance solutions. In this study, one has developed a practical and low maintenance IMTA-pilot system, settled in a semi-intensive coastal aquaculture. The optimisation and performance of the system was validated using Ulva spp., a macroalgae that naturally grows in the fishponds of the local aquaculture. Several cultivation experiments were performed at lab-scale and in the IMTA-pilot system, in static mode. The specific growth rate (SGR), yield, nutrient removal, N and C enrichment, protein and pigment content were monitored. Ulva spp. successfully thrived in effluent from the fish species sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) production tanks and significantly reduced inorganic nutrient load in the effluent, particularly, NH4+, PO43− and NO3−. The enrichment of nitrogen in Ulva spp.’s tissues indicated nitrogen assimilation by the algae, though, the cultivated Ulva spp. showed lower amounts of protein and pigments in comparison to the wild type. This study indicates that the designed IMTA-pilot system is an efficient solution for fish effluent treatment and Ulva spp., a suitable effluent remediator.
Applied Sciences arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12010398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12010398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Yike Xu; Guiliang Tian; Shuwen Xu; Qing Xia;doi: 10.3390/su15054393
Virtual water flows have a profound impact on the natural water system of a country or region, and they may help conserve local water resources or exacerbate water scarcity in some areas. However, current research has only focused on the measurement of virtual water flows, without analysis of the causes of virtual water flow patterns. This study first obtained virtual water flow patterns across provinces by constructing a multi-regional input–-output (MRIO) model of the Yellow River basin in 2012 and 2017, and then analyzed its driving factors by applying the extended STIRPAT model to provide directions for using virtual water trade to alleviate water shortages in water-scarce areas of the basin. We found the following: (1) The Yellow River basin as a whole had a net virtual water inflow in 2012 and 2017, and the net inflow has increased from 2.14 billion m3 to 33.67 billion m3. (2) Different provinces or regions assume different roles in the virtual water trade within the basin. (3) There is an obvious regional heterogeneity in the virtual water flows in different subsectors. (4) Per capita GDP, tertiary industry contribution rate, consumer price index, and water scarcity are the main positive drivers of virtual water inflow in the Yellow River Basin provinces, while primary industry contribution rate, per capita water resources, and water use per unit arable area promote virtual water outflow. The results of this paper present useful information for understanding the driving factors of virtual water flow, which could promote the optimal allocation of water resources in the Yellow River basin and achieve ecological protection and high-quality development in this area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15054393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15054393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Informa UK Limited Junwen Bai; Zhen Pan; Liyan Shang; Zhenbo Lv; Jiaqi Zhai; Yanjun Qu; Haijuan Yu;As a porous medium with rich pore structure, activated carbon (AC) was once considered the best carrier for hydrate storage and transportation. However, the harsh conditions of the hydrate reaction in the wet carbon environment have always limited the sufficient and rapid formation of hydrate. Therefore, the influences of particle size (4–8, 8–16, 20–40 and 100 mesh) and liquid phase saturation (fully/partially saturated) in the sodium dodecyl sulfate system on hydrate reaction were investigated. The results showed that small particle in the fully saturated liquid phase system led to the increase in hydrate generation rate, with the highest hydrate reaction rate of 3.16 mmol/min in the 100 mesh AC layer, which was 1.7–2.9 times higher than other AC layers. The gas storage capability of the 4–8 mesh AC layer with a water saturation of 70% was the highest among all systems, reaching 0.198 mol/mol. The saturation of the liquid phase induced the nucleation and growth of hydrates. Adherently growing hydrates of fully saturated liquid phase systems and mushroom-like hydrates of partially saturated liquid phase systems were found in turn. This research facilitates the commercialization of AC-based hydrate technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2023.2205363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2023.2205363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Wahyu Prasetyo Utomo; Hao Wu; Yun Hau Ng;doi: 10.3390/en16010027
Nitrogen reduction reaction (NRR) and nitrate reduction reaction (NO3−RR) provide a potential sustainable route by which to produce ammonia, a next-generation energy carrier. Many studies have been conducted over the years, mainly emphasizing material design and strategies to improve catalytic performance. Despite significant achievements in material design and corresponding fundamental knowledge, the produced ammonia is still very limited, which makes it prone to bias. The presence of interferants (e.g., cations and sacrificial reagents), the pH of the solution, and improper analytical procedure can lead to the over or underestimation of ammonia quantification. Therefore, the selection of the appropriate ammonia quantification method, which meets the sample solution condition, along with the proper analytical procedures, is of great importance. In this review, the state-of-the-art ammonia quantification method is summarized, emphasizing the advantages, limitations, and practicality for NRR and NO3−RR studies. Fundamental knowledge of the quantification method is introduced. Perspective on the considerations for selecting the suitable quantification method and for performing the quantification process is also provided. Although non exhaustive, this focused review can be useful as a guide to design the experimental setup and procedure for more reliable ammonia quantification results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 26 Mar 2021Publisher:Dryad Authors: Nelson, Daniel; Busch, Michelle; Kopp, Darin; Allen, Daniel;1. While climate change is altering ecosystems on a global scale, not all ecosystems are responding in the same way. The resilience of ecological communities may depend on whether food webs are producer- or detritus-based (i.e. “green” or “brown” food webs, respectively), or both (i.e. “multi-channel” food web). 2. Food web theory suggests that the presence of multiple energy pathways can enhance community stability and resilience and may modulate the responses of ecological communities to disturbances such as climate change. Despite important advances in food web theory, few studies have empirically investigated the resilience of ecological communities to climate change stressors in ecosystems with different primary energy channels. 3. We conducted a factorial experiment using outdoor stream mesocosms to investigate the independent and interactive effects of warming and drought on invertebrate communities in food webs with different energy channel configurations. Warming had little effect on invertebrates, but stream drying negatively impacted total invertebrate abundance, biomass, richness, and diversity. 4. Although resistance to drying did not differ among energy channel treatments, recovery and overall resilience were higher in green mesocosms than in mixed and brown mesocosms. Resilience to drying also varied widely among taxa, with larger predatory taxa exhibiting lower resilience. 5. Our results suggest that the effects of drought on stream communities may vary regionally and depend on whether food webs are fueled by autochthonous or allochthonous basal resources. Communities inhabiting streams with large amounts of organic matter and more complex substrates that provide refugia may be more resilient to the loss of surface water than communities inhabiting streams with simpler, more homogeneous substrates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qfttdz0gk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 download downloads 19 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qfttdz0gk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors: Reza Shojaei Ghadikolaei; Mohammad Hasan Khoshgoftar Manesh; Hossein Vazini Modabber; Viviani Caroline Onishi;AbstractThe integration of power plants and desalination systems has attracted increasing attention over the past few years as an effective solution to tackle sustainable development and climate change issues. In this light, this paper introduces a novel modelling and optimization approach for a combined-cycle power plant (CCPP) integrated with reverse osmosis (RO) and multi-effect distillation (MED) desalination systems. The integrated CCPP and RO–MED desalination system is thermodynamically modelled utilizing MATLAB and EES software environments, and the results are validated via Thermoflex software simulations. Comprehensive energy, exergic, exergoeconomic, and exergoenvironmental (4E) analyses are performed to assess the performance of the integrated system. Furthermore, a new multi-objective water cycle algorithm (MOWCA) is implemented to optimize the main performance parameters of the integrated system. Finally, a real-world case study is performed based on Iran's Shahid Salimi Neka power plant. The results reveal that the system exergy efficiency is increased from 8.4 to 51.1% through the proposed MOWCA approach, and the energy and freshwater costs are reduced by 8.4% and 29.4%, respectively. The latter results correspond to an environmental impact reduction of 14.2% and 33.5%. Hence, the objective functions are improved from all exergic, exergoeconomic, and exergoenvironmental perspectives, proving the approach to be a valuable tool towards implementing more sustainable combined power plants and desalination systems.
Iranian Journal of S... arrow_drop_down Iranian Journal of Science and Technology Transactions of Mechanical EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40997-023-00668-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Iranian Journal of S... arrow_drop_down Iranian Journal of Science and Technology Transactions of Mechanical EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40997-023-00668-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: ZHANG Jing; SHEN Yanjun;Spatio-temporal variations in extreme drought in China during 1961–2015 Spatio-temporal variations in extreme drought in China during 1961–2015
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.05856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.05856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 06 Feb 2023Publisher:Dryad Parks, Sean; Holsinger, Lisa; Abatzoglou, John; Littlefield, Caitlin; Zeller, Katherine;Identifying climate analogs We followed the methods of Abatzoglou et al. (2020) and Parks et al. (2022) to characterize climate and identify backward and forward climate analogs. The specific climate variables we used were average minimum temperature of the coldest month (Tmin), average maximum temperature of the warmest month (Tmax), annual actual evapotranspiration (AET), and annual climate water deficit (CWD). AET and CWD concurrently account for evaporative demand and availability of water (N. L. Stephenson, 1990). These four variables provide complementary information pertinent to ecological systems and collectively capture the major climatic constraints on species distributions and ecological processes across a range of taxa (Dobrowski et al., 2021; Lutz et al., 2010; Parker & Abatzoglou, 2016; N. Stephenson, 1998; C. M. Williams et al., 2015). Monthly data acquired from TerraClimate (Abatzoglou et al., 2018) were used to produce these annual summaries from 1961-1990 (resolution = ~4km), which were then averaged over the same time period to represent reference period climate normals. The reference time period (1961–1990) is meant to represent climate conditions and climate niches prior to the bulk of recent warming. Future climate conditions were also computed from TerraClimate (available from www.climatologylab.org/terraclimate.html) and correspond to a 2°C increase above pre-industrial levels that are likely to manifest by mid-21st century without immediate and massive changes in global climate policies (Friedlingstein et al., 2014). As with the reference period climate, we summarized the four +2°C climate metrics annually and over a 30-year time period to represent future climate normals. All analyses in this study were conducted in the R statistical platform (R Core Team, 2020). We identified backwards and forwards analogs by estimating the climatic dissimilarity between each protected focal pixel (resolution = ~4km to match gridded climate data) and all protected pixels within a 500-km radius using a standardized Mahalanobis distance (Mahony et al., 2017). We chose the 500-km search radius as it encompasses an upper range of dispersal for some terrestrial animals and plants (Chen et al., 2011) when assuming 2°C warming by the mid-21st century; this search radius has also been used in previous studies (Bellard et al., 2014; Parks et al., 2022; J. W. Williams et al., 2007). The Mahalanobis distance metric synthesized the four climate variables (i.e. Tmin, Tmax, AET, and CWD; fig. 2a) by measuring distance in multivariate space away from a centroid using principal components analysis of standardized anomalies. Mahalanobis distance scales multivariate mean climate conditions between a pixel and those within the search radius by the focal pixel’s covariance and magnitude of interannual climate variability (ICV) across the four metrics. For backwards analogs, we characterized +2°C ICV and reference period climate normals to calculate climatic dissimilarity; for forward analogs, we used reference period ICV and +2°C climatic normals to calculate climatic dissimilarity. We standardized Mahalanobis distance to account for data dimensionality by calculating a multivariate z-score (σd) based on a Chi distribution (Mahony et al., 2017). σd represents the climate similarity between each focal pixel and its candidate backward and forward analogs (i.e. all other protected terrestrial pixels within 500 km), and we considered any protected pixels with σd ≤ 0.5 as climate analogs (fig. 2b) (following Parks et al., 2022). We were unable to calculate Mahalanobis distance when there was no ICV for any one of the four variables, and as a consequence, these areas are omitted from all analyses; this affects, for example, a relatively small tropical area in South America (CWD=0 each year) and areas perennially covered by snow (CWD=0 each year; e.g. most of Greenland). We focused our analyses on protected areas as defined by the World Database on Protected Areas (WDPA) (IUCN & UNEP-WCMC, 2019) and included protected areas classified as IUCN (International Union of Conservation for Nature) Management Categories I-VI, except those identified as ‘proposed’, ‘marine’, or otherwise aquatic (e.g. wetland, riverine, endorheic). A large number of protected areas, however, were not assigned an IUCN category in the WDPA (identified as ‘Not Reported’, ‘Not Assigned’, or ‘Not Applicable’) but are likely to have reasonably high levels of protection (e.g. Kruger National Park in South Africa). We included these additional protected areas if the level of human modification was similar or less than that observed within IUCN category I-VI protected areas. To do so, we measured mean land-use intensity within each IUCN category I-VI protected area using the Human Modification Gradient (HMG) raster dataset (Kennedy et al., 2019) and calculated the 80th percentile of the resulting distribution. Any unassigned protected areas with a mean HMG less than or equal to this identified threshold were included in our study (following Dobrowski et al., 2021). We then converted this vector-based polygon dataset to raster format (resolution = ~4km to match gridded climate data; n=1,063,748 pixels). It is well-recognized that the WDPA contains a large number of duplicate and overlapping polygons (Palfrey et al., 2022; Vimal et al., 2021). Although this does not affect summaries across the globe or for individual countries (described below), it provides a challenge when trying to summarize by individual protected areas (due to double-counting). Consequently, we ‘cleaned’ the WDPA prior to summarizing the climate connectivity metrics for individual protected areas by removing polygons that exhibited ≥ 90% overlap with another; this resulted in 29,752 individual protected areas (available in the Electronic Supplemental Material). Least-cost path modelling Following Dobrowski and Parks (2016) and Carroll et al. (2018), we used least-cost path modelling (Adriaensen et al. 2003) to build potential climate-induced movement routes between each protected focal pixel and its backward and forward analogs. The least-cost models were parameterized with resistance surfaces based on climate dissimilarity and the human modification gradient (HMG) (Kennedy et al., 2019). For backward analog modelling, we characterized climatic dissimilarity (i.e. climatic resistance) using two intermediate surfaces, the first being the Mahalanobis distance between each focal pixel (using +2°C ICV) and all other pixels using reference period climate normals (fig. 2c) and the second being the Mahalanobis distance (using +2°C ICV) and all other pixels using +2°C climate normals (fig. 2d). These two surfaces provide a proxy for climate similarity designed to capture transient changes between the reference period and +2°C climate; these were then averaged to characterize the overall climatic resistance across time and space (fig. 2d). For forward analog modelling, the process is similar except we used reference period ICV when characterizing climatic resistance (fig. 2a-2d). We then multiplied the climatic resistance (fig. 2d) by HMG (fig. 2e) to create the final resistance surface for least-cost path modeling (cf. Parks et al., 2020). Prior to this step, we rescaled HMG from its native range (0–1) to 1–25 to correspond with the range of Mahalanobis distance values and thereby grant comparable weights to climatic resistance and HMG resistance (~95% of all Mahalanobis distance values are below 25 within a 500km radius). Open water was given a resistance=25 so that paths would avoid water when possible. Least-cost path modelling was achieved using the gdistance package (van Etten, 2017); paths represent the least accumulated cost across the final resistance surface (fig. 2f) between each focal pixel and analog (fig. 2g). Because paths were rarely straight lines, some were longer than the 500km that we established as a search radius. We removed these longer paths to abide by the biologically informed upper dispersal constraint. Calculating climate connectivity metrics and climate connectivity failure We calculated the length (i.e. dispersal exposure), land-use modification (i.e. human exposure), and climatic resistance (i.e. climate exposure) for each path, remembering that each focal pixel may have many analogs and resultant paths. Human exposure represents cumulative HMG (fig. 2e) across all pixels in a path and climate exposure represents cumulative climate resistance (fig. 2d) along a path. Human exposure and climate exposure were calculated by multiplying the mean HMG (unscaled; fig. 2f) and mean climate resistance (fig. 2d) along each path by the length of each path, respectively. Each path’s climate connectivity metric (dispersal, human, and climate exposure) was converted to a percentile (range = 0–100) to facilitate easier interpretation and comparison among metrics; relative to other protected pixels, small percentiles represent low exposure and large percentiles represent elevated exposure. We summarized (i.e. averaged the percentiles) dispersal exposure, human exposure, and climate exposure across each protected focal pixel (again, remembering that each pixel may have multiple analogs and resultant paths). Our fourth climate connectivity metric, analog exposure, can’t be summarized on a per-path basis, because by definition, there is no least-cost path when there are no protected climate analogs. Instead, protected pixels either do or do not have protected climate analogs. Focal pixels were identified as exhibiting climate connectivity failure when they exceeded the 75th percentile for dispersal or climate exposure, exceeded the 90th percentile for human exposure, or had no protected climate analog. We assumed that focal pixels exceeding these percentiles are located in landscapes that hinder successful range shifts among protected areas (i.e. climate connectivity failure) for a non-negligible proportion of extant species, considering that the biodiversity at a given site comprises mammals, birds, insects, mollusks, amphibians, reptiles, fish, crustaceans, annelids, vascular plants (e.g. trees grasses, shrubs), and non-vascular plants (e.g. fungi, mosses, lichens). The numerous and diverse species at a given site have a wide range of dispersal abilities, sensitivities to human land uses, and climatic tolerances. We used a higher threshold (90th percentile) for describing climate connectivity failure due to human exposure because large, remote protected areas in the network skew human exposure towards lower values from a global perspective. These percentile thresholds are likely conservative when considering the large number and diversity of species at a given site. In terms of dispersal, for example, many species have maximum dispersal capabilities on the range of 1 km/year or less (Jenkins et al., 2007; McLachlan et al., 2005; Schwartz et al., 2001). This represents dispersal of 75 km under 2°C warming in the 75 years covering the midpoint of the reference period (1975) to mid-21st century. In our study, the 75th percentile path length, corresponding to dispersal exposure, is ~385 km, well above such dispersal limits, supporting our assertion that the 75th percentile is conservative for estimating climate connectivity failure. Furthermore, the mean HMG value for a 100km path at the 90th percentile threshold is 0.22, which is well above the 0.1 threshold that Brennen et al. (2022) used to identify areas moderately to highly impacted by human land-uses. Lastly, the mean climatic distance for a 100km path at the 75th percentile is well over two standard deviations different, on average, from the focal pixel and analog. We report the percent of protected pixels across the globe and within each country that exhibits climate connectivity failure. We also assessed the potential for each of the 29,752 individual protected areas (e.g. Yellowstone National Park, Serengeti National Park) to undergo climate connectivity failure using a slightly different method. To do so, we calculated the mean percentile among pixels within each protected area for each of dispersal exposure, human exposure, and climate exposure (each metric was averaged across a protected area; the metrics themselves were not averaged with each other). We then calculated the percent of each protected area that did not have a protected climate analog (analog exposure). Although a binary approach (has or does not have an analog) is appropriate when evaluating individual focal pixels, a percent-based valuation is most appropriate and informative when evaluating individual protected areas with up to thousands of pixels. Individual protected areas exhibited climate connectivity failure if the mean dispersal exposure or climate exposure exceeded the 75th percentile, mean human exposure exceeded the 90th percentile, or the analog exposure exceeded 75%. References Abatzoglou, J. T., Dobrowski, S. Z., & Parks, S. A. (2020). Multivariate climate departures have outpaced univariate changes across global lands. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-60270-5 Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data, 5(1), Article 1. https://doi.org/10.1038/sdata.2017.191 Bellard, C., Leclerc, C., Leroy, B., Bakkenes, M., Veloz, S., Thuiller, W., & Courchamp, F. (2014). Vulnerability of biodiversity hotspots to global change. Global Ecology and Biogeography, 23(12), 1376–1386. https://doi.org/10.1111/geb.12228 Brennan, A., Naidoo, R., Greenstreet, L., Mehrabi, Z., Ramankutty, N., & Kremen, C. (2022). Functional connectivity of the world’s protected areas. Science, 376(6597), 1101–1104. https://doi.org/10.1126/science.abl8974 Carroll, C., Parks, S. A., Dobrowski, S. Z., & Roberts, D. R. (2018). Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Global Change Biology, 24(11), 5318–5331. https://doi.org/10.1111/gcb.14373 Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 333(6045), 1024–1026. https://doi.org/10.1126/science.1206432 Dobrowski, S. Z., Littlefield, C. E., Lyons, D. S., Hollenberg, C., Carroll, C., Parks, S. A., Abatzoglou, J. T., Hegewisch, K., & Gage, J. (2021). Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Communications Earth & Environment, 2(1), Article 1. https://doi.org/10.1038/s43247-021-00270-z Dobrowski, S. Z., & Parks, S. A. (2016). Climate change velocity underestimates climate change exposure in mountainous regions. Nature Communications, 7(1), Article 1. https://doi.org/10.1038/ncomms12349 Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R., Luderer, G., Raupach, M. R., Schaeffer, M., van Vuuren, D. P., & Le Quéré, C. (2014). Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geoscience, 7(10), Article 10. https://doi.org/10.1038/ngeo2248 IUCN & UNEP-WCMC. (2019). Protected Planet: World Database on Protected Areas (WDPA). Accessed September 2019. Available at www.protectedplanet.net. (Accessed September 2019) [Map]. www.protected.planet.net Jenkins, D. G., Brescacin, C. R., Duxbury, C. V., Elliott, J. A., Evans, J. A., Grablow, K. R., Hillegass, M., Lyon, B. N., Metzger, G. A., Olandese, M. L., Pepe, D., Silvers, G. A., Suresch, H. N., Thompson, T. N., Trexler, C. M., Williams, G. E., Williams, N. C., & Williams, S. E. (2007). Does size matter for dispersal distance? Global Ecology and Biogeography, 16(4), 415–425. https://doi.org/10.1111/j.1466-8238.2007.00312.x Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S., & Kiesecker, J. (2019). Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology, 25(3), 811–826. https://doi.org/10.1111/gcb.14549 Lutz, J. A., van Wagtendonk, J. W., & Franklin, J. F. (2010). Climatic water deficit, tree species ranges, and climate change in Yosemite National Park. Journal of Biogeography, 37(5), 936–950. https://doi.org/10.1111/j.1365-2699.2009.02268.x Mahony, C. R., Cannon, A. J., Wang, T., & Aitken, S. N. (2017). A closer look at novel climates: New methods and insights at continental to landscape scales. Global Change Biology, 23(9), 3934–3955. https://doi.org/10.1111/gcb.13645 McLachlan, J. S., Clark, J. S., & Manos, P. S. (2005). Molecular indicators of tree migration capacity under rapid climate change. Ecology, 86(8), 2088–2098. https://doi.org/10.1890/04-1036 Palfrey, R., Oldekop, J. A., & Holmes, G. (2022). Privately protected areas increase global protected area coverage and connectivity. Nature Ecology & Evolution, 6(6), Article 6. https://doi.org/10.1038/s41559-022-01715-0 Parker, L. E., & Abatzoglou, J. T. (2016). Projected changes in cold hardiness zones and suitable overwinter ranges of perennial crops over the United States. Environmental Research Letters, 11(3), 034001. https://doi.org/10.1088/1748-9326/11/3/034001 Parks, S. A., Carroll, C., Dobrowski, S. Z., & Allred, B. W. (2020). Human land uses reduce climate connectivity across North America. Global Change Biology, 26(5), 2944–2955. https://doi.org/10.1111/gcb.15009 Parks, S. A., Holsinger, L. M., Littlefield, C. E., Dobrowski, S. Z., Zeller, K. A., Abatzoglou, J. T., Besancon, C., Nordgren, B. L., & Lawler, J. J. (2022). Efficacy of the global protected area network is threatened by disappearing climates and potential transboundary range shifts. Environmental Research Letters, 17(5), 054016. https://doi.org/10.1088/1748-9326/ac6436 R Core Team. (2020). R: A language and environment for statistical computing. Schwartz, M. W., Iverson, L. R., & Prasad, A. M. (2001). Predicting the potential future distribution of four tree species in Ohio using current habitat availability and climatic forcing. Ecosystems, 4(6), 568–581. https://doi.org/10.1007/s10021-001-0030-3 Stephenson, N. (1998). Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography, 25(5), 855–870. https://doi.org/10.1046/j.1365-2699.1998.00233.x Stephenson, N. L. (1990). Climatic Control of Vegetation Distribution: The Role of the Water Balance. The American Naturalist, 135(5), 649–670. https://doi.org/10.1086/285067 van Etten, J. (2017). R Package gdistance: Distances and Routes on Geographical Grids. Journal of Statistical Software, 76, 1–21. https://doi.org/10.18637/jss.v076.i13 Vimal, R., Navarro, L. M., Jones, Y., Wolf, F., Le Moguédec, G., & Réjou-Méchain, M. (2021). The global distribution of protected areas management strategies and their complementarity for biodiversity conservation. Biological Conservation, 256, 109014. https://doi.org/10.1016/j.biocon.2021.109014 Williams, C. M., Henry, H. A. L., & Sinclair, B. J. (2015). Cold truths: How winter drives responses of terrestrial organisms to climate change. Biological Reviews, 90(1), 214–235. https://doi.org/10.1111/brv.12105 Williams, J. W., Jackson, S. T., & Kutzbach, J. E. (2007). Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences, 104(14), 5738–5742. https://doi.org/10.1073/pnas.0606292104 Species across the planet are shifting their ranges to track suitable climate conditions in response to climate change. Given that protected areas have higher quality habitat and often harbor higher levels of biodiversity compared to unprotected lands, it is often assumed that protected areas can serve as steppingstones for species undergoing climate-induced range shifts. However, there are several factors that may impede successful range shifts among protected areas, including the distance that must be travelled, unfavorable human land uses and climate conditions along potential movement routes, and lack of analogous climates. Through a species-agnostic lens, we evaluate these factors across the global terrestrial protected area network as measures of climate connectivity, which is defined as the ability of a landscape to facilitate or impede climate-induced movement. We found that over half of protected land areas and two-thirds of the number of protected units across the globe are at risk of climate connectivity failure, casting doubt on whether many species can successfully undergo climate-induced range shifts among protected areas. Consequently, protected areas are unlikely to serve as steppingstones for a large number of species under a warming climate. As species disappear from protected areas without commensurate immigration of species suited to the emerging climate (due to climate connectivity failure), many protected areas may be left with a depauperate suite of species under climate change. Our findings are highly relevant given recent pledges to conserve 30% of the planet by 2030 (30x30), underscore the need for innovative land management strategies that allow for species range shifts, and suggest that assisted colonization may be necessary to promote species that are adapted to the emerging climate. There are three files in this repository: 1) backward.analogs - master.table.xlsx – results for backward analogs: · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by country; percent protected lands in each country that exhibit climate connectivity failure is also indicated. · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by protected area. Values represent the mean pixel-based percentile. Also included is a binary (0, 1) indicator of whether the protected area exhibits climate connectivity failure. 2) forward.analogs - master.table.xlsx – results for forward analogs: · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by country; percent protected lands in each country that exhibit climate connectivity failure is also indicated. · Each climate connectivity metric (dispersal exposure, human exposure, climate exposure, and analog exposure) is summarized by protected area. Values represent the mean pixel-based percentile. Also included is a binary (0, 1) indicator of whether the protected area exhibits climate connectivity failure. 3) PA_shapefile - cleaned.zip: This is the ‘cleaned’ (see Methods) protected area shapefile we used as a way to summarize dispersal exposure, human exposure, climate exposure, and analog exposure for each protected area. Note that two of these files are Microsoft Excel; they should be accessible via LibreOffice and R and potentially other open-source alternatives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1rn8pk0zf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1rn8pk0zf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu