- home
- Advanced Search
- Energy Research
- engineering and technology
- CN
- Applied Thermal Engineering
- Energy Research
- engineering and technology
- CN
- Applied Thermal Engineering
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Guanghao Wu; Yanhua Yang; Yuhao Zhang; Xiaoliang Fu; Zhongyi Wang; Qiong Cao; Daogang Lu;Abstract In AP1000 plant, the Automatic Depressurization System (ADS) 1–3 stages operate to discharge the high-temperature and high-pressure steam from the Reactor Coolant System (RCS) primary side to the large heat sink tank In-containment Refueling Water Storage Tank (IRWST) in accidental conditions. The key equipment’s specific shape and arrangement lead to the complicate flow and heat transfer characteristics in IRWST. In the present work, an overall scaled IRWST&ADS sparger experiment has been built up. The thermocouples matrix, flowmeters, pressure transmitters, heat flux sensors, Particle Image Velocimetry (PIV) technique, and high speed camera are employed for the measurements of the key thermal and flow parameters. The local steam jets condensation phenomena as well as the overall flow and thermal behavior are investigated. The experimental results indicate that the thermal stratification phenomenon is obvious in IRWST. The criteria of Richardson Number and Stratification Number are utilized to predict and evaluate the thermal stratification extent, respectively. An improved ADS arrangement design is further proposed to reduce the thermal stratification. Moreover, the multi-holes lumped “steam condensation column” is modeled with characteristic parameters, then the steam condensation heat transfer coefficient range in chugging condensation process is estimated. The experimental results provide practical engineering application reference for the effective operation of the passive safety system in AP1000 plant.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.07.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.07.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Guanghao Wu; Yanhua Yang; Yuhao Zhang; Xiaoliang Fu; Zhongyi Wang; Qiong Cao; Daogang Lu;Abstract In AP1000 plant, the Automatic Depressurization System (ADS) 1–3 stages operate to discharge the high-temperature and high-pressure steam from the Reactor Coolant System (RCS) primary side to the large heat sink tank In-containment Refueling Water Storage Tank (IRWST) in accidental conditions. The key equipment’s specific shape and arrangement lead to the complicate flow and heat transfer characteristics in IRWST. In the present work, an overall scaled IRWST&ADS sparger experiment has been built up. The thermocouples matrix, flowmeters, pressure transmitters, heat flux sensors, Particle Image Velocimetry (PIV) technique, and high speed camera are employed for the measurements of the key thermal and flow parameters. The local steam jets condensation phenomena as well as the overall flow and thermal behavior are investigated. The experimental results indicate that the thermal stratification phenomenon is obvious in IRWST. The criteria of Richardson Number and Stratification Number are utilized to predict and evaluate the thermal stratification extent, respectively. An improved ADS arrangement design is further proposed to reduce the thermal stratification. Moreover, the multi-holes lumped “steam condensation column” is modeled with characteristic parameters, then the steam condensation heat transfer coefficient range in chugging condensation process is estimated. The experimental results provide practical engineering application reference for the effective operation of the passive safety system in AP1000 plant.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.07.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.07.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Aqiang Lin; Xinxin Wang; Gaowen Liu; Wenbin Gong;Abstract The sealing flow will inevitably affect the cooling airflow quality in a second air system of an aero-engine. In this study, theoretical derivation and numerical simulation were conducted to establish a modified mixing model that considers both the torque and the source of the mixing flow. Then, the effect of the sealing flow can be evaluated using the modified mixing model. The results demonstrate that the effects of the sealing outflow on the flow and temperature characteristics of the pre-swirl system are weak when the air supply mass flow rate and pressure are fixed. However, the effects of the sealing inflow are significant. When the inner sealing inflow mass flow rate is increased from 0 to 20%, the temperature drop effectiveness is decreased by 31.3%. The temperature drop effectiveness is decreased by 29.2% as the inner sealing inflow temperature rises by 37 K. Then, the temperature drop effectiveness is increased by 15.6% as the inner sealing inflow swirl ratio is increased from 0 to 0.8. The results of the modified mixing model are in satisfactory agreement with the numerical results, which show a maximum temperature drop deviation of 7.22%. Compared with the previous method, the prediction accuracy of the pre-swirl cavity temperature drop can be increased by 22.28%.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.116717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.116717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Aqiang Lin; Xinxin Wang; Gaowen Liu; Wenbin Gong;Abstract The sealing flow will inevitably affect the cooling airflow quality in a second air system of an aero-engine. In this study, theoretical derivation and numerical simulation were conducted to establish a modified mixing model that considers both the torque and the source of the mixing flow. Then, the effect of the sealing flow can be evaluated using the modified mixing model. The results demonstrate that the effects of the sealing outflow on the flow and temperature characteristics of the pre-swirl system are weak when the air supply mass flow rate and pressure are fixed. However, the effects of the sealing inflow are significant. When the inner sealing inflow mass flow rate is increased from 0 to 20%, the temperature drop effectiveness is decreased by 31.3%. The temperature drop effectiveness is decreased by 29.2% as the inner sealing inflow temperature rises by 37 K. Then, the temperature drop effectiveness is increased by 15.6% as the inner sealing inflow swirl ratio is increased from 0 to 0.8. The results of the modified mixing model are in satisfactory agreement with the numerical results, which show a maximum temperature drop deviation of 7.22%. Compared with the previous method, the prediction accuracy of the pre-swirl cavity temperature drop can be increased by 22.28%.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.116717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.116717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yuxin Yan; Zhongwei Huang; Ran Li;Abstract The transient cooling of rock surface by liquid nitrogen (LN2) jet was experimentally studied in this article. Experimental conditions cover a range of 1.4–2.4 MPa for jet pressure and 3–5 cm for stand-off distance. The nozzle diameter was fixed at 1 mm and the rock specimen was a circular plate, with diameter of 16 cm and thickness of 2 cm. The temperature curves at different radial locations in rock were measured during LN2 jet impingement. Based on these data we mapped the complete heat flux across the rock surface and attained the three dimensional temperature field within the rock. Thermal stresses inside the rock were further computed according to the experimentally determined temperature field. It is shown that the partial wetting of rock surface by LN2 jet created sharp thermal gradients in both radial and vertical directions. The induced thermal stress was in tensile state and the spatial range of thermal stress is consistent with the wetted region by LN2. The propagation speed of wetting front increases with increasing jet pressure and decreasing stand-off distance. Under the present experimental conditions, the maximum heat flux of LN2 jet was around 2.4 × 105 W/m2. The maximum tensile stress on rock surface was calculated to be ~5 MPa, which could potentially damage the rock structure and deteriorate rock’s strength.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yuxin Yan; Zhongwei Huang; Ran Li;Abstract The transient cooling of rock surface by liquid nitrogen (LN2) jet was experimentally studied in this article. Experimental conditions cover a range of 1.4–2.4 MPa for jet pressure and 3–5 cm for stand-off distance. The nozzle diameter was fixed at 1 mm and the rock specimen was a circular plate, with diameter of 16 cm and thickness of 2 cm. The temperature curves at different radial locations in rock were measured during LN2 jet impingement. Based on these data we mapped the complete heat flux across the rock surface and attained the three dimensional temperature field within the rock. Thermal stresses inside the rock were further computed according to the experimentally determined temperature field. It is shown that the partial wetting of rock surface by LN2 jet created sharp thermal gradients in both radial and vertical directions. The induced thermal stress was in tensile state and the spatial range of thermal stress is consistent with the wetted region by LN2. The propagation speed of wetting front increases with increasing jet pressure and decreasing stand-off distance. Under the present experimental conditions, the maximum heat flux of LN2 jet was around 2.4 × 105 W/m2. The maximum tensile stress on rock surface was calculated to be ~5 MPa, which could potentially damage the rock structure and deteriorate rock’s strength.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Yishu Qiu; Peng Peng; Fangming Jiang; Wenjiong Cao;Abstract Nowadays, lithium-ion battery (LIB) technology provides one of the most important approaches for large-scale electricity storage. In this work, an electrical-thermal-fluidic coupled model is proposed for practical LIB-based energy storage systems (ESSs). The coupled model is established based on the equivalent circuit model (ECM) which describes electrical behavior of LIBs, the airflow turbulent model, and the “single domain of multiple sub-regions” thermal model. Currents and voltages of LIB cells, airflow velocity field and pressure field, and temperature distribution in the whole ESS, can be simulated by the developed full-scale model. Simulation results of a practical commercial LIB ESS (1 MW/2 MWh) in typical frequency regulation operation, including electrical-thermal characteristics represented by currents and heat generation rates of LIBs in the ESS, flow characteristics represented by airflow field and mass flow rate distribution, ambient temperature sensitivity analysis represented by temperature distributions of the ESS initially under 27℃ and 38℃ ambient respectively, are displayed and discussed, exhibiting the capability of the proposed model. The proposed model has been validated by comparing the simulated results with the actual measured data; the reasonably good agreement demonstrates the effectiveness of the proposed model. Therefore, the established model has the potential to provide a feasible and powerful approach or tool to perform multi-physics simulations of practical large-scale LIB ESSs for different functions, including but not limited to detailed temperature evaluations, cooling structure optimization, materials selection, and thermal-safety status evaluating and monitoring.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.116360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.116360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Yishu Qiu; Peng Peng; Fangming Jiang; Wenjiong Cao;Abstract Nowadays, lithium-ion battery (LIB) technology provides one of the most important approaches for large-scale electricity storage. In this work, an electrical-thermal-fluidic coupled model is proposed for practical LIB-based energy storage systems (ESSs). The coupled model is established based on the equivalent circuit model (ECM) which describes electrical behavior of LIBs, the airflow turbulent model, and the “single domain of multiple sub-regions” thermal model. Currents and voltages of LIB cells, airflow velocity field and pressure field, and temperature distribution in the whole ESS, can be simulated by the developed full-scale model. Simulation results of a practical commercial LIB ESS (1 MW/2 MWh) in typical frequency regulation operation, including electrical-thermal characteristics represented by currents and heat generation rates of LIBs in the ESS, flow characteristics represented by airflow field and mass flow rate distribution, ambient temperature sensitivity analysis represented by temperature distributions of the ESS initially under 27℃ and 38℃ ambient respectively, are displayed and discussed, exhibiting the capability of the proposed model. The proposed model has been validated by comparing the simulated results with the actual measured data; the reasonably good agreement demonstrates the effectiveness of the proposed model. Therefore, the established model has the potential to provide a feasible and powerful approach or tool to perform multi-physics simulations of practical large-scale LIB ESSs for different functions, including but not limited to detailed temperature evaluations, cooling structure optimization, materials selection, and thermal-safety status evaluating and monitoring.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.116360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.116360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Xiaofeng Zhang; Ruilin Zhu; Rong Zeng; Bin Zhao; Renshi Yan; Hongqiang Li;Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Xiaofeng Zhang; Ruilin Zhu; Rong Zeng; Bin Zhao; Renshi Yan; Hongqiang Li;Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Liang Zhou; Xianhao Li; Pengfei Zhao; Rongzhao Zhang; Ruifeng Dou; Haoxiang Zhao; Zhi Wen;Abstract Three-dimensional (3D) coil core is one kind of transformer iron core that is made of grain-oriented electrical steel. This material should be annealed before use because of the residual stress generated inside the silicon steel strip during production. The temperature evaluation of the 3D coil core is important to its annealing quality, but this temperature cannot be measured easily and the prediction method is seldom mentioned in the open literature. A numerical model, which considers the anisotropic heat conduction inside the 3D coil core and convection and radiation heat transfers inside the furnace, is built to link the temperature of furnace with the temperature of 3D coil core. Monte Carlo method is used to calculate the view factors between surfaces in the furnace. Thermal radiation resistance network method is used to obtain radiant heat flux. A computational fluid dynamics model is established to predict the convection heat transfer coefficient. The finite volume method is used to solve the anisotropic conduction inside the 3D coil core, wherein radiant heat flux and convection heat transfer coefficient serve as boundary conditions. The model considers the effects of size, position, location, orientation, and number of 3D coil cores on the temperature evolution. Onsite experiments verify that this digital model is precise in practical application, and the typical simulation error is less than ±2.5%. A straight forward optimization strategy is proposed on the basis of the digital model. The onsite experiments also show that the optimization method can effectively shorten the annealing time and increase the efficiency of the annealing process. Making a near real-time prediction and keeping 3D heat transfer features are the advantages of the present method.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Liang Zhou; Xianhao Li; Pengfei Zhao; Rongzhao Zhang; Ruifeng Dou; Haoxiang Zhao; Zhi Wen;Abstract Three-dimensional (3D) coil core is one kind of transformer iron core that is made of grain-oriented electrical steel. This material should be annealed before use because of the residual stress generated inside the silicon steel strip during production. The temperature evaluation of the 3D coil core is important to its annealing quality, but this temperature cannot be measured easily and the prediction method is seldom mentioned in the open literature. A numerical model, which considers the anisotropic heat conduction inside the 3D coil core and convection and radiation heat transfers inside the furnace, is built to link the temperature of furnace with the temperature of 3D coil core. Monte Carlo method is used to calculate the view factors between surfaces in the furnace. Thermal radiation resistance network method is used to obtain radiant heat flux. A computational fluid dynamics model is established to predict the convection heat transfer coefficient. The finite volume method is used to solve the anisotropic conduction inside the 3D coil core, wherein radiant heat flux and convection heat transfer coefficient serve as boundary conditions. The model considers the effects of size, position, location, orientation, and number of 3D coil cores on the temperature evolution. Onsite experiments verify that this digital model is precise in practical application, and the typical simulation error is less than ±2.5%. A straight forward optimization strategy is proposed on the basis of the digital model. The onsite experiments also show that the optimization method can effectively shorten the annealing time and increase the efficiency of the annealing process. Making a near real-time prediction and keeping 3D heat transfer features are the advantages of the present method.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Chunhui Dai; Fuyu Zhao; Yun Tai; Xinyu Wei;Abstract Once-Through Steam Generator (OTSG) is widely used in nuclear reactor system due to its advantages of compactness. This paper presents a double-tube Once-Through Steam Generator (OTSG) consisting of an outer straight tube and an inner helical tube. In the double-tube, the primary fluid is divided into two parts: one is in the inner tube and the other is in the shell side. This bi-channel flow brings difficulties in optimizing the flow distribution ratio of the primary water (FDRP), and affects the heat transfer and flow characteristics. In this paper, a nonlinear constrained optimization method was proposed to optimize the FDRP for keeping balance between maximizing the heat transfer rate and minimizing the pressure drop. A throttling device at the inlet of the lower pressure drop side is introduced to achieve the optimum FDRP. The theoretical analysis and analytical results show that our proposed method can be used in engineering practice for optimizing the primary flow.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Chunhui Dai; Fuyu Zhao; Yun Tai; Xinyu Wei;Abstract Once-Through Steam Generator (OTSG) is widely used in nuclear reactor system due to its advantages of compactness. This paper presents a double-tube Once-Through Steam Generator (OTSG) consisting of an outer straight tube and an inner helical tube. In the double-tube, the primary fluid is divided into two parts: one is in the inner tube and the other is in the shell side. This bi-channel flow brings difficulties in optimizing the flow distribution ratio of the primary water (FDRP), and affects the heat transfer and flow characteristics. In this paper, a nonlinear constrained optimization method was proposed to optimize the FDRP for keeping balance between maximizing the heat transfer rate and minimizing the pressure drop. A throttling device at the inlet of the lower pressure drop side is introduced to achieve the optimum FDRP. The theoretical analysis and analytical results show that our proposed method can be used in engineering practice for optimizing the primary flow.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Zhenhua Quan; Dan Yu; Wei Wang; Yuechao Deng; Lincheng Wang; Yaohua Zhao;Abstract A novel flat plate solar collector with micro-channel heat pipe array (MHPA-FPC) is presented in this paper. Firstly, a preliminary test was conducted to investigate the thermal performance of the MHPA. It has been found that the surface temperature along the length of MHPA can get stable within 2 min. The temperature difference between the evaporator and condenser sections was less than 1 °C, which indicates that the MHPA has excellent isothermal ability and quick thermal respond speed. Based on these advantages, the MHPA was applied to the development of a novel solar collector. The performance test was conducted following the Chinese standard GB/T4271-2007, and a linear correlation between the instantaneous efficiency η and the reduced temperature parameter (Twi−Ta)·I−1 was established. The maximum instantaneous efficiency was found to be 80%, and the slope was −4.72. These values are 11.4% and 21.3% superior to the technical required values of the Chinese national standard. Test results were further compared with 6 groups of 15 samples coming either from either open literature or commercial products. The comparisons indicated that the maximum instantaneous efficiency of the MHPA-FPC surpassed 25% over the average level of those selected samples and better thermal insulation ability was presented by the MHPA-FPC. These results from this study demonstrate that the novel MHPA-FPC is one of the top level solar collectors among the current products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2013.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu121 citations 121 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2013.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Zhenhua Quan; Dan Yu; Wei Wang; Yuechao Deng; Lincheng Wang; Yaohua Zhao;Abstract A novel flat plate solar collector with micro-channel heat pipe array (MHPA-FPC) is presented in this paper. Firstly, a preliminary test was conducted to investigate the thermal performance of the MHPA. It has been found that the surface temperature along the length of MHPA can get stable within 2 min. The temperature difference between the evaporator and condenser sections was less than 1 °C, which indicates that the MHPA has excellent isothermal ability and quick thermal respond speed. Based on these advantages, the MHPA was applied to the development of a novel solar collector. The performance test was conducted following the Chinese standard GB/T4271-2007, and a linear correlation between the instantaneous efficiency η and the reduced temperature parameter (Twi−Ta)·I−1 was established. The maximum instantaneous efficiency was found to be 80%, and the slope was −4.72. These values are 11.4% and 21.3% superior to the technical required values of the Chinese national standard. Test results were further compared with 6 groups of 15 samples coming either from either open literature or commercial products. The comparisons indicated that the maximum instantaneous efficiency of the MHPA-FPC surpassed 25% over the average level of those selected samples and better thermal insulation ability was presented by the MHPA-FPC. These results from this study demonstrate that the novel MHPA-FPC is one of the top level solar collectors among the current products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2013.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu121 citations 121 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2013.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Xiaona Yan; Yuqi Shi; Lin Wang; Daliang Hong; Guangming Chen;Abstract In this paper, a 1.x-effect (hybrid ejector-absorption refrigeration working between single-effect and double-effect) cycle is evaluated experimentally. Through the use of the ejector, the external heat sources’ grade is reduced. Part of the refrigerant vapor at the outlet of the low-pressure generator is directly entrained by the refrigerant vapor from the outlet of the high-pressure generator to the condenser. The system with 10 kW cooling load is experimentally studied. The COP of the system is 30.0% higher than a single-effect absorption refrigeration system, and generation temperature is at least 20 °C lower than a double-effect absorption refrigeration system.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2019.113738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2019.113738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Xiaona Yan; Yuqi Shi; Lin Wang; Daliang Hong; Guangming Chen;Abstract In this paper, a 1.x-effect (hybrid ejector-absorption refrigeration working between single-effect and double-effect) cycle is evaluated experimentally. Through the use of the ejector, the external heat sources’ grade is reduced. Part of the refrigerant vapor at the outlet of the low-pressure generator is directly entrained by the refrigerant vapor from the outlet of the high-pressure generator to the condenser. The system with 10 kW cooling load is experimentally studied. The COP of the system is 30.0% higher than a single-effect absorption refrigeration system, and generation temperature is at least 20 °C lower than a double-effect absorption refrigeration system.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2019.113738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2019.113738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Ge-Yu Zhong; Peng Yang; Yingwen Liu;Abstract Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to restrain acoustic streaming and improve the system performance. In this paper, a regression model is presented to predict the acoustic streaming in a thermoacoustic Stirling heat engine (TASHE) with different structure parameters of the jet pump. These parameters include position, length, inner diameter and tapered angle. Response surface methodology (RSM) is used to study the relationship between structure parameters of jet pump and acoustic streaming. A regression model is developed to predict the acoustic streaming. The analysis of variance (ANOVA) is conducted to describe the rationality of regression model and examine the statistical significance of factors. In addition, the relationship between acoustic streaming and structure parameters of jet pump is presented using 2D contour and 3D surface plot. It reveals that small position, length, tapered angle and large inner diameter can help suppress acoustic streaming. Eventually, four random confirmation tests are performed to verify that the regression model can predict acoustic streaming reasonably. This work provides theoretical guidance for controlling acoustic streaming using jet pump.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.04.157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.04.157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Ge-Yu Zhong; Peng Yang; Yingwen Liu;Abstract Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to restrain acoustic streaming and improve the system performance. In this paper, a regression model is presented to predict the acoustic streaming in a thermoacoustic Stirling heat engine (TASHE) with different structure parameters of the jet pump. These parameters include position, length, inner diameter and tapered angle. Response surface methodology (RSM) is used to study the relationship between structure parameters of jet pump and acoustic streaming. A regression model is developed to predict the acoustic streaming. The analysis of variance (ANOVA) is conducted to describe the rationality of regression model and examine the statistical significance of factors. In addition, the relationship between acoustic streaming and structure parameters of jet pump is presented using 2D contour and 3D surface plot. It reveals that small position, length, tapered angle and large inner diameter can help suppress acoustic streaming. Eventually, four random confirmation tests are performed to verify that the regression model can predict acoustic streaming reasonably. This work provides theoretical guidance for controlling acoustic streaming using jet pump.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.04.157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.04.157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Guanghao Wu; Yanhua Yang; Yuhao Zhang; Xiaoliang Fu; Zhongyi Wang; Qiong Cao; Daogang Lu;Abstract In AP1000 plant, the Automatic Depressurization System (ADS) 1–3 stages operate to discharge the high-temperature and high-pressure steam from the Reactor Coolant System (RCS) primary side to the large heat sink tank In-containment Refueling Water Storage Tank (IRWST) in accidental conditions. The key equipment’s specific shape and arrangement lead to the complicate flow and heat transfer characteristics in IRWST. In the present work, an overall scaled IRWST&ADS sparger experiment has been built up. The thermocouples matrix, flowmeters, pressure transmitters, heat flux sensors, Particle Image Velocimetry (PIV) technique, and high speed camera are employed for the measurements of the key thermal and flow parameters. The local steam jets condensation phenomena as well as the overall flow and thermal behavior are investigated. The experimental results indicate that the thermal stratification phenomenon is obvious in IRWST. The criteria of Richardson Number and Stratification Number are utilized to predict and evaluate the thermal stratification extent, respectively. An improved ADS arrangement design is further proposed to reduce the thermal stratification. Moreover, the multi-holes lumped “steam condensation column” is modeled with characteristic parameters, then the steam condensation heat transfer coefficient range in chugging condensation process is estimated. The experimental results provide practical engineering application reference for the effective operation of the passive safety system in AP1000 plant.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.07.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.07.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Guanghao Wu; Yanhua Yang; Yuhao Zhang; Xiaoliang Fu; Zhongyi Wang; Qiong Cao; Daogang Lu;Abstract In AP1000 plant, the Automatic Depressurization System (ADS) 1–3 stages operate to discharge the high-temperature and high-pressure steam from the Reactor Coolant System (RCS) primary side to the large heat sink tank In-containment Refueling Water Storage Tank (IRWST) in accidental conditions. The key equipment’s specific shape and arrangement lead to the complicate flow and heat transfer characteristics in IRWST. In the present work, an overall scaled IRWST&ADS sparger experiment has been built up. The thermocouples matrix, flowmeters, pressure transmitters, heat flux sensors, Particle Image Velocimetry (PIV) technique, and high speed camera are employed for the measurements of the key thermal and flow parameters. The local steam jets condensation phenomena as well as the overall flow and thermal behavior are investigated. The experimental results indicate that the thermal stratification phenomenon is obvious in IRWST. The criteria of Richardson Number and Stratification Number are utilized to predict and evaluate the thermal stratification extent, respectively. An improved ADS arrangement design is further proposed to reduce the thermal stratification. Moreover, the multi-holes lumped “steam condensation column” is modeled with characteristic parameters, then the steam condensation heat transfer coefficient range in chugging condensation process is estimated. The experimental results provide practical engineering application reference for the effective operation of the passive safety system in AP1000 plant.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.07.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.07.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Aqiang Lin; Xinxin Wang; Gaowen Liu; Wenbin Gong;Abstract The sealing flow will inevitably affect the cooling airflow quality in a second air system of an aero-engine. In this study, theoretical derivation and numerical simulation were conducted to establish a modified mixing model that considers both the torque and the source of the mixing flow. Then, the effect of the sealing flow can be evaluated using the modified mixing model. The results demonstrate that the effects of the sealing outflow on the flow and temperature characteristics of the pre-swirl system are weak when the air supply mass flow rate and pressure are fixed. However, the effects of the sealing inflow are significant. When the inner sealing inflow mass flow rate is increased from 0 to 20%, the temperature drop effectiveness is decreased by 31.3%. The temperature drop effectiveness is decreased by 29.2% as the inner sealing inflow temperature rises by 37 K. Then, the temperature drop effectiveness is increased by 15.6% as the inner sealing inflow swirl ratio is increased from 0 to 0.8. The results of the modified mixing model are in satisfactory agreement with the numerical results, which show a maximum temperature drop deviation of 7.22%. Compared with the previous method, the prediction accuracy of the pre-swirl cavity temperature drop can be increased by 22.28%.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.116717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.116717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Aqiang Lin; Xinxin Wang; Gaowen Liu; Wenbin Gong;Abstract The sealing flow will inevitably affect the cooling airflow quality in a second air system of an aero-engine. In this study, theoretical derivation and numerical simulation were conducted to establish a modified mixing model that considers both the torque and the source of the mixing flow. Then, the effect of the sealing flow can be evaluated using the modified mixing model. The results demonstrate that the effects of the sealing outflow on the flow and temperature characteristics of the pre-swirl system are weak when the air supply mass flow rate and pressure are fixed. However, the effects of the sealing inflow are significant. When the inner sealing inflow mass flow rate is increased from 0 to 20%, the temperature drop effectiveness is decreased by 31.3%. The temperature drop effectiveness is decreased by 29.2% as the inner sealing inflow temperature rises by 37 K. Then, the temperature drop effectiveness is increased by 15.6% as the inner sealing inflow swirl ratio is increased from 0 to 0.8. The results of the modified mixing model are in satisfactory agreement with the numerical results, which show a maximum temperature drop deviation of 7.22%. Compared with the previous method, the prediction accuracy of the pre-swirl cavity temperature drop can be increased by 22.28%.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.116717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.116717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yuxin Yan; Zhongwei Huang; Ran Li;Abstract The transient cooling of rock surface by liquid nitrogen (LN2) jet was experimentally studied in this article. Experimental conditions cover a range of 1.4–2.4 MPa for jet pressure and 3–5 cm for stand-off distance. The nozzle diameter was fixed at 1 mm and the rock specimen was a circular plate, with diameter of 16 cm and thickness of 2 cm. The temperature curves at different radial locations in rock were measured during LN2 jet impingement. Based on these data we mapped the complete heat flux across the rock surface and attained the three dimensional temperature field within the rock. Thermal stresses inside the rock were further computed according to the experimentally determined temperature field. It is shown that the partial wetting of rock surface by LN2 jet created sharp thermal gradients in both radial and vertical directions. The induced thermal stress was in tensile state and the spatial range of thermal stress is consistent with the wetted region by LN2. The propagation speed of wetting front increases with increasing jet pressure and decreasing stand-off distance. Under the present experimental conditions, the maximum heat flux of LN2 jet was around 2.4 × 105 W/m2. The maximum tensile stress on rock surface was calculated to be ~5 MPa, which could potentially damage the rock structure and deteriorate rock’s strength.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yuxin Yan; Zhongwei Huang; Ran Li;Abstract The transient cooling of rock surface by liquid nitrogen (LN2) jet was experimentally studied in this article. Experimental conditions cover a range of 1.4–2.4 MPa for jet pressure and 3–5 cm for stand-off distance. The nozzle diameter was fixed at 1 mm and the rock specimen was a circular plate, with diameter of 16 cm and thickness of 2 cm. The temperature curves at different radial locations in rock were measured during LN2 jet impingement. Based on these data we mapped the complete heat flux across the rock surface and attained the three dimensional temperature field within the rock. Thermal stresses inside the rock were further computed according to the experimentally determined temperature field. It is shown that the partial wetting of rock surface by LN2 jet created sharp thermal gradients in both radial and vertical directions. The induced thermal stress was in tensile state and the spatial range of thermal stress is consistent with the wetted region by LN2. The propagation speed of wetting front increases with increasing jet pressure and decreasing stand-off distance. Under the present experimental conditions, the maximum heat flux of LN2 jet was around 2.4 × 105 W/m2. The maximum tensile stress on rock surface was calculated to be ~5 MPa, which could potentially damage the rock structure and deteriorate rock’s strength.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Yishu Qiu; Peng Peng; Fangming Jiang; Wenjiong Cao;Abstract Nowadays, lithium-ion battery (LIB) technology provides one of the most important approaches for large-scale electricity storage. In this work, an electrical-thermal-fluidic coupled model is proposed for practical LIB-based energy storage systems (ESSs). The coupled model is established based on the equivalent circuit model (ECM) which describes electrical behavior of LIBs, the airflow turbulent model, and the “single domain of multiple sub-regions” thermal model. Currents and voltages of LIB cells, airflow velocity field and pressure field, and temperature distribution in the whole ESS, can be simulated by the developed full-scale model. Simulation results of a practical commercial LIB ESS (1 MW/2 MWh) in typical frequency regulation operation, including electrical-thermal characteristics represented by currents and heat generation rates of LIBs in the ESS, flow characteristics represented by airflow field and mass flow rate distribution, ambient temperature sensitivity analysis represented by temperature distributions of the ESS initially under 27℃ and 38℃ ambient respectively, are displayed and discussed, exhibiting the capability of the proposed model. The proposed model has been validated by comparing the simulated results with the actual measured data; the reasonably good agreement demonstrates the effectiveness of the proposed model. Therefore, the established model has the potential to provide a feasible and powerful approach or tool to perform multi-physics simulations of practical large-scale LIB ESSs for different functions, including but not limited to detailed temperature evaluations, cooling structure optimization, materials selection, and thermal-safety status evaluating and monitoring.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.116360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.116360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Yishu Qiu; Peng Peng; Fangming Jiang; Wenjiong Cao;Abstract Nowadays, lithium-ion battery (LIB) technology provides one of the most important approaches for large-scale electricity storage. In this work, an electrical-thermal-fluidic coupled model is proposed for practical LIB-based energy storage systems (ESSs). The coupled model is established based on the equivalent circuit model (ECM) which describes electrical behavior of LIBs, the airflow turbulent model, and the “single domain of multiple sub-regions” thermal model. Currents and voltages of LIB cells, airflow velocity field and pressure field, and temperature distribution in the whole ESS, can be simulated by the developed full-scale model. Simulation results of a practical commercial LIB ESS (1 MW/2 MWh) in typical frequency regulation operation, including electrical-thermal characteristics represented by currents and heat generation rates of LIBs in the ESS, flow characteristics represented by airflow field and mass flow rate distribution, ambient temperature sensitivity analysis represented by temperature distributions of the ESS initially under 27℃ and 38℃ ambient respectively, are displayed and discussed, exhibiting the capability of the proposed model. The proposed model has been validated by comparing the simulated results with the actual measured data; the reasonably good agreement demonstrates the effectiveness of the proposed model. Therefore, the established model has the potential to provide a feasible and powerful approach or tool to perform multi-physics simulations of practical large-scale LIB ESSs for different functions, including but not limited to detailed temperature evaluations, cooling structure optimization, materials selection, and thermal-safety status evaluating and monitoring.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.116360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.116360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Xiaofeng Zhang; Ruilin Zhu; Rong Zeng; Bin Zhao; Renshi Yan; Hongqiang Li;Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Xiaofeng Zhang; Ruilin Zhu; Rong Zeng; Bin Zhao; Renshi Yan; Hongqiang Li;Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Liang Zhou; Xianhao Li; Pengfei Zhao; Rongzhao Zhang; Ruifeng Dou; Haoxiang Zhao; Zhi Wen;Abstract Three-dimensional (3D) coil core is one kind of transformer iron core that is made of grain-oriented electrical steel. This material should be annealed before use because of the residual stress generated inside the silicon steel strip during production. The temperature evaluation of the 3D coil core is important to its annealing quality, but this temperature cannot be measured easily and the prediction method is seldom mentioned in the open literature. A numerical model, which considers the anisotropic heat conduction inside the 3D coil core and convection and radiation heat transfers inside the furnace, is built to link the temperature of furnace with the temperature of 3D coil core. Monte Carlo method is used to calculate the view factors between surfaces in the furnace. Thermal radiation resistance network method is used to obtain radiant heat flux. A computational fluid dynamics model is established to predict the convection heat transfer coefficient. The finite volume method is used to solve the anisotropic conduction inside the 3D coil core, wherein radiant heat flux and convection heat transfer coefficient serve as boundary conditions. The model considers the effects of size, position, location, orientation, and number of 3D coil cores on the temperature evolution. Onsite experiments verify that this digital model is precise in practical application, and the typical simulation error is less than ±2.5%. A straight forward optimization strategy is proposed on the basis of the digital model. The onsite experiments also show that the optimization method can effectively shorten the annealing time and increase the efficiency of the annealing process. Making a near real-time prediction and keeping 3D heat transfer features are the advantages of the present method.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Liang Zhou; Xianhao Li; Pengfei Zhao; Rongzhao Zhang; Ruifeng Dou; Haoxiang Zhao; Zhi Wen;Abstract Three-dimensional (3D) coil core is one kind of transformer iron core that is made of grain-oriented electrical steel. This material should be annealed before use because of the residual stress generated inside the silicon steel strip during production. The temperature evaluation of the 3D coil core is important to its annealing quality, but this temperature cannot be measured easily and the prediction method is seldom mentioned in the open literature. A numerical model, which considers the anisotropic heat conduction inside the 3D coil core and convection and radiation heat transfers inside the furnace, is built to link the temperature of furnace with the temperature of 3D coil core. Monte Carlo method is used to calculate the view factors between surfaces in the furnace. Thermal radiation resistance network method is used to obtain radiant heat flux. A computational fluid dynamics model is established to predict the convection heat transfer coefficient. The finite volume method is used to solve the anisotropic conduction inside the 3D coil core, wherein radiant heat flux and convection heat transfer coefficient serve as boundary conditions. The model considers the effects of size, position, location, orientation, and number of 3D coil cores on the temperature evolution. Onsite experiments verify that this digital model is precise in practical application, and the typical simulation error is less than ±2.5%. A straight forward optimization strategy is proposed on the basis of the digital model. The onsite experiments also show that the optimization method can effectively shorten the annealing time and increase the efficiency of the annealing process. Making a near real-time prediction and keeping 3D heat transfer features are the advantages of the present method.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Chunhui Dai; Fuyu Zhao; Yun Tai; Xinyu Wei;Abstract Once-Through Steam Generator (OTSG) is widely used in nuclear reactor system due to its advantages of compactness. This paper presents a double-tube Once-Through Steam Generator (OTSG) consisting of an outer straight tube and an inner helical tube. In the double-tube, the primary fluid is divided into two parts: one is in the inner tube and the other is in the shell side. This bi-channel flow brings difficulties in optimizing the flow distribution ratio of the primary water (FDRP), and affects the heat transfer and flow characteristics. In this paper, a nonlinear constrained optimization method was proposed to optimize the FDRP for keeping balance between maximizing the heat transfer rate and minimizing the pressure drop. A throttling device at the inlet of the lower pressure drop side is introduced to achieve the optimum FDRP. The theoretical analysis and analytical results show that our proposed method can be used in engineering practice for optimizing the primary flow.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Chunhui Dai; Fuyu Zhao; Yun Tai; Xinyu Wei;Abstract Once-Through Steam Generator (OTSG) is widely used in nuclear reactor system due to its advantages of compactness. This paper presents a double-tube Once-Through Steam Generator (OTSG) consisting of an outer straight tube and an inner helical tube. In the double-tube, the primary fluid is divided into two parts: one is in the inner tube and the other is in the shell side. This bi-channel flow brings difficulties in optimizing the flow distribution ratio of the primary water (FDRP), and affects the heat transfer and flow characteristics. In this paper, a nonlinear constrained optimization method was proposed to optimize the FDRP for keeping balance between maximizing the heat transfer rate and minimizing the pressure drop. A throttling device at the inlet of the lower pressure drop side is introduced to achieve the optimum FDRP. The theoretical analysis and analytical results show that our proposed method can be used in engineering practice for optimizing the primary flow.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Zhenhua Quan; Dan Yu; Wei Wang; Yuechao Deng; Lincheng Wang; Yaohua Zhao;Abstract A novel flat plate solar collector with micro-channel heat pipe array (MHPA-FPC) is presented in this paper. Firstly, a preliminary test was conducted to investigate the thermal performance of the MHPA. It has been found that the surface temperature along the length of MHPA can get stable within 2 min. The temperature difference between the evaporator and condenser sections was less than 1 °C, which indicates that the MHPA has excellent isothermal ability and quick thermal respond speed. Based on these advantages, the MHPA was applied to the development of a novel solar collector. The performance test was conducted following the Chinese standard GB/T4271-2007, and a linear correlation between the instantaneous efficiency η and the reduced temperature parameter (Twi−Ta)·I−1 was established. The maximum instantaneous efficiency was found to be 80%, and the slope was −4.72. These values are 11.4% and 21.3% superior to the technical required values of the Chinese national standard. Test results were further compared with 6 groups of 15 samples coming either from either open literature or commercial products. The comparisons indicated that the maximum instantaneous efficiency of the MHPA-FPC surpassed 25% over the average level of those selected samples and better thermal insulation ability was presented by the MHPA-FPC. These results from this study demonstrate that the novel MHPA-FPC is one of the top level solar collectors among the current products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2013.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu121 citations 121 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2013.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Zhenhua Quan; Dan Yu; Wei Wang; Yuechao Deng; Lincheng Wang; Yaohua Zhao;Abstract A novel flat plate solar collector with micro-channel heat pipe array (MHPA-FPC) is presented in this paper. Firstly, a preliminary test was conducted to investigate the thermal performance of the MHPA. It has been found that the surface temperature along the length of MHPA can get stable within 2 min. The temperature difference between the evaporator and condenser sections was less than 1 °C, which indicates that the MHPA has excellent isothermal ability and quick thermal respond speed. Based on these advantages, the MHPA was applied to the development of a novel solar collector. The performance test was conducted following the Chinese standard GB/T4271-2007, and a linear correlation between the instantaneous efficiency η and the reduced temperature parameter (Twi−Ta)·I−1 was established. The maximum instantaneous efficiency was found to be 80%, and the slope was −4.72. These values are 11.4% and 21.3% superior to the technical required values of the Chinese national standard. Test results were further compared with 6 groups of 15 samples coming either from either open literature or commercial products. The comparisons indicated that the maximum instantaneous efficiency of the MHPA-FPC surpassed 25% over the average level of those selected samples and better thermal insulation ability was presented by the MHPA-FPC. These results from this study demonstrate that the novel MHPA-FPC is one of the top level solar collectors among the current products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2013.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu121 citations 121 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2013.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Xiaona Yan; Yuqi Shi; Lin Wang; Daliang Hong; Guangming Chen;Abstract In this paper, a 1.x-effect (hybrid ejector-absorption refrigeration working between single-effect and double-effect) cycle is evaluated experimentally. Through the use of the ejector, the external heat sources’ grade is reduced. Part of the refrigerant vapor at the outlet of the low-pressure generator is directly entrained by the refrigerant vapor from the outlet of the high-pressure generator to the condenser. The system with 10 kW cooling load is experimentally studied. The COP of the system is 30.0% higher than a single-effect absorption refrigeration system, and generation temperature is at least 20 °C lower than a double-effect absorption refrigeration system.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2019.113738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2019.113738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Xiaona Yan; Yuqi Shi; Lin Wang; Daliang Hong; Guangming Chen;Abstract In this paper, a 1.x-effect (hybrid ejector-absorption refrigeration working between single-effect and double-effect) cycle is evaluated experimentally. Through the use of the ejector, the external heat sources’ grade is reduced. Part of the refrigerant vapor at the outlet of the low-pressure generator is directly entrained by the refrigerant vapor from the outlet of the high-pressure generator to the condenser. The system with 10 kW cooling load is experimentally studied. The COP of the system is 30.0% higher than a single-effect absorption refrigeration system, and generation temperature is at least 20 °C lower than a double-effect absorption refrigeration system.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2019.113738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2019.113738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Ge-Yu Zhong; Peng Yang; Yingwen Liu;Abstract Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to restrain acoustic streaming and improve the system performance. In this paper, a regression model is presented to predict the acoustic streaming in a thermoacoustic Stirling heat engine (TASHE) with different structure parameters of the jet pump. These parameters include position, length, inner diameter and tapered angle. Response surface methodology (RSM) is used to study the relationship between structure parameters of jet pump and acoustic streaming. A regression model is developed to predict the acoustic streaming. The analysis of variance (ANOVA) is conducted to describe the rationality of regression model and examine the statistical significance of factors. In addition, the relationship between acoustic streaming and structure parameters of jet pump is presented using 2D contour and 3D surface plot. It reveals that small position, length, tapered angle and large inner diameter can help suppress acoustic streaming. Eventually, four random confirmation tests are performed to verify that the regression model can predict acoustic streaming reasonably. This work provides theoretical guidance for controlling acoustic streaming using jet pump.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.04.157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.04.157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Ge-Yu Zhong; Peng Yang; Yingwen Liu;Abstract Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to restrain acoustic streaming and improve the system performance. In this paper, a regression model is presented to predict the acoustic streaming in a thermoacoustic Stirling heat engine (TASHE) with different structure parameters of the jet pump. These parameters include position, length, inner diameter and tapered angle. Response surface methodology (RSM) is used to study the relationship between structure parameters of jet pump and acoustic streaming. A regression model is developed to predict the acoustic streaming. The analysis of variance (ANOVA) is conducted to describe the rationality of regression model and examine the statistical significance of factors. In addition, the relationship between acoustic streaming and structure parameters of jet pump is presented using 2D contour and 3D surface plot. It reveals that small position, length, tapered angle and large inner diameter can help suppress acoustic streaming. Eventually, four random confirmation tests are performed to verify that the regression model can predict acoustic streaming reasonably. This work provides theoretical guidance for controlling acoustic streaming using jet pump.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.04.157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.04.157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu