- home
- Advanced Search
- Energy Research
- 2016-2025
- CN
- Imperial College London
- Energy Research
- 2016-2025
- CN
- Imperial College London
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Kang Wu; Jianyue Jiao; Na Li; Min Wang; Guofeng Jia; Yu Lin Lee; Rongbin Dang; Xin Deng; Xiaoling Xiao; Zhijian Wu;Layered O3-phase LiNi0.8Co0.1Mn0.1O2 (NCM811) material has shown great potential for lithium-ion batteries (LIBs). However, capacity attenuation and irreversible phase transitions have been serious...
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry CArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.1c01727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry CArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.1c01727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Mingyang Yang; Zhanming Ding; Yangjun Zhang; Ricardo Martinez-Botas; Hua Chen; Weilin Zhuge;Abstract With the widespread application of pulse turbochargers in internal combustion engines, steady or quasi-steady turbine models are no longer qualified for on-engine turbine performance prediction. Pulsatile flow condition caused by the reciprocating nature of the engine results in strong unsteadiness across the turbocharger turbine, which makes the turbine performance departing from that under steady or quasi-steady conditions. Modelling turbocharger turbine through a one-dimensional (1D) method is an important approach to simulate the unsteady performance of the turbine. In this paper, a 1D performance model of turbocharger turbines is presented. The model solves the turbine volute flow with 1D viscous equations, with volute curvature and circumferentially continuously flow exiting at volute outlet considered. The circumferential flow non-uniformity at volute outlet is preserved. The turbine rotor is modeled with multiple meanline models. The model was used to simulate the performance of a mixed-flow turbine and validated by the experimental data. Results show that the performance predictions are in good agreement with the experimental data. Flow parameters at internal points of the turbine predicted by the 1D model were compared with three-dimensional unsteady simulation results and reasonable agreement was observed, which demonstrates the ability of the 1D model in capturing the pulse propagation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.04.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.04.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2019 China (People's Republic of), United Kingdom, France, China (People's Republic of), China (People's Republic of)Publisher:Elsevier BV Funded by:UKRI | EPSRC Centre for Doctoral..., UKRI | Equipment Account: Integr..., UKRI | ECCS - EPSRC Development ... +6 projectsUKRI| EPSRC Centre for Doctoral Training in Graphene Technology ,UKRI| Equipment Account: Integrated Thin Film Deposition and Analysis System ,UKRI| ECCS - EPSRC Development of uniform, low power, high density resistive memory by vertical interface and defect design ,UKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structures ,UKRI| DTP 2016-2017 University of Cambridge ,UKRI| Precision Manufacturing of Flexible CMOS ,ANR| InHyMat-PV ,EC| Robust OTFT sensors ,UKRI| Centre for Advanced Materials for Integrated Energy Systems (CAM-IES)Philip Schulz; Judith L. MacManus-Driscoll; Wen Li; Wen Li; Mark Nikolka; Henry J. Snaith; Solène Béchu; Weiwei Li; Robert A. Jagt; Robert L. Z. Hoye; Robert L. Z. Hoye; Yen-Hung Lin; Mathieu Frégnaux; Zewei Li; R. D. Raninga; Tahmida N. Huq; Muriel Bouttemy; Mengyao Sun;handle: 10044/1/80123
Thin (approximately 10 nm) oxide buffer layers grown over lead-halide perovskite device stacks are critical for protecting the perovskite against mechanical and environmental damage. However, the limited perovskite stability restricts the processing methods and temperatures (<=110 C) that can be used to deposit the oxide overlayers, with the latter limiting the electronic properties of the oxides achievable. In this work, we demonstrate an alternative to existing methods that can grow pinhole-free TiOx (x = 2.00+/-0.05) films with the requisite thickness in <1 min without vacuum. This technique is atmospheric pressure chemical vapor deposition (AP-CVD). The rapid but soft deposition enables growth temperatures of >=180 ��C to be used to coat the perovskite. This is >=70 ��C higher than achievable by current methods and results in more conductive TiOx films, boosting solar cell efficiencies by >2%. Likewise, when AP-CVD SnOx (x ~ 2) is grown on perovskites, there is also minimal damage to the perovskite beneath. The SnOx layer is pinhole-free and conformal, which reduces shunting in devices, and increases steady-state efficiencies from 16.5% (no SnOx) to 19.4% (60 nm SnOx), with fill factors reaching 84%. This work shows AP-CVD to be a versatile technique for growing oxides on thermally-sensitive materials. R.D.R and R.A.J contributed equally. 23 pages. 6 figures
Hyper Article en Lig... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/80123Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03032363Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital Repositoryhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.104946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/80123Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03032363Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital Repositoryhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.104946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 21 Jan 2021 Italy, United Kingdom, Spain, Denmark, United Kingdom, Netherlands, Netherlands, Germany, Germany, United Kingdom, Spain, Switzerland, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | HYPERION, EC | ESPResSo, EC | APOLO +3 projectsEC| HYPERION ,EC| ESPResSo ,EC| APOLO ,RSF| Development of the technology of highly efficient and stable perovskite solar cells using steel substrates ,EC| GrapheneCore2 ,UKRI| SPECIFIC IKC Phase 2Nam-Gyu Park; Joseph J. Berry; Muriel Matheron; Jeff Kettle; Yulia Galagan; Francesca De Rossi; Francesca De Rossi; Harald Hoppe; Yueh-Lin Loo; Trystan Watson; Ramazan Yildirim; Sjoerd Veenstra; Vladimir Bulovic; Konrad Domanski; Shengzhong Frank Liu; Shengzhong Frank Liu; Anna Osherov; Mark V. Khenkin; Mark V. Khenkin; Ulrich S. Schubert; Michael D. McGehee; Michael D. McGehee; Diego Di Girolamo; Diego Di Girolamo; Aron Walsh; Aron Walsh; Francesca Brunetti; Marina S. Leite; Marina S. Leite; Giorgio Bardizza; Mohammad Khaja Nazeeruddin; Antonio Abate; Shaik M. Zakeeruddin; Eugene A. Katz; Michał Dusza; Chang-Qi Ma; Iris Visoly-Fisher; Michael Saliba; Michael Saliba; Hans Köbler; Aldo Di Carlo; Stéphane Cros; Anders Hagfeldt; Matthieu Manceau; Michael Grätzel; çaǧla Odabaşı; Elizabeth von Hauff; Rongrong Cheacharoen; Quinn Burlingame; Vida Turkovic; Ana Flávia Nogueira; Rico Meitzner; Yi-Bing Cheng; Haibing Xie; Monica Lira-Cantu; Morten Madsen; Kai Zhu; Alexander Colsmann; Stephen R. Forrest; Joseph M. Luther; Samuel D. Stranks; Christoph J. Brabec; Christoph J. Brabec; Henry J. Snaith; Wolfgang Tress; Pavel A. Troshin; Christopher J. Fell; Matthew O. Reese;AbstractImproving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.
CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,149 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 383visibility views 383 download downloads 101 Powered bymore_vert CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Zakaria Korei; Smail Benissaad; Ali J. Chamkha; Farid Berrahil; Abdelkader Filali;International Commun... arrow_drop_down International Communications in Heat and Mass TransferArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.icheatmasstransfer.2022.106497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Commun... arrow_drop_down International Communications in Heat and Mass TransferArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.icheatmasstransfer.2022.106497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV ChunYan Zhang; XiaoJun Su; XingYao Xiong; QiuLong Hu; Samuel Amartey; XingHe Tan; Wensheng Qin;Abstract We investigated changes in the physical and chemical properties of rapeseed straw after treatment with different doses of 60 Co γ-irradiation (0 kGy-1200 kGy). Raman spectra, electron spin resonance (ESR), and nuclear magnetic resonance (NMR) analyses of the pretreated samples showed that the irradiation partially destroyed the intra- or intermolecular structure of rapeseed straw. Particle size distribution and specific surface area analyses suggested that irradiation decreased the particle size, narrowed the distribution range, and increased the specific surface area. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves showed that increasing the irradiated dose decreased the thermal stability of the treated rapeseed straw and increased the reactivity. Elemental analyses suggested that the oxygen content slightly increased, suggesting that oxygen in the air may be involved in the reaction. These results demonstrate that γ-irradiation can induce a series of changes in the physical and chemical properties of rapeseed straw.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.11.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.11.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Report , Preprint , Journal 2020Embargo end date: 10 May 2020 United Kingdom, Spain, Italy, Croatia, United States, Italy, France, United Kingdom, Italy, Croatia, Italy, Croatia, Belgium, France, Turkey, Italy, Croatia, Germany, Italy, France, Italy, Germany, Belgium, Italy, Germany, Germany, Italy, Italy, United Kingdom, Belarus, Belarus, Belgium, Spain, Italy, France, United States, Switzerland, Italy, ItalyPublisher:Elsevier BV Funded by:DFG, EC | LHCTOPVLQ, EC | AMVA4NewPhysics +2 projectsDFG ,EC| LHCTOPVLQ ,EC| AMVA4NewPhysics ,EC| INSIGHTS ,GSRIAntonin Kveton; Marco Toliman Lucchini; Andromachi Tsirou; Luca Cadamuro; Jaana Kristiina Heikkilä; Dave M Newbold; David Saltzberg; Cécile Caillol; N. De Filippis; Petra Merkel; Jan Tomsa; M. Della Negra; David Jonathan Hofman; Stephen Sanders; Pushpalatha C Bhat; Daniel Gonzalez; Christopher West; Sandeep Bhowmik; Victor Golovtcov; G. B. Mohanty; E. Gurpinar Guler; Vyacheslav Klyukhin; Markus Seidel; Damir Devetak; Stephan Lammel; J. S. Lange; Paolo Ronchese; Paolo Ronchese; W. T. Hung; Stepan Obraztsov; Tommaso Dorigo; Dario Bisello; Dario Bisello; Raffaella Radogna; Milan Stojanovic; Quentin Python; Emanuela Barberis; J. R. González Fernández; Pedro Silva; Pedro G Mercadante; Grace Cummings; Marc Dejardin; Marta Verweij; P. Busson; Pascal Paganini; Willem Verbeke; Fabio Monti; Fabio Monti; Daniel Abercrombie; George Stephans; F. L. Fabbri; C. Baldenegro Barrera; P. E. Karchin; Matteo Cremonesi; James Wetzel; Jordan Martins; Marguerite Tonjes; D. Di Croce; L. J. Gutay; Jehad Mousa; Colin Bernet; W. Van Doninck; Kaya Tatar; Michael Dittmar; J. M. Grados Luyando; Hualin Mei; Marc Dobson; Maral Alyari; Paul Baillon; Nicholas Menendez; Yiwen Wen; Radek Zlebcik; A. Baden; Pietro Vischia; Mingshui Chen; Tilman Rohe; Haiyan Wang; Santiago Folgueras; P. Martinez Ruiz del Arbol; E. M. Da Costa; Altan Cakir; V. Monaco; K. H. M. Kwok; Christopher Hill; Gigi Rolandi; Basil Schneider; Alexander Ershov; Daniel Rosenzweig; Kyungwook Nam; Bruno Galinhas; James D. Olsen; Jamal Rorie; Prashant Shukla; Alicia Calderon; Candan Dozen; Marc Osherson; Eija Tuominen; Himal Acharya; Klaas Padeken; Davide Piccolo; Hugo Delannoy; Igor Lokhtin; Nadir Daci; Christophe Royon; Mauricio Thiel; W. De Boer; Cédric Prieels; A. Da Rold; C. A. Salazar González; Johannes Brandstetter; R. Loveless; Aleksandra Lelek; Frank Würthwein; Cristina Tuve; Inkyu Park; Didar Dobur; Elena Voevodina; Ivan Marchesini; Mariana Shopova; Y. Musienko; Bibhuprasad Mahakud; Jorma Tuominiemi; J. Duarte Campderros; Sumit Keshri; Ekaterina Kuznetsova; Pierluigi Zotto; Pierluigi Zotto; Salim Cerci; Fabrizio Palla; Zhen Hu; Daniel Winterbottom; Dinko Ferencek; Charles Maguire; Zoltan Gecse; Y. C. Yang; Graham Wilson; Andreas Albert; Ivan Mikulec; A. A. Bin Anuar; J. C. Freeman; Francesco Fiori; Frans Meijers; Patricia McBride; Raman Khurana; Joosep Pata; M. Bluj; D. Kim; Andreas Werner Jung; Gabriel Madigan; Attilio Santocchia; Yu. Andreev; Kristian Allan Hahn; M. Flechl; Rui Xiao; Igor Smirnov; Georg Steinbrück; Warren Clarida; Nathaniel Odell; G. Bagliesi; Silvano Tosi; Nicholas Smith; Tobias Pook; Thorsten Chwalek; Alexis Kalogeropoulos; Sourabh Dube; Ennio Monteil; Matthias Wolf; Caroline Collard; Dooyeon Gyun; I. Gonzalez Caballero; Aleko Khukhunaishvili; Yen-Jie Lee; Andrea Malara; Jane Nachtman; Magda Diamantopoulou; Janos Erö; Konstanty Sumorok; J. Suarez Gonzalez; Alessandra Fanfani; M. R. Adams; Z. Liu; Süleyman Durgut; Marek Walczak; Paolo Dini; Rainer Wallny; Michael Mulhearn; Charles C. Richardson; Igor Golutvin; Mircho Rodozov; Oleksii Toldaiev; Andreas Mussgiller; Marc Dünser; Maximilian Heindl; W. Ji; Sergei Gleyzer; Mayda Velasco; Gabriella Pasztor; Renato Potenza; A. Vorobyev; Stephen Robert Wagner;doi: 10.1016/j.physletb.2020.135409 , 10.3929/ethz-b-000409328 , 10.18154/rwth-2021-02348 , 10.5445/ir/1000118244 , 10.3204/pubdb-2020-01701 , 10.18154/rwth-2021-02305
handle: 11588/837510 , 11368/2961997 , 10281/275031 , 10486/704072 , 10679/9293 , 10067/1761620151162165141 , 10651/56803 , 11573/1718429 , 11568/1106026 , 20.500.14017/fe08831c-0b32-4e29-ab88-747a08733b3e , 11384/83156 , 11585/803078 , 20.500.11769/413392 , 2158/1210977 , 2318/1766345 , 10044/1/87584 , 11571/1486563
doi: 10.1016/j.physletb.2020.135409 , 10.3929/ethz-b-000409328 , 10.18154/rwth-2021-02348 , 10.5445/ir/1000118244 , 10.3204/pubdb-2020-01701 , 10.18154/rwth-2021-02305
handle: 11588/837510 , 11368/2961997 , 10281/275031 , 10486/704072 , 10679/9293 , 10067/1761620151162165141 , 10651/56803 , 11573/1718429 , 11568/1106026 , 20.500.14017/fe08831c-0b32-4e29-ab88-747a08733b3e , 11384/83156 , 11585/803078 , 20.500.11769/413392 , 2158/1210977 , 2318/1766345 , 10044/1/87584 , 11571/1486563
A study of the production of prompt J/ψ mesons contained in jets in proton-proton collisions at s=8TeV is presented. The analysis is based on data corresponding to an integrated luminosity of 19.1 fb−1 collected with the CMS detector at the LHC. For events with at least one observed jet, the angular separation between the J/ψ meson and the jet is used to test whether the J/ψ meson is part of the jet. The analysis shows that most prompt J/ψ mesons having energy above 15 GeV and rapidity |y|<1 are contained in jets with pseudorapidity |ηjet|<1. The differential distributions of the probability to have a J/ψ meson contained in a jet as a function of jet energy for a fixed J/ψ energy fraction are compared to a theoretical model using the fragmenting jet function approach. The data agree best with fragmenting jet function calculations that use a long-distance matrix element parameter set in which prompt J/ψ mesons are predicted to be unpolarized. This technique demonstrates a new way to test predictions for prompt J/ψ production using nonrelativistic quantum chromodynamics. Physics Letters B, 804 ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445
Full-text Institutio... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di PisaKITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://arxiv.org/abs/1910.01686Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87584Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288135Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8k1587qnData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2020License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der RWTH Aachen UniversityPreprint . 2019Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale Università di BergamoArticle . 2020Data sources: Archivio Istituzionale Università di BergamoFlore (Florence Research Repository)Article . 2020Data sources: Flore (Florence Research Repository)IRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di CataniaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2020.135409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Full-text Institutio... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di PisaKITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://arxiv.org/abs/1910.01686Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87584Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288135Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8k1587qnData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2020License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der RWTH Aachen UniversityPreprint . 2019Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale Università di BergamoArticle . 2020Data sources: Archivio Istituzionale Università di BergamoFlore (Florence Research Repository)Article . 2020Data sources: Flore (Florence Research Repository)IRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di CataniaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2020.135409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United KingdomPublisher:Public Library of Science (PLoS) Funded by:UKRI | HUMAN-AGENT COLLECTIVES: ..., UKRI | Intelligent Agents for Ho...UKRI| HUMAN-AGENT COLLECTIVES: FROM FOUNDATIONS TO APPLICATIONS [ORCHID] ,UKRI| Intelligent Agents for Home Energy ManagementSasan Maleki; Talal Rahwan; Siddhartha Ghosh; Areej Malibari; Daniyal Alghazzawi; Alex Rogers; Hamid Beigy; Nicholas R. Jennings;We consider a demand response program in which a block of apartments receive a discount from their electricity supplier if they ensure that their aggregate load from air conditioning does not exceed a predetermined threshold. The goal of the participants is to obtain the discount, while ensuring that their individual temperature preferences are also satisfied. As such, the apartments need to collectively optimise their use of air conditioning so as to satisfy these constraints and minimise their costs. Given an optimal cooling profile that secures the discount, the problem that the apartments face then is to divide the total discounted cost in a fair way. To achieve this, we take a coalitional game approach and propose the use of the Shapley value from cooperative game theory, which is the normative payoff division mechanism that offers a unique set of desirable fairness properties. However, applying the Shapley value in this setting presents a novel computational challenge. This is because its calculation requires, as input, the cost of every subset of apartments, which means solving an exponential number of collective optimisations, each of which is a computationally intensive problem. To address this, we propose solving the optimisation problem of each subset suboptimally, to allow for acceptable solutions that require less computation. We show that, due to the linearity property of the Shapley value, if suboptimal costs are used rather than optimal ones, the division of the discount will be fair in the following sense: each apartment is fairly "rewarded" for its contribution to the optimal cost and, at the same time, is fairly "penalised" for its contribution to the discrepancy between the suboptimal and the optimal costs. Importantly, this is achieved without requiring the optimal solutions.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/76403Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2019License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0227049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/76403Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2019License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0227049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:MDPI AG Weilin Zeng; Xujiang Wang; Kai Hong Luo; Konstantina Vogiatzaki; Salvador Navarro-Martinez;In this study, the generality and prediction accuracy of a generalised series model for the large eddy simulation of premixed and non-premixed turbulent combustion is explored. The model is based on the Taylor series expansion of the chemical source term in scalar space and implemented into OpenFOAM. The mathematical model does not depend on combustion regimes and has the correct limiting behaviour. The numerical error sources are also outlined and analysed. The model is first applied to a piloted methane/air non-premixed jet flame (Sandia Flame D). The statistical (time-averaged and RMS) results agree well with the experimental measurements, particularly with regard to the mixture fraction, velocity, temperature, and concentrations of major species CH4, CO2, H2O, and O2. However, the concentrations of the intermediates CO and H2 are over-predicted, due to the limitations of the reduced reaction mechanism employed. Then, a Bunsen-piloted flame is simulated. Most of the statistical properties of both the reactive species and progress variables are well reproduced. The only major discrepancy evident is in the temperature, which is probably attributed to the experimental uncertainties of temperature fields in the pilot stream. These findings demonstrate the model’s generality for both a premixed and non-premixed combustion simulation, as well as the accuracy of prediction of reactive species distribution.
Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:American Chemical Society (ACS) Funded by:UKRI | Application Targeted and ..., EC | CAPaCITy, UKRI | Stability of Organic Sola...UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in Solar ,EC| CAPaCITy ,UKRI| Stability of Organic Solar Cells based on Non-Fullerene AcceptorsHou, Xueyan; Coker, Jack F.; Yan, Jun; Shi, Xingyuan; Azzouzi, Mohammed; Eisner, Flurin D.; McGettrick, James D.; Tuladhar, Sachetan M.; Abrahams, Isaac; Frost, Jarvist M.; Li, Zhe; Dennis, T. John S.; Nelson, Jenny;Higher adducts of a fullerene, such as the bis-adduct of PCBM (bis-PCBM), can be used to achieve shallower molecular orbital energy levels than, for example, PCBM or C60. Substituting the bis-adduct for the parent fullerene is useful to increase the open-circuit voltage of organic solar cells or achieve better energy alignment as electron transport layers in, for example, perovskite solar cells. However, bis-PCBM is usually synthesized as a mixture of structural isomers, which can lead to both energetic and morphological disorder, negatively affecting device performance. Here, we present a comprehensive study on the molecular properties of 19 pure bis-isomers of PCBM using a variety of characterization methods, including ultraviolet photoelectron spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, single crystal structure, and (time-dependent) density functional theory calculation. We find that the lowest unoccupied molecular orbital of such bis-isomers can be tuned to be up to 170 meV shallower than PCBM and up to 100 meV shallower than the mixture of unseparated isomers. The isolated bis-isomers also show an electron mobility in organic field-effect transistors of up to 4.5 × 10-2 cm2/(V s), which is an order of magnitude higher than that of the mixture of bis-isomers. These properties enable the fabrication of the highest performing bis-PCBM organic solar cell to date, with the best device showing a power conversion efficiency of 7.2%. Interestingly, we find that the crystallinity of bis-isomers correlates negatively with electron mobility and organic solar cell device performance, which we relate to their molecular symmetry, with a lower symmetry leading to more amorphous bis-isomers, less energetic disorder, and higher dimensional electron transport. This work demonstrates the potential of side chain engineering for optimizing the performance of fullerene-based organic electronic devices.
Chemistry of Materia... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.3c02353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Chemistry of Materia... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.3c02353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Kang Wu; Jianyue Jiao; Na Li; Min Wang; Guofeng Jia; Yu Lin Lee; Rongbin Dang; Xin Deng; Xiaoling Xiao; Zhijian Wu;Layered O3-phase LiNi0.8Co0.1Mn0.1O2 (NCM811) material has shown great potential for lithium-ion batteries (LIBs). However, capacity attenuation and irreversible phase transitions have been serious...
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry CArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.1c01727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry CArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.1c01727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Mingyang Yang; Zhanming Ding; Yangjun Zhang; Ricardo Martinez-Botas; Hua Chen; Weilin Zhuge;Abstract With the widespread application of pulse turbochargers in internal combustion engines, steady or quasi-steady turbine models are no longer qualified for on-engine turbine performance prediction. Pulsatile flow condition caused by the reciprocating nature of the engine results in strong unsteadiness across the turbocharger turbine, which makes the turbine performance departing from that under steady or quasi-steady conditions. Modelling turbocharger turbine through a one-dimensional (1D) method is an important approach to simulate the unsteady performance of the turbine. In this paper, a 1D performance model of turbocharger turbines is presented. The model solves the turbine volute flow with 1D viscous equations, with volute curvature and circumferentially continuously flow exiting at volute outlet considered. The circumferential flow non-uniformity at volute outlet is preserved. The turbine rotor is modeled with multiple meanline models. The model was used to simulate the performance of a mixed-flow turbine and validated by the experimental data. Results show that the performance predictions are in good agreement with the experimental data. Flow parameters at internal points of the turbine predicted by the 1D model were compared with three-dimensional unsteady simulation results and reasonable agreement was observed, which demonstrates the ability of the 1D model in capturing the pulse propagation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.04.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.04.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2019 China (People's Republic of), United Kingdom, France, China (People's Republic of), China (People's Republic of)Publisher:Elsevier BV Funded by:UKRI | EPSRC Centre for Doctoral..., UKRI | Equipment Account: Integr..., UKRI | ECCS - EPSRC Development ... +6 projectsUKRI| EPSRC Centre for Doctoral Training in Graphene Technology ,UKRI| Equipment Account: Integrated Thin Film Deposition and Analysis System ,UKRI| ECCS - EPSRC Development of uniform, low power, high density resistive memory by vertical interface and defect design ,UKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structures ,UKRI| DTP 2016-2017 University of Cambridge ,UKRI| Precision Manufacturing of Flexible CMOS ,ANR| InHyMat-PV ,EC| Robust OTFT sensors ,UKRI| Centre for Advanced Materials for Integrated Energy Systems (CAM-IES)Philip Schulz; Judith L. MacManus-Driscoll; Wen Li; Wen Li; Mark Nikolka; Henry J. Snaith; Solène Béchu; Weiwei Li; Robert A. Jagt; Robert L. Z. Hoye; Robert L. Z. Hoye; Yen-Hung Lin; Mathieu Frégnaux; Zewei Li; R. D. Raninga; Tahmida N. Huq; Muriel Bouttemy; Mengyao Sun;handle: 10044/1/80123
Thin (approximately 10 nm) oxide buffer layers grown over lead-halide perovskite device stacks are critical for protecting the perovskite against mechanical and environmental damage. However, the limited perovskite stability restricts the processing methods and temperatures (<=110 C) that can be used to deposit the oxide overlayers, with the latter limiting the electronic properties of the oxides achievable. In this work, we demonstrate an alternative to existing methods that can grow pinhole-free TiOx (x = 2.00+/-0.05) films with the requisite thickness in <1 min without vacuum. This technique is atmospheric pressure chemical vapor deposition (AP-CVD). The rapid but soft deposition enables growth temperatures of >=180 ��C to be used to coat the perovskite. This is >=70 ��C higher than achievable by current methods and results in more conductive TiOx films, boosting solar cell efficiencies by >2%. Likewise, when AP-CVD SnOx (x ~ 2) is grown on perovskites, there is also minimal damage to the perovskite beneath. The SnOx layer is pinhole-free and conformal, which reduces shunting in devices, and increases steady-state efficiencies from 16.5% (no SnOx) to 19.4% (60 nm SnOx), with fill factors reaching 84%. This work shows AP-CVD to be a versatile technique for growing oxides on thermally-sensitive materials. R.D.R and R.A.J contributed equally. 23 pages. 6 figures
Hyper Article en Lig... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/80123Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03032363Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital Repositoryhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.104946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/80123Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03032363Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital Repositoryhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.104946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 21 Jan 2021 Italy, United Kingdom, Spain, Denmark, United Kingdom, Netherlands, Netherlands, Germany, Germany, United Kingdom, Spain, Switzerland, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | HYPERION, EC | ESPResSo, EC | APOLO +3 projectsEC| HYPERION ,EC| ESPResSo ,EC| APOLO ,RSF| Development of the technology of highly efficient and stable perovskite solar cells using steel substrates ,EC| GrapheneCore2 ,UKRI| SPECIFIC IKC Phase 2Nam-Gyu Park; Joseph J. Berry; Muriel Matheron; Jeff Kettle; Yulia Galagan; Francesca De Rossi; Francesca De Rossi; Harald Hoppe; Yueh-Lin Loo; Trystan Watson; Ramazan Yildirim; Sjoerd Veenstra; Vladimir Bulovic; Konrad Domanski; Shengzhong Frank Liu; Shengzhong Frank Liu; Anna Osherov; Mark V. Khenkin; Mark V. Khenkin; Ulrich S. Schubert; Michael D. McGehee; Michael D. McGehee; Diego Di Girolamo; Diego Di Girolamo; Aron Walsh; Aron Walsh; Francesca Brunetti; Marina S. Leite; Marina S. Leite; Giorgio Bardizza; Mohammad Khaja Nazeeruddin; Antonio Abate; Shaik M. Zakeeruddin; Eugene A. Katz; Michał Dusza; Chang-Qi Ma; Iris Visoly-Fisher; Michael Saliba; Michael Saliba; Hans Köbler; Aldo Di Carlo; Stéphane Cros; Anders Hagfeldt; Matthieu Manceau; Michael Grätzel; çaǧla Odabaşı; Elizabeth von Hauff; Rongrong Cheacharoen; Quinn Burlingame; Vida Turkovic; Ana Flávia Nogueira; Rico Meitzner; Yi-Bing Cheng; Haibing Xie; Monica Lira-Cantu; Morten Madsen; Kai Zhu; Alexander Colsmann; Stephen R. Forrest; Joseph M. Luther; Samuel D. Stranks; Christoph J. Brabec; Christoph J. Brabec; Henry J. Snaith; Wolfgang Tress; Pavel A. Troshin; Christopher J. Fell; Matthew O. Reese;AbstractImproving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.
CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,149 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 383visibility views 383 download downloads 101 Powered bymore_vert CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Zakaria Korei; Smail Benissaad; Ali J. Chamkha; Farid Berrahil; Abdelkader Filali;International Commun... arrow_drop_down International Communications in Heat and Mass TransferArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.icheatmasstransfer.2022.106497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Commun... arrow_drop_down International Communications in Heat and Mass TransferArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.icheatmasstransfer.2022.106497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV ChunYan Zhang; XiaoJun Su; XingYao Xiong; QiuLong Hu; Samuel Amartey; XingHe Tan; Wensheng Qin;Abstract We investigated changes in the physical and chemical properties of rapeseed straw after treatment with different doses of 60 Co γ-irradiation (0 kGy-1200 kGy). Raman spectra, electron spin resonance (ESR), and nuclear magnetic resonance (NMR) analyses of the pretreated samples showed that the irradiation partially destroyed the intra- or intermolecular structure of rapeseed straw. Particle size distribution and specific surface area analyses suggested that irradiation decreased the particle size, narrowed the distribution range, and increased the specific surface area. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves showed that increasing the irradiated dose decreased the thermal stability of the treated rapeseed straw and increased the reactivity. Elemental analyses suggested that the oxygen content slightly increased, suggesting that oxygen in the air may be involved in the reaction. These results demonstrate that γ-irradiation can induce a series of changes in the physical and chemical properties of rapeseed straw.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.11.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.11.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Report , Preprint , Journal 2020Embargo end date: 10 May 2020 United Kingdom, Spain, Italy, Croatia, United States, Italy, France, United Kingdom, Italy, Croatia, Italy, Croatia, Belgium, France, Turkey, Italy, Croatia, Germany, Italy, France, Italy, Germany, Belgium, Italy, Germany, Germany, Italy, Italy, United Kingdom, Belarus, Belarus, Belgium, Spain, Italy, France, United States, Switzerland, Italy, ItalyPublisher:Elsevier BV Funded by:DFG, EC | LHCTOPVLQ, EC | AMVA4NewPhysics +2 projectsDFG ,EC| LHCTOPVLQ ,EC| AMVA4NewPhysics ,EC| INSIGHTS ,GSRIAntonin Kveton; Marco Toliman Lucchini; Andromachi Tsirou; Luca Cadamuro; Jaana Kristiina Heikkilä; Dave M Newbold; David Saltzberg; Cécile Caillol; N. De Filippis; Petra Merkel; Jan Tomsa; M. Della Negra; David Jonathan Hofman; Stephen Sanders; Pushpalatha C Bhat; Daniel Gonzalez; Christopher West; Sandeep Bhowmik; Victor Golovtcov; G. B. Mohanty; E. Gurpinar Guler; Vyacheslav Klyukhin; Markus Seidel; Damir Devetak; Stephan Lammel; J. S. Lange; Paolo Ronchese; Paolo Ronchese; W. T. Hung; Stepan Obraztsov; Tommaso Dorigo; Dario Bisello; Dario Bisello; Raffaella Radogna; Milan Stojanovic; Quentin Python; Emanuela Barberis; J. R. González Fernández; Pedro Silva; Pedro G Mercadante; Grace Cummings; Marc Dejardin; Marta Verweij; P. Busson; Pascal Paganini; Willem Verbeke; Fabio Monti; Fabio Monti; Daniel Abercrombie; George Stephans; F. L. Fabbri; C. Baldenegro Barrera; P. E. Karchin; Matteo Cremonesi; James Wetzel; Jordan Martins; Marguerite Tonjes; D. Di Croce; L. J. Gutay; Jehad Mousa; Colin Bernet; W. Van Doninck; Kaya Tatar; Michael Dittmar; J. M. Grados Luyando; Hualin Mei; Marc Dobson; Maral Alyari; Paul Baillon; Nicholas Menendez; Yiwen Wen; Radek Zlebcik; A. Baden; Pietro Vischia; Mingshui Chen; Tilman Rohe; Haiyan Wang; Santiago Folgueras; P. Martinez Ruiz del Arbol; E. M. Da Costa; Altan Cakir; V. Monaco; K. H. M. Kwok; Christopher Hill; Gigi Rolandi; Basil Schneider; Alexander Ershov; Daniel Rosenzweig; Kyungwook Nam; Bruno Galinhas; James D. Olsen; Jamal Rorie; Prashant Shukla; Alicia Calderon; Candan Dozen; Marc Osherson; Eija Tuominen; Himal Acharya; Klaas Padeken; Davide Piccolo; Hugo Delannoy; Igor Lokhtin; Nadir Daci; Christophe Royon; Mauricio Thiel; W. De Boer; Cédric Prieels; A. Da Rold; C. A. Salazar González; Johannes Brandstetter; R. Loveless; Aleksandra Lelek; Frank Würthwein; Cristina Tuve; Inkyu Park; Didar Dobur; Elena Voevodina; Ivan Marchesini; Mariana Shopova; Y. Musienko; Bibhuprasad Mahakud; Jorma Tuominiemi; J. Duarte Campderros; Sumit Keshri; Ekaterina Kuznetsova; Pierluigi Zotto; Pierluigi Zotto; Salim Cerci; Fabrizio Palla; Zhen Hu; Daniel Winterbottom; Dinko Ferencek; Charles Maguire; Zoltan Gecse; Y. C. Yang; Graham Wilson; Andreas Albert; Ivan Mikulec; A. A. Bin Anuar; J. C. Freeman; Francesco Fiori; Frans Meijers; Patricia McBride; Raman Khurana; Joosep Pata; M. Bluj; D. Kim; Andreas Werner Jung; Gabriel Madigan; Attilio Santocchia; Yu. Andreev; Kristian Allan Hahn; M. Flechl; Rui Xiao; Igor Smirnov; Georg Steinbrück; Warren Clarida; Nathaniel Odell; G. Bagliesi; Silvano Tosi; Nicholas Smith; Tobias Pook; Thorsten Chwalek; Alexis Kalogeropoulos; Sourabh Dube; Ennio Monteil; Matthias Wolf; Caroline Collard; Dooyeon Gyun; I. Gonzalez Caballero; Aleko Khukhunaishvili; Yen-Jie Lee; Andrea Malara; Jane Nachtman; Magda Diamantopoulou; Janos Erö; Konstanty Sumorok; J. Suarez Gonzalez; Alessandra Fanfani; M. R. Adams; Z. Liu; Süleyman Durgut; Marek Walczak; Paolo Dini; Rainer Wallny; Michael Mulhearn; Charles C. Richardson; Igor Golutvin; Mircho Rodozov; Oleksii Toldaiev; Andreas Mussgiller; Marc Dünser; Maximilian Heindl; W. Ji; Sergei Gleyzer; Mayda Velasco; Gabriella Pasztor; Renato Potenza; A. Vorobyev; Stephen Robert Wagner;doi: 10.1016/j.physletb.2020.135409 , 10.3929/ethz-b-000409328 , 10.18154/rwth-2021-02348 , 10.5445/ir/1000118244 , 10.3204/pubdb-2020-01701 , 10.18154/rwth-2021-02305
handle: 11588/837510 , 11368/2961997 , 10281/275031 , 10486/704072 , 10679/9293 , 10067/1761620151162165141 , 10651/56803 , 11573/1718429 , 11568/1106026 , 20.500.14017/fe08831c-0b32-4e29-ab88-747a08733b3e , 11384/83156 , 11585/803078 , 20.500.11769/413392 , 2158/1210977 , 2318/1766345 , 10044/1/87584 , 11571/1486563
doi: 10.1016/j.physletb.2020.135409 , 10.3929/ethz-b-000409328 , 10.18154/rwth-2021-02348 , 10.5445/ir/1000118244 , 10.3204/pubdb-2020-01701 , 10.18154/rwth-2021-02305
handle: 11588/837510 , 11368/2961997 , 10281/275031 , 10486/704072 , 10679/9293 , 10067/1761620151162165141 , 10651/56803 , 11573/1718429 , 11568/1106026 , 20.500.14017/fe08831c-0b32-4e29-ab88-747a08733b3e , 11384/83156 , 11585/803078 , 20.500.11769/413392 , 2158/1210977 , 2318/1766345 , 10044/1/87584 , 11571/1486563
A study of the production of prompt J/ψ mesons contained in jets in proton-proton collisions at s=8TeV is presented. The analysis is based on data corresponding to an integrated luminosity of 19.1 fb−1 collected with the CMS detector at the LHC. For events with at least one observed jet, the angular separation between the J/ψ meson and the jet is used to test whether the J/ψ meson is part of the jet. The analysis shows that most prompt J/ψ mesons having energy above 15 GeV and rapidity |y|<1 are contained in jets with pseudorapidity |ηjet|<1. The differential distributions of the probability to have a J/ψ meson contained in a jet as a function of jet energy for a fixed J/ψ energy fraction are compared to a theoretical model using the fragmenting jet function approach. The data agree best with fragmenting jet function calculations that use a long-distance matrix element parameter set in which prompt J/ψ mesons are predicted to be unpolarized. This technique demonstrates a new way to test predictions for prompt J/ψ production using nonrelativistic quantum chromodynamics. Physics Letters B, 804 ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445
Full-text Institutio... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di PisaKITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://arxiv.org/abs/1910.01686Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87584Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288135Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8k1587qnData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2020License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der RWTH Aachen UniversityPreprint . 2019Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale Università di BergamoArticle . 2020Data sources: Archivio Istituzionale Università di BergamoFlore (Florence Research Repository)Article . 2020Data sources: Flore (Florence Research Repository)IRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di CataniaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2020.135409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Full-text Institutio... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di PisaKITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://arxiv.org/abs/1910.01686Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87584Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288135Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8k1587qnData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2020License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der RWTH Aachen UniversityPreprint . 2019Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale Università di BergamoArticle . 2020Data sources: Archivio Istituzionale Università di BergamoFlore (Florence Research Repository)Article . 2020Data sources: Flore (Florence Research Repository)IRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di CataniaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2020.135409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United KingdomPublisher:Public Library of Science (PLoS) Funded by:UKRI | HUMAN-AGENT COLLECTIVES: ..., UKRI | Intelligent Agents for Ho...UKRI| HUMAN-AGENT COLLECTIVES: FROM FOUNDATIONS TO APPLICATIONS [ORCHID] ,UKRI| Intelligent Agents for Home Energy ManagementSasan Maleki; Talal Rahwan; Siddhartha Ghosh; Areej Malibari; Daniyal Alghazzawi; Alex Rogers; Hamid Beigy; Nicholas R. Jennings;We consider a demand response program in which a block of apartments receive a discount from their electricity supplier if they ensure that their aggregate load from air conditioning does not exceed a predetermined threshold. The goal of the participants is to obtain the discount, while ensuring that their individual temperature preferences are also satisfied. As such, the apartments need to collectively optimise their use of air conditioning so as to satisfy these constraints and minimise their costs. Given an optimal cooling profile that secures the discount, the problem that the apartments face then is to divide the total discounted cost in a fair way. To achieve this, we take a coalitional game approach and propose the use of the Shapley value from cooperative game theory, which is the normative payoff division mechanism that offers a unique set of desirable fairness properties. However, applying the Shapley value in this setting presents a novel computational challenge. This is because its calculation requires, as input, the cost of every subset of apartments, which means solving an exponential number of collective optimisations, each of which is a computationally intensive problem. To address this, we propose solving the optimisation problem of each subset suboptimally, to allow for acceptable solutions that require less computation. We show that, due to the linearity property of the Shapley value, if suboptimal costs are used rather than optimal ones, the division of the discount will be fair in the following sense: each apartment is fairly "rewarded" for its contribution to the optimal cost and, at the same time, is fairly "penalised" for its contribution to the discrepancy between the suboptimal and the optimal costs. Importantly, this is achieved without requiring the optimal solutions.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/76403Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2019License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0227049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/76403Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2019License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0227049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:MDPI AG Weilin Zeng; Xujiang Wang; Kai Hong Luo; Konstantina Vogiatzaki; Salvador Navarro-Martinez;In this study, the generality and prediction accuracy of a generalised series model for the large eddy simulation of premixed and non-premixed turbulent combustion is explored. The model is based on the Taylor series expansion of the chemical source term in scalar space and implemented into OpenFOAM. The mathematical model does not depend on combustion regimes and has the correct limiting behaviour. The numerical error sources are also outlined and analysed. The model is first applied to a piloted methane/air non-premixed jet flame (Sandia Flame D). The statistical (time-averaged and RMS) results agree well with the experimental measurements, particularly with regard to the mixture fraction, velocity, temperature, and concentrations of major species CH4, CO2, H2O, and O2. However, the concentrations of the intermediates CO and H2 are over-predicted, due to the limitations of the reduced reaction mechanism employed. Then, a Bunsen-piloted flame is simulated. Most of the statistical properties of both the reactive species and progress variables are well reproduced. The only major discrepancy evident is in the temperature, which is probably attributed to the experimental uncertainties of temperature fields in the pilot stream. These findings demonstrate the model’s generality for both a premixed and non-premixed combustion simulation, as well as the accuracy of prediction of reactive species distribution.
Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:American Chemical Society (ACS) Funded by:UKRI | Application Targeted and ..., EC | CAPaCITy, UKRI | Stability of Organic Sola...UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in Solar ,EC| CAPaCITy ,UKRI| Stability of Organic Solar Cells based on Non-Fullerene AcceptorsHou, Xueyan; Coker, Jack F.; Yan, Jun; Shi, Xingyuan; Azzouzi, Mohammed; Eisner, Flurin D.; McGettrick, James D.; Tuladhar, Sachetan M.; Abrahams, Isaac; Frost, Jarvist M.; Li, Zhe; Dennis, T. John S.; Nelson, Jenny;Higher adducts of a fullerene, such as the bis-adduct of PCBM (bis-PCBM), can be used to achieve shallower molecular orbital energy levels than, for example, PCBM or C60. Substituting the bis-adduct for the parent fullerene is useful to increase the open-circuit voltage of organic solar cells or achieve better energy alignment as electron transport layers in, for example, perovskite solar cells. However, bis-PCBM is usually synthesized as a mixture of structural isomers, which can lead to both energetic and morphological disorder, negatively affecting device performance. Here, we present a comprehensive study on the molecular properties of 19 pure bis-isomers of PCBM using a variety of characterization methods, including ultraviolet photoelectron spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, single crystal structure, and (time-dependent) density functional theory calculation. We find that the lowest unoccupied molecular orbital of such bis-isomers can be tuned to be up to 170 meV shallower than PCBM and up to 100 meV shallower than the mixture of unseparated isomers. The isolated bis-isomers also show an electron mobility in organic field-effect transistors of up to 4.5 × 10-2 cm2/(V s), which is an order of magnitude higher than that of the mixture of bis-isomers. These properties enable the fabrication of the highest performing bis-PCBM organic solar cell to date, with the best device showing a power conversion efficiency of 7.2%. Interestingly, we find that the crystallinity of bis-isomers correlates negatively with electron mobility and organic solar cell device performance, which we relate to their molecular symmetry, with a lower symmetry leading to more amorphous bis-isomers, less energetic disorder, and higher dimensional electron transport. This work demonstrates the potential of side chain engineering for optimizing the performance of fullerene-based organic electronic devices.
Chemistry of Materia... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.3c02353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Chemistry of Materia... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.3c02353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu