- home
- Advanced Search
- Energy Research
- CN
- Energy Research
- CN
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Yongping Yang; Oluwafunmilola Ola; Xiaoze Du; M. Mercedes Maroto-Valer; Shang Li; Lijun Yang;Abstract As a promising way to control greenhouse gas emission and alleviate global energy shortage, photocatalytic reduction of carbon dioxide attracts more attentions in recent years since it can produce fuels efficiently with the combination of H 2 through water splitting. In this work, a computational model which characterizes the photocatalytic reduction of carbon dioxide by CO co-feed in a novel twin reactor is developed with three subsidiaries of chemical reaction kinetics, gas–liquid mass transfer, and transient sun light intensity distribution. Thanks to previous experimental work as the reliable verification for the numerical simulation, the variations of the CH 3 OH concentration with the CO/CO 2 ratio of gas mixture, pressure and temperature are obtained and analyzed. The results show that the carbon in CO can form CH 3 OH directly, however the excessive CO will react with HCOOCH 3 to form CH 3 CHO, which results in a reduced CH 3 OH concentration. Besides, the CH 3 OH concentration subsequently increases as the temperature and pressure increase, and the CH 3 OH product and reaction rate vary widely with time due to the changing sun light intensity during the day.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Huiyao Chen; Fengming Chu; Lijun Yang; Oluwafunmilola Ola; Xiaoze Du; Yongping Yang;Photocatalytic reduction of carbon dioxide to produce methanol is a promising approach to restrain greenhouse gases emissions and mitigate energy shortage, which attracts extensive concerns in recent years. The optical fiber monolith reactor with solid glass balls for photocatalytic carbon dioxide reduction is proposed in this work to increase the product concentration, and the glass balls are transparent and coated with photocatalysts evenly to absorb light. The photocatalytic reduction of carbon dioxide in optical fiber monolith reactor is numerically investigated, by which the effects of glass ball number, location, circle and layer on the production are analyzed. The results show that in the single-circle and single-layer model, the outlet methanol concentration increases with increasing the ball number. The closer to the fiber and reactor inlet the balls keep, the higher the methanol production is. As the circle and layer numbers increase, the methanol concentration also increases. The outlet methanol average concentration of the optical fiber monolith reactor with 3-circle and 5-layer balls gets 11.43% higher than the case without glass balls.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.09.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.09.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Oluwafunmilola Ola; Fengming Chu; Yongping Yang; Huiyao Chen; M. Mercedes Maroto-Valer; Xiaoze Du; Lijun Yang; Shang Li;Abstract The production of valued added fuels and chemicals via photocatalytic carbon dioxide reduction has attracted increasing attentions in recent years. Based on the traditional twin reactor configuration, a novel bubbling twin reactor is proposed to improve the conversion of carbon dioxide to methanol in this work. The multiphysical model for the bubbling twin reactor is developed and numerically simulated. The variations of the methanol production with the gas inlet flow velocity and gas inlet number are obtained. The results show that the bubbling twin reactor has a higher carbon dioxide conversion efficiency than the traditional one. Moreover, the methanol production subsequently increases as the gas inlet velocity increases. With the constant inlet gas volumetric flow rate, the production of methanol can be improved by increasing the gas inlet number.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Royal Society of Chemistry (RSC) Oluwafunmilola Ola; Kunyapat Thummavichai; Kunyapat Thummavichai; Yanqiu Zhu; Yu Chen;doi: 10.1039/d0se00812e
In this work, dendritic tin-based carbon nanostructures with different morphologies were synthesized by a facile two-step carbonization and chemical vapor deposition method and were then evaluated for their performance in hydrogen evolution reaction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se00812e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se00812e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Yanqiu Zhu; Nannan Wang; Swee-Yong Pung; Fang Xu; Oluwafunmilola Ola; Wenting Chen; Yu Chen; Mian Zahid Hussain; Le Anh Thi; Kunyapat Thummavichai; Kunyapat Thummavichai;doi: 10.3390/en14051322
handle: 10871/125312
This paper describes the analysis and characterization of NayWOx bronze nanowires bundles and evaluation of their effective adsorption of methylene blue dye (MB). The Na-doped WOx bronze nanowires bundles were first synthesized via a simple solvothermal method, which were then fully characterized by using different techniques including TEM, XRD, XPS and UV-Vis, to validate the successful Na+ insertion into the WOx framework. The adsorption activities of the resulting NayWOx bronze nanowires bundles, compared with the undoped WOx form, were investigated by evaluating the adsorption effect on methylene blue under both UV and visible light irradiations. An enhanced adsorption performance of the Na-doped WOx bronze samples was recorded, which demonstrated a 90% of removal efficiency of the MB under different conditions (dark, visible and UV light). Moreover, the NayWOx bronze samples also offered a 4 times better kinetic rate of MB removal than the plain WOx nanowires.
CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/5/1322/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen Research ExeterArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10871/125312Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14051322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/5/1322/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen Research ExeterArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10871/125312Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14051322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Yongping Yang; Oluwafunmilola Ola; Xiaoze Du; M. Mercedes Maroto-Valer; Shang Li; Lijun Yang;Abstract As a promising way to control greenhouse gas emission and alleviate global energy shortage, photocatalytic reduction of carbon dioxide attracts more attentions in recent years since it can produce fuels efficiently with the combination of H 2 through water splitting. In this work, a computational model which characterizes the photocatalytic reduction of carbon dioxide by CO co-feed in a novel twin reactor is developed with three subsidiaries of chemical reaction kinetics, gas–liquid mass transfer, and transient sun light intensity distribution. Thanks to previous experimental work as the reliable verification for the numerical simulation, the variations of the CH 3 OH concentration with the CO/CO 2 ratio of gas mixture, pressure and temperature are obtained and analyzed. The results show that the carbon in CO can form CH 3 OH directly, however the excessive CO will react with HCOOCH 3 to form CH 3 CHO, which results in a reduced CH 3 OH concentration. Besides, the CH 3 OH concentration subsequently increases as the temperature and pressure increase, and the CH 3 OH product and reaction rate vary widely with time due to the changing sun light intensity during the day.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Huiyao Chen; Fengming Chu; Lijun Yang; Oluwafunmilola Ola; Xiaoze Du; Yongping Yang;Photocatalytic reduction of carbon dioxide to produce methanol is a promising approach to restrain greenhouse gases emissions and mitigate energy shortage, which attracts extensive concerns in recent years. The optical fiber monolith reactor with solid glass balls for photocatalytic carbon dioxide reduction is proposed in this work to increase the product concentration, and the glass balls are transparent and coated with photocatalysts evenly to absorb light. The photocatalytic reduction of carbon dioxide in optical fiber monolith reactor is numerically investigated, by which the effects of glass ball number, location, circle and layer on the production are analyzed. The results show that in the single-circle and single-layer model, the outlet methanol concentration increases with increasing the ball number. The closer to the fiber and reactor inlet the balls keep, the higher the methanol production is. As the circle and layer numbers increase, the methanol concentration also increases. The outlet methanol average concentration of the optical fiber monolith reactor with 3-circle and 5-layer balls gets 11.43% higher than the case without glass balls.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.09.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.09.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Oluwafunmilola Ola; Fengming Chu; Yongping Yang; Huiyao Chen; M. Mercedes Maroto-Valer; Xiaoze Du; Lijun Yang; Shang Li;Abstract The production of valued added fuels and chemicals via photocatalytic carbon dioxide reduction has attracted increasing attentions in recent years. Based on the traditional twin reactor configuration, a novel bubbling twin reactor is proposed to improve the conversion of carbon dioxide to methanol in this work. The multiphysical model for the bubbling twin reactor is developed and numerically simulated. The variations of the methanol production with the gas inlet flow velocity and gas inlet number are obtained. The results show that the bubbling twin reactor has a higher carbon dioxide conversion efficiency than the traditional one. Moreover, the methanol production subsequently increases as the gas inlet velocity increases. With the constant inlet gas volumetric flow rate, the production of methanol can be improved by increasing the gas inlet number.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Royal Society of Chemistry (RSC) Oluwafunmilola Ola; Kunyapat Thummavichai; Kunyapat Thummavichai; Yanqiu Zhu; Yu Chen;doi: 10.1039/d0se00812e
In this work, dendritic tin-based carbon nanostructures with different morphologies were synthesized by a facile two-step carbonization and chemical vapor deposition method and were then evaluated for their performance in hydrogen evolution reaction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se00812e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se00812e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Yanqiu Zhu; Nannan Wang; Swee-Yong Pung; Fang Xu; Oluwafunmilola Ola; Wenting Chen; Yu Chen; Mian Zahid Hussain; Le Anh Thi; Kunyapat Thummavichai; Kunyapat Thummavichai;doi: 10.3390/en14051322
handle: 10871/125312
This paper describes the analysis and characterization of NayWOx bronze nanowires bundles and evaluation of their effective adsorption of methylene blue dye (MB). The Na-doped WOx bronze nanowires bundles were first synthesized via a simple solvothermal method, which were then fully characterized by using different techniques including TEM, XRD, XPS and UV-Vis, to validate the successful Na+ insertion into the WOx framework. The adsorption activities of the resulting NayWOx bronze nanowires bundles, compared with the undoped WOx form, were investigated by evaluating the adsorption effect on methylene blue under both UV and visible light irradiations. An enhanced adsorption performance of the Na-doped WOx bronze samples was recorded, which demonstrated a 90% of removal efficiency of the MB under different conditions (dark, visible and UV light). Moreover, the NayWOx bronze samples also offered a 4 times better kinetic rate of MB removal than the plain WOx nanowires.
CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/5/1322/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen Research ExeterArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10871/125312Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14051322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/5/1322/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen Research ExeterArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10871/125312Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14051322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu