Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • CN

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Vivek Narisetty; Sanjay Nagarajan; Siddharth Gadkari; Vivek V. Ranade; +6 Authors

    Le pain est la deuxième denrée alimentaire la plus gaspillée au Royaume-Uni avec un gaspillage annuel de 292 000 tonnes. Dans le présent travail, les déchets de pain (BW) ont été utilisés pour la production fermentative d'éthanol par Saccharomyces cerevisiae KL17. La saccharification acide et enzymatique du BW a été réalisée, entraînant la libération de glucose la plus élevée de 75 et 97,9 g/L, soit 73,5 et 95,9% du rendement théorique, respectivement. Les sucres obtenus ont d'abord été fermentés en éthanol dans un ballon à secousses, puis mis à l'échelle dans un bioréacteur en mode batch et fed-batch. Dans le mode de culture fed-batch, les titres maximums en éthanol de 111,3, 106,9 et 114,9 g/L avec un rendement de conversion et une productivité de 0,48, 0,47 et 0,49 g/g et 3,1, 3,0 et 3,2 g/L.h ont été atteints à partir de glucose pur, d'hydrolysats acides riches en glucose et d'hydrolysats enzymatiques, respectivement. Pour améliorer davantage l'économie du processus, les résidus solides après hydrolyse acide (ABW) et enzymatique (EBW) de BW ainsi que les résidus de fermentation respectifs (FR) obtenus après la production d'éthanol ont été regroupés et soumis à une digestion anaérobie. Le résidu solide de ABW + FR et EBW + FR a donné un potentiel de méthanation biochimique (BMP) de 345 et 379 mL CH4/g VS, respectivement. L'évaluation du cycle de vie du processus a montré que les émissions totales pour la production d'éthanol à partir de BW étaient comparables aux émissions provenant de matières premières plus établies telles que la canne à sucre et les céréales de maïs et beaucoup plus faibles par rapport au blé et à la patate douce. Les travaux actuels démontrent que BW est une matière première prometteuse pour la production durable de biocarburants à l'aide d'une stratégie de bioraffinage circulaire. À la connaissance des auteurs, c'est la première fois qu'un tel système séquentiel a été étudié avec BW pour la production d'éthanol et de biométhane. D'autres travaux viseront la production d'éthanol à l'échelle pilote et le BMP sera accessible dans un digesteur anaérobie commercial. El pan es el segundo alimento más desperdiciado en el Reino Unido con un desperdicio anual de 292.000 toneladas. En el presente trabajo, Saccharomyces cerevisiae KL17 utilizó residuos de pan (BW) para la producción fermentativa de etanol. La sacarificación ácida y enzimática de BW se llevó a cabo dando como resultado la mayor liberación de glucosa de 75 y 97.9 g/L, que es 73.5 y 95.9% del rendimiento teórico, respectivamente. Los azúcares obtenidos se fermentaron en etanol inicialmente en un matraz de agitación, seguido de un aumento de escala en el biorreactor en modo por lotes y por lotes alimentados. En el modo de cultivo por lotes alimentados, las titulaciones máximas de etanol de 111.3, 106.9 y 114.9 g/L con rendimiento de conversión y productividad de 0.48, 0.47 y 0.49 g/g, y 3.1, 3.0 y 3.2 g/L.h se lograron a partir de glucosa pura, hidrolizados ácidos y enzimáticos ricos en glucosa, respectivamente. Además, para mejorar la economía del proceso, los residuos sólidos después de la hidrólisis ácida (ABW) y enzimática (EBW) de BW junto con los respectivos residuos de fermentación (FR) obtenidos después de la producción de etanol se agruparon y se sometieron a digestión anaeróbica. El residuo sólido de ABW + FR y EBW + FR produjo un potencial de metanización bioquímica (BMP) de 345 y 379 mL CH4/g VS, respectivamente. La evaluación del ciclo de vida del proceso mostró que las emisiones totales para la producción de etanol de BW eran comparables a las emisiones de materias primas más establecidas como la caña de azúcar y el grano de maíz y mucho menores en comparación con el trigo y la batata. El trabajo actual demuestra que el BW es una materia prima prometedora para la producción sostenible de biocombustibles con la ayuda de una estrategia circular de biorrefinado. Hasta donde saben los autores, esta es la primera vez que se ha investigado un sistema secuencial de este tipo con BW para la producción de etanol y biometano. Se trabajará más en la producción de etanol a escala piloto y se accederá a BMP en un digestor anaeróbico comercial. Bread is the second most wasted food in the UK with annual wastage of 292,000 tons. In the present work, bread waste (BW) was utilized for fermentative production of ethanol by Saccharomyces cerevisiae KL17. Acidic and enzymatic saccharification of BW was carried out resulting in the highest glucose release of 75 and 97.9 g/L which is 73.5 and 95.9% of theoretical yield, respectively. The obtained sugars were fermented into ethanol initially in shake flask followed by scale up in bioreactor in batch and fed-batch mode. In the fed-batch mode of cultivation, the maximum ethanol titers of 111.3, 106.9, and 114.9 g/L with conversion yield and productivity of 0.48, 0.47, and 0.49 g/g, and 3.1, 3.0, and 3.2 g/L.h was achieved from pure glucose, glucose-rich acidic and enzymatic hydrolysates, respectively. Further to improve the process economics, the solid residues after acidic (ABW) and enzymatic (EBW) hydrolysis of BW along with respective fermentation residues (FR) obtained after the ethanol production were pooled and subjected to anaerobic digestion. The solid residue from ABW + FR, and EBW + FR yielded a biochemical methanation potential (BMP) of 345 and 379 mL CH4/g VS, respectively. Life cycle assessment of the process showed that the total emissions for ethanol production from BW were comparable to the emissions from more established feedstocks such as sugarcane and maize grain and much lower when compared to wheat and sweet potato. The current work demonstrates BW as promising feedstock for sustainable biofuel production with the aid of circular biorefining strategy. To the authors knowledge, this is the first time, such a sequential system has been investigated with BW for ethanol and biomethane production. Further work will be aimed at ethanol production at pilot scale and BMP will be accessed in a commercial anaerobic digester. الخبز هو ثاني أكثر المواد الغذائية المهدرة في المملكة المتحدة مع هدر سنوي يبلغ 292000 طن. في العمل الحالي، تم استخدام نفايات الخبز (BW) للإنتاج التخميري للإيثانول بواسطة Sacaromyces cerevisiae KL17. تم إجراء التسكير الحمضي والإنزيمي للأسلحة البيولوجية مما أدى إلى أعلى إطلاق للجلوكوز يبلغ 75 و 97.9 جم/لتر وهو 73.5 و 95.9 ٪ من العائد النظري، على التوالي. تم تخمير السكريات التي تم الحصول عليها في الإيثانول في البداية في قارورة مخفوقة تليها زيادة في المفاعل الحيوي في وضع الدفعة والدفعة المغذية. في وضع الدفعات الغذائية للزراعة، تم تحقيق الحد الأقصى من تيترات الإيثانول 111.3 و 106.9 و 114.9 جم/لتر مع عائد تحويل وإنتاجية 0.48 و 0.47 و 0.49 جم/جم و 3.1 و 3.0 و 3.2 جم/لتر من الجلوكوز النقي والحمض الغني بالجلوكوز والحموض الأنزيمية، على التوالي. ولتحسين اقتصاديات العملية، تم تجميع المخلفات الصلبة بعد التحلل المائي الحمضي والإنزيمي للأسلحة البيولوجية جنبًا إلى جنب مع مخلفات التخمير ذات الصلة التي تم الحصول عليها بعد إنتاج الإيثانول وإخضاعها للهضم اللاهوائي. أسفرت المخلفات الصلبة من القنابل المضادة للدبابات + القنابل المقاومة للحريق، والقنابل المضادة للدبابات + القنابل المقاومة للحريق عن جهد ميثان كيميائي حيوي (BMP) قدره 345 و 379 مل من الميثان/جم مقابل، على التوالي. أظهر تقييم دورة حياة العملية أن إجمالي الانبعاثات لإنتاج الإيثانول من الأسلحة البيولوجية كانت قابلة للمقارنة مع الانبعاثات من المواد الأولية الأكثر رسوخًا مثل قصب السكر وحبوب الذرة وأقل بكثير بالمقارنة مع القمح والبطاطا الحلوة. يوضح العمل الحالي أن الأسلحة البيولوجية هي مادة وسيطة واعدة لإنتاج الوقود الحيوي المستدام بمساعدة استراتيجية التكرير الحيوي الدائرية. على حد علم المؤلفين، هذه هي المرة الأولى، وقد تم التحقيق في مثل هذا النظام المتسلسل مع الأسلحة البيولوجية لإنتاج الإيثانول والميثان الحيوي. سيهدف المزيد من العمل إلى إنتاج الإيثانول على نطاق تجريبي وسيتم الوصول إلى BMP في جهاز هضم لاهوائي تجاري.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield University...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Conversion and Management
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cranfield CERES
    Article . 2022
    License: CC BY
    Data sources: Cranfield CERES
    https://dx.doi.org/10.60692/e5...
    Other literature type . 2022
    Data sources: Datacite
    https://dx.doi.org/10.60692/6c...
    Other literature type . 2022
    Data sources: Datacite
    Access Routes
    Green
    hybrid
    45
    citations45
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    downloaddownloads40
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield University...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Conversion and Management
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cranfield CERES
      Article . 2022
      License: CC BY
      Data sources: Cranfield CERES
      https://dx.doi.org/10.60692/e5...
      Other literature type . 2022
      Data sources: Datacite
      https://dx.doi.org/10.60692/6c...
      Other literature type . 2022
      Data sources: Datacite
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Reshmy R.; Vivek Narisetty; Ayon Tarafdar; Neena Bachan; +10 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    BioEnergy Research
    Article . 2022 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      BioEnergy Research
      Article . 2022 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Vivek, Narisetty; Reshmy, R; Shraddha, Maitra; Ayon, Tarafdar; +8 Authors

    Bio-based fuels and chemicals through the biorefinery approach has gained significant interest as an alternative platform for the petroleum-derived processes as these biobased processes are noticed to have positive environmental and societal impacts. Decades of research was involved in understanding the diversity of microorganisms in different habitats that could synthesize various secondary metabolites that have functional potential as fuels, chemicals, nutraceuticals, food ingredients, and many more. Later, due to the substrate-related process economics, the diverse low-value, high-carbon feedstocks like lignocellulosic biomass, industrial byproducts, and waste streams were investigated to have greater potential. Among them, municipal solid wastes can be used as the source of substrates for the production of commercially viable gaseous and liquid fuels, as well as short-chain fattyacids and carboxylic acids. In this work, technologies and processes demanding the production of value-added products were explained in detail to understand and inculcate the value of municipal solid wastes and the economy, and it can provide to the biorefinery aspect.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    BioEnergy Research
    Article . 2022 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      BioEnergy Research
      Article . 2022 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Vivek Narisetty; Nidhi Adlakha; Navodit Kumar Singh; Sudipt Kumar Dalei; +7 Authors

    Les déchets alimentaires (FW) générés par divers scénarios, de la ferme à la fourchette, causent de graves problèmes environnementaux lorsqu'ils sont incinérés ou éliminés de manière inappropriée. La présence de quantités importantes de glucides, de protéines et de lipides permet à FW de servir de matière première durable et renouvelable pour les bioraffineries. La mise en œuvre de substrats multiples et d'une bioraffinerie de produits en tant que plate-forme pourrait poursuivre un immense potentiel de réduction des coûts du processus biosourcé et d'amélioration de sa viabilité commerciale. L'examen se concentre sur la conversion des excédents de FW en une gamme de produits à valeur ajoutée, y compris les biosurfactants, les biopolymères, les diols et la bioénergie. L'examen comprend une description approfondie des différents types d'armes chimiques, de leurs compositions chimiques et nutritives, des techniques de valorisation actuelles et de la réglementation. En outre, il décrit les limites de FW en tant que matière première pour les bioraffineries. En fin de compte, l'examen discute de la portée future pour fournir une voie claire pour des bioraffineries durables et à zéro émission nette de carbone. El desperdicio de alimentos (FW) generado a través de varios escenarios desde la granja hasta la mesa causa graves problemas ambientales cuando se incinera o se elimina de manera inapropiada. La presencia de cantidades significativas de carbohidratos, proteínas y lípidos permite que FW sirva como materia prima sostenible y renovable para las biorrefinerías. La implementación de múltiples sustratos y productos de biorrefinería como plataforma podría perseguir un inmenso potencial de reducción de costos para el proceso de base biológica y mejorar su viabilidad comercial. La revisión se centra en la conversión del excedente de FW en una gama de productos de valor agregado que incluyen biotensioactivos, biopolímeros, dioles y bioenergía. La revisión incluye una descripción en profundidad de varios tipos de FW, sus composiciones químicas y de nutrientes, las técnicas y regulaciones de valorización actuales. Además, describe las limitaciones de FW como materia prima para biorrefinerías. Al final, revise el alcance futuro para proporcionar un camino claro para las biorrefinerías sostenibles y de carbono neto cero. Food waste (FW) generated through various scenarios from farm to fork causes serious environmental problems when either incinerated or disposed inappropriately. The presence of significant amounts of carbohydrates, proteins, and lipids enable FW to serve as sustainable and renewable feedstock for the biorefineries. Implementation of multiple substrates and product biorefinery as a platform could pursue an immense potential of reducing costs for bio-based process and improving its commercial viability. The review focuses on conversion of surplus FW into range of value-added products including biosurfactants, biopolymers, diols, and bioenergy. The review includes in-depth description of various types of FW, their chemical and nutrient compositions, current valorization techniques and regulations. Further, it describes limitations of FW as feedstock for biorefineries. In the end, review discuss future scope to provide a clear path for sustainable and net-zero carbon biorefineries. تسبب نفايات الطعام المتولدة من خلال سيناريوهات مختلفة من المزرعة إلى الشوكة مشاكل بيئية خطيرة عند حرقها أو التخلص منها بشكل غير لائق. إن وجود كميات كبيرة من الكربوهيدرات والبروتينات والدهون يمكّن FW من العمل كمواد وسيطة مستدامة ومتجددة للمصافي الحيوية. يمكن أن يؤدي تنفيذ ركائز متعددة ومصفاة بيولوجية للمنتجات كمنصة إلى تحقيق إمكانات هائلة لتقليل تكاليف العملية الحيوية وتحسين جدواها التجارية. تركز المراجعة على تحويل فائض FW إلى مجموعة من المنتجات ذات القيمة المضافة بما في ذلك المواد الخافضة للتوتر السطحي الحيوي والبوليمرات الحيوية والديولات والطاقة الحيوية. تتضمن المراجعة وصفًا متعمقًا لأنواع مختلفة من FW، وتركيباتها الكيميائية والمغذيات، وتقنيات ولوائح التثمين الحالية. علاوة على ذلك، تصف القيود المفروضة على FW كمواد وسيطة للمصافي الحيوية. في النهاية، ناقش النطاق المستقبلي لتوفير مسار واضح للمصافي الحيوية الكربونية المستدامة والصافية.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield University...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Bioresource Technology
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cranfield CERES
    Article . 2022
    License: CC BY
    Data sources: Cranfield CERES
    https://dx.doi.org/10.60692/jz...
    Other literature type . 2022
    Data sources: Datacite
    https://dx.doi.org/10.60692/9n...
    Other literature type . 2022
    Data sources: Datacite
    Access Routes
    Green
    hybrid
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility7
    visibilityviews7
    downloaddownloads51
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield University...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Bioresource Technology
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cranfield CERES
      Article . 2022
      License: CC BY
      Data sources: Cranfield CERES
      https://dx.doi.org/10.60692/jz...
      Other literature type . 2022
      Data sources: Datacite
      https://dx.doi.org/10.60692/9n...
      Other literature type . 2022
      Data sources: Datacite
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Vivek Narisetty; Sanjay Nagarajan; Siddharth Gadkari; Vivek V. Ranade; +6 Authors

    Le pain est la deuxième denrée alimentaire la plus gaspillée au Royaume-Uni avec un gaspillage annuel de 292 000 tonnes. Dans le présent travail, les déchets de pain (BW) ont été utilisés pour la production fermentative d'éthanol par Saccharomyces cerevisiae KL17. La saccharification acide et enzymatique du BW a été réalisée, entraînant la libération de glucose la plus élevée de 75 et 97,9 g/L, soit 73,5 et 95,9% du rendement théorique, respectivement. Les sucres obtenus ont d'abord été fermentés en éthanol dans un ballon à secousses, puis mis à l'échelle dans un bioréacteur en mode batch et fed-batch. Dans le mode de culture fed-batch, les titres maximums en éthanol de 111,3, 106,9 et 114,9 g/L avec un rendement de conversion et une productivité de 0,48, 0,47 et 0,49 g/g et 3,1, 3,0 et 3,2 g/L.h ont été atteints à partir de glucose pur, d'hydrolysats acides riches en glucose et d'hydrolysats enzymatiques, respectivement. Pour améliorer davantage l'économie du processus, les résidus solides après hydrolyse acide (ABW) et enzymatique (EBW) de BW ainsi que les résidus de fermentation respectifs (FR) obtenus après la production d'éthanol ont été regroupés et soumis à une digestion anaérobie. Le résidu solide de ABW + FR et EBW + FR a donné un potentiel de méthanation biochimique (BMP) de 345 et 379 mL CH4/g VS, respectivement. L'évaluation du cycle de vie du processus a montré que les émissions totales pour la production d'éthanol à partir de BW étaient comparables aux émissions provenant de matières premières plus établies telles que la canne à sucre et les céréales de maïs et beaucoup plus faibles par rapport au blé et à la patate douce. Les travaux actuels démontrent que BW est une matière première prometteuse pour la production durable de biocarburants à l'aide d'une stratégie de bioraffinage circulaire. À la connaissance des auteurs, c'est la première fois qu'un tel système séquentiel a été étudié avec BW pour la production d'éthanol et de biométhane. D'autres travaux viseront la production d'éthanol à l'échelle pilote et le BMP sera accessible dans un digesteur anaérobie commercial. El pan es el segundo alimento más desperdiciado en el Reino Unido con un desperdicio anual de 292.000 toneladas. En el presente trabajo, Saccharomyces cerevisiae KL17 utilizó residuos de pan (BW) para la producción fermentativa de etanol. La sacarificación ácida y enzimática de BW se llevó a cabo dando como resultado la mayor liberación de glucosa de 75 y 97.9 g/L, que es 73.5 y 95.9% del rendimiento teórico, respectivamente. Los azúcares obtenidos se fermentaron en etanol inicialmente en un matraz de agitación, seguido de un aumento de escala en el biorreactor en modo por lotes y por lotes alimentados. En el modo de cultivo por lotes alimentados, las titulaciones máximas de etanol de 111.3, 106.9 y 114.9 g/L con rendimiento de conversión y productividad de 0.48, 0.47 y 0.49 g/g, y 3.1, 3.0 y 3.2 g/L.h se lograron a partir de glucosa pura, hidrolizados ácidos y enzimáticos ricos en glucosa, respectivamente. Además, para mejorar la economía del proceso, los residuos sólidos después de la hidrólisis ácida (ABW) y enzimática (EBW) de BW junto con los respectivos residuos de fermentación (FR) obtenidos después de la producción de etanol se agruparon y se sometieron a digestión anaeróbica. El residuo sólido de ABW + FR y EBW + FR produjo un potencial de metanización bioquímica (BMP) de 345 y 379 mL CH4/g VS, respectivamente. La evaluación del ciclo de vida del proceso mostró que las emisiones totales para la producción de etanol de BW eran comparables a las emisiones de materias primas más establecidas como la caña de azúcar y el grano de maíz y mucho menores en comparación con el trigo y la batata. El trabajo actual demuestra que el BW es una materia prima prometedora para la producción sostenible de biocombustibles con la ayuda de una estrategia circular de biorrefinado. Hasta donde saben los autores, esta es la primera vez que se ha investigado un sistema secuencial de este tipo con BW para la producción de etanol y biometano. Se trabajará más en la producción de etanol a escala piloto y se accederá a BMP en un digestor anaeróbico comercial. Bread is the second most wasted food in the UK with annual wastage of 292,000 tons. In the present work, bread waste (BW) was utilized for fermentative production of ethanol by Saccharomyces cerevisiae KL17. Acidic and enzymatic saccharification of BW was carried out resulting in the highest glucose release of 75 and 97.9 g/L which is 73.5 and 95.9% of theoretical yield, respectively. The obtained sugars were fermented into ethanol initially in shake flask followed by scale up in bioreactor in batch and fed-batch mode. In the fed-batch mode of cultivation, the maximum ethanol titers of 111.3, 106.9, and 114.9 g/L with conversion yield and productivity of 0.48, 0.47, and 0.49 g/g, and 3.1, 3.0, and 3.2 g/L.h was achieved from pure glucose, glucose-rich acidic and enzymatic hydrolysates, respectively. Further to improve the process economics, the solid residues after acidic (ABW) and enzymatic (EBW) hydrolysis of BW along with respective fermentation residues (FR) obtained after the ethanol production were pooled and subjected to anaerobic digestion. The solid residue from ABW + FR, and EBW + FR yielded a biochemical methanation potential (BMP) of 345 and 379 mL CH4/g VS, respectively. Life cycle assessment of the process showed that the total emissions for ethanol production from BW were comparable to the emissions from more established feedstocks such as sugarcane and maize grain and much lower when compared to wheat and sweet potato. The current work demonstrates BW as promising feedstock for sustainable biofuel production with the aid of circular biorefining strategy. To the authors knowledge, this is the first time, such a sequential system has been investigated with BW for ethanol and biomethane production. Further work will be aimed at ethanol production at pilot scale and BMP will be accessed in a commercial anaerobic digester. الخبز هو ثاني أكثر المواد الغذائية المهدرة في المملكة المتحدة مع هدر سنوي يبلغ 292000 طن. في العمل الحالي، تم استخدام نفايات الخبز (BW) للإنتاج التخميري للإيثانول بواسطة Sacaromyces cerevisiae KL17. تم إجراء التسكير الحمضي والإنزيمي للأسلحة البيولوجية مما أدى إلى أعلى إطلاق للجلوكوز يبلغ 75 و 97.9 جم/لتر وهو 73.5 و 95.9 ٪ من العائد النظري، على التوالي. تم تخمير السكريات التي تم الحصول عليها في الإيثانول في البداية في قارورة مخفوقة تليها زيادة في المفاعل الحيوي في وضع الدفعة والدفعة المغذية. في وضع الدفعات الغذائية للزراعة، تم تحقيق الحد الأقصى من تيترات الإيثانول 111.3 و 106.9 و 114.9 جم/لتر مع عائد تحويل وإنتاجية 0.48 و 0.47 و 0.49 جم/جم و 3.1 و 3.0 و 3.2 جم/لتر من الجلوكوز النقي والحمض الغني بالجلوكوز والحموض الأنزيمية، على التوالي. ولتحسين اقتصاديات العملية، تم تجميع المخلفات الصلبة بعد التحلل المائي الحمضي والإنزيمي للأسلحة البيولوجية جنبًا إلى جنب مع مخلفات التخمير ذات الصلة التي تم الحصول عليها بعد إنتاج الإيثانول وإخضاعها للهضم اللاهوائي. أسفرت المخلفات الصلبة من القنابل المضادة للدبابات + القنابل المقاومة للحريق، والقنابل المضادة للدبابات + القنابل المقاومة للحريق عن جهد ميثان كيميائي حيوي (BMP) قدره 345 و 379 مل من الميثان/جم مقابل، على التوالي. أظهر تقييم دورة حياة العملية أن إجمالي الانبعاثات لإنتاج الإيثانول من الأسلحة البيولوجية كانت قابلة للمقارنة مع الانبعاثات من المواد الأولية الأكثر رسوخًا مثل قصب السكر وحبوب الذرة وأقل بكثير بالمقارنة مع القمح والبطاطا الحلوة. يوضح العمل الحالي أن الأسلحة البيولوجية هي مادة وسيطة واعدة لإنتاج الوقود الحيوي المستدام بمساعدة استراتيجية التكرير الحيوي الدائرية. على حد علم المؤلفين، هذه هي المرة الأولى، وقد تم التحقيق في مثل هذا النظام المتسلسل مع الأسلحة البيولوجية لإنتاج الإيثانول والميثان الحيوي. سيهدف المزيد من العمل إلى إنتاج الإيثانول على نطاق تجريبي وسيتم الوصول إلى BMP في جهاز هضم لاهوائي تجاري.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield University...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Conversion and Management
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cranfield CERES
    Article . 2022
    License: CC BY
    Data sources: Cranfield CERES
    https://dx.doi.org/10.60692/e5...
    Other literature type . 2022
    Data sources: Datacite
    https://dx.doi.org/10.60692/6c...
    Other literature type . 2022
    Data sources: Datacite
    Access Routes
    Green
    hybrid
    45
    citations45
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    downloaddownloads40
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield University...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Conversion and Management
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cranfield CERES
      Article . 2022
      License: CC BY
      Data sources: Cranfield CERES
      https://dx.doi.org/10.60692/e5...
      Other literature type . 2022
      Data sources: Datacite
      https://dx.doi.org/10.60692/6c...
      Other literature type . 2022
      Data sources: Datacite
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Reshmy R.; Vivek Narisetty; Ayon Tarafdar; Neena Bachan; +10 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    BioEnergy Research
    Article . 2022 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      BioEnergy Research
      Article . 2022 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Vivek, Narisetty; Reshmy, R; Shraddha, Maitra; Ayon, Tarafdar; +8 Authors

    Bio-based fuels and chemicals through the biorefinery approach has gained significant interest as an alternative platform for the petroleum-derived processes as these biobased processes are noticed to have positive environmental and societal impacts. Decades of research was involved in understanding the diversity of microorganisms in different habitats that could synthesize various secondary metabolites that have functional potential as fuels, chemicals, nutraceuticals, food ingredients, and many more. Later, due to the substrate-related process economics, the diverse low-value, high-carbon feedstocks like lignocellulosic biomass, industrial byproducts, and waste streams were investigated to have greater potential. Among them, municipal solid wastes can be used as the source of substrates for the production of commercially viable gaseous and liquid fuels, as well as short-chain fattyacids and carboxylic acids. In this work, technologies and processes demanding the production of value-added products were explained in detail to understand and inculcate the value of municipal solid wastes and the economy, and it can provide to the biorefinery aspect.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    BioEnergy Research
    Article . 2022 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      BioEnergy Research
      Article . 2022 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Vivek Narisetty; Nidhi Adlakha; Navodit Kumar Singh; Sudipt Kumar Dalei; +7 Authors

    Les déchets alimentaires (FW) générés par divers scénarios, de la ferme à la fourchette, causent de graves problèmes environnementaux lorsqu'ils sont incinérés ou éliminés de manière inappropriée. La présence de quantités importantes de glucides, de protéines et de lipides permet à FW de servir de matière première durable et renouvelable pour les bioraffineries. La mise en œuvre de substrats multiples et d'une bioraffinerie de produits en tant que plate-forme pourrait poursuivre un immense potentiel de réduction des coûts du processus biosourcé et d'amélioration de sa viabilité commerciale. L'examen se concentre sur la conversion des excédents de FW en une gamme de produits à valeur ajoutée, y compris les biosurfactants, les biopolymères, les diols et la bioénergie. L'examen comprend une description approfondie des différents types d'armes chimiques, de leurs compositions chimiques et nutritives, des techniques de valorisation actuelles et de la réglementation. En outre, il décrit les limites de FW en tant que matière première pour les bioraffineries. En fin de compte, l'examen discute de la portée future pour fournir une voie claire pour des bioraffineries durables et à zéro émission nette de carbone. El desperdicio de alimentos (FW) generado a través de varios escenarios desde la granja hasta la mesa causa graves problemas ambientales cuando se incinera o se elimina de manera inapropiada. La presencia de cantidades significativas de carbohidratos, proteínas y lípidos permite que FW sirva como materia prima sostenible y renovable para las biorrefinerías. La implementación de múltiples sustratos y productos de biorrefinería como plataforma podría perseguir un inmenso potencial de reducción de costos para el proceso de base biológica y mejorar su viabilidad comercial. La revisión se centra en la conversión del excedente de FW en una gama de productos de valor agregado que incluyen biotensioactivos, biopolímeros, dioles y bioenergía. La revisión incluye una descripción en profundidad de varios tipos de FW, sus composiciones químicas y de nutrientes, las técnicas y regulaciones de valorización actuales. Además, describe las limitaciones de FW como materia prima para biorrefinerías. Al final, revise el alcance futuro para proporcionar un camino claro para las biorrefinerías sostenibles y de carbono neto cero. Food waste (FW) generated through various scenarios from farm to fork causes serious environmental problems when either incinerated or disposed inappropriately. The presence of significant amounts of carbohydrates, proteins, and lipids enable FW to serve as sustainable and renewable feedstock for the biorefineries. Implementation of multiple substrates and product biorefinery as a platform could pursue an immense potential of reducing costs for bio-based process and improving its commercial viability. The review focuses on conversion of surplus FW into range of value-added products including biosurfactants, biopolymers, diols, and bioenergy. The review includes in-depth description of various types of FW, their chemical and nutrient compositions, current valorization techniques and regulations. Further, it describes limitations of FW as feedstock for biorefineries. In the end, review discuss future scope to provide a clear path for sustainable and net-zero carbon biorefineries. تسبب نفايات الطعام المتولدة من خلال سيناريوهات مختلفة من المزرعة إلى الشوكة مشاكل بيئية خطيرة عند حرقها أو التخلص منها بشكل غير لائق. إن وجود كميات كبيرة من الكربوهيدرات والبروتينات والدهون يمكّن FW من العمل كمواد وسيطة مستدامة ومتجددة للمصافي الحيوية. يمكن أن يؤدي تنفيذ ركائز متعددة ومصفاة بيولوجية للمنتجات كمنصة إلى تحقيق إمكانات هائلة لتقليل تكاليف العملية الحيوية وتحسين جدواها التجارية. تركز المراجعة على تحويل فائض FW إلى مجموعة من المنتجات ذات القيمة المضافة بما في ذلك المواد الخافضة للتوتر السطحي الحيوي والبوليمرات الحيوية والديولات والطاقة الحيوية. تتضمن المراجعة وصفًا متعمقًا لأنواع مختلفة من FW، وتركيباتها الكيميائية والمغذيات، وتقنيات ولوائح التثمين الحالية. علاوة على ذلك، تصف القيود المفروضة على FW كمواد وسيطة للمصافي الحيوية. في النهاية، ناقش النطاق المستقبلي لتوفير مسار واضح للمصافي الحيوية الكربونية المستدامة والصافية.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield University...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Bioresource Technology
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cranfield CERES
    Article . 2022
    License: CC BY
    Data sources: Cranfield CERES
    https://dx.doi.org/10.60692/jz...
    Other literature type . 2022
    Data sources: Datacite
    https://dx.doi.org/10.60692/9n...
    Other literature type . 2022
    Data sources: Datacite
    Access Routes
    Green
    hybrid
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility7
    visibilityviews7
    downloaddownloads51
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield University...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Bioresource Technology
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cranfield CERES
      Article . 2022
      License: CC BY
      Data sources: Cranfield CERES
      https://dx.doi.org/10.60692/jz...
      Other literature type . 2022
      Data sources: Datacite
      https://dx.doi.org/10.60692/9n...
      Other literature type . 2022
      Data sources: Datacite
Powered by OpenAIRE graph