Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Photocatalytic reduction of CO 2 by CO co-feed combined with photocatalytic water splitting in a novel twin reactor

Authors: Yongping Yang; Oluwafunmilola Ola; Xiaoze Du; M. Mercedes Maroto-Valer; Shang Li; Lijun Yang;

Photocatalytic reduction of CO 2 by CO co-feed combined with photocatalytic water splitting in a novel twin reactor

Abstract

Abstract As a promising way to control greenhouse gas emission and alleviate global energy shortage, photocatalytic reduction of carbon dioxide attracts more attentions in recent years since it can produce fuels efficiently with the combination of H 2 through water splitting. In this work, a computational model which characterizes the photocatalytic reduction of carbon dioxide by CO co-feed in a novel twin reactor is developed with three subsidiaries of chemical reaction kinetics, gas–liquid mass transfer, and transient sun light intensity distribution. Thanks to previous experimental work as the reliable verification for the numerical simulation, the variations of the CH 3 OH concentration with the CO/CO 2 ratio of gas mixture, pressure and temperature are obtained and analyzed. The results show that the carbon in CO can form CH 3 OH directly, however the excessive CO will react with HCOOCH 3 to form CH 3 CHO, which results in a reduced CH 3 OH concentration. Besides, the CH 3 OH concentration subsequently increases as the temperature and pressure increase, and the CH 3 OH product and reaction rate vary widely with time due to the changing sun light intensity during the day.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%