- home
- Advanced Search
- Energy Research
- 15. Life on land
- CN
- Sensors
- Energy Research
- 15. Life on land
- CN
- Sensors
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2007Publisher:MDPI AG Authors: Li-Min Yang; Lingyun Zheng; Fengmei Yao; Jiahua Zhang;The grassland ecosystem in the Northern-Tibet Plateau (NTP) of China is verysensitive to weather and climate conditions of the region. In this study, we investigate thespatial and temporal variations of the grassland ecosystem in the NTP using theNOAA/AVHRR ten-day maximum NDVI composite data of 1981-2001. The relationshipsamong Vegetation Peak-Normalized Difference Vegetation Index (VP-NDVI) and climatevariables were quantified for six counties within the NTP. The notable and unevenalterations of the grassland in response to variation of climate and human impact in theNTP were revealed. Over the last two decades of the 20th century, the maximum greennessof the grassland has exhibited high increase, slight increase, no-change, slight decrease andhigh decrease, each occupies 0.27%, 8.71%, 77.27%, 13.06% and 0.69% of the total area ofthe NTP, respectively. A remarkable increase (decrease) in VP-NDVI occurred in thecentral-eastern (eastern) NTP whereas little change was observed in the western andnorthwestern NTP. A strong negative relationship between VP-NDVI and ET0 was foundin sub-frigid, semi-arid and frigid- arid regions of the NTP (i.e., Nakchu, Shantsa, Palgonand Amdo counties), suggesting that the ET0 is one limiting factor affecting grasslanddegradation. In the temperate-humid, sub-frigid and sub-humid regions of the NTP (Chaliand Sokshan counties), a significant inverse correlation between VP-NDVI and populationindicates that human activities have adversely affected the grassland condition as waspreviously reported in the literature. Results from this research suggest that the alterationand degradation of the grassland in the lower altitude of the NTP over the last two decades of the 20th century are likely caused by variations of climate and anthropogenic activities.
Sensors arrow_drop_down SensorsOther literature type . 2007License: CC BYFull-Text: http://www.mdpi.com/1424-8220/7/12/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s7123312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 49 citations 49 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2007License: CC BYFull-Text: http://www.mdpi.com/1424-8220/7/12/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s7123312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2007Publisher:MDPI AG Authors: Li-Min Yang; Lingyun Zheng; Fengmei Yao; Jiahua Zhang;The grassland ecosystem in the Northern-Tibet Plateau (NTP) of China is verysensitive to weather and climate conditions of the region. In this study, we investigate thespatial and temporal variations of the grassland ecosystem in the NTP using theNOAA/AVHRR ten-day maximum NDVI composite data of 1981-2001. The relationshipsamong Vegetation Peak-Normalized Difference Vegetation Index (VP-NDVI) and climatevariables were quantified for six counties within the NTP. The notable and unevenalterations of the grassland in response to variation of climate and human impact in theNTP were revealed. Over the last two decades of the 20th century, the maximum greennessof the grassland has exhibited high increase, slight increase, no-change, slight decrease andhigh decrease, each occupies 0.27%, 8.71%, 77.27%, 13.06% and 0.69% of the total area ofthe NTP, respectively. A remarkable increase (decrease) in VP-NDVI occurred in thecentral-eastern (eastern) NTP whereas little change was observed in the western andnorthwestern NTP. A strong negative relationship between VP-NDVI and ET0 was foundin sub-frigid, semi-arid and frigid- arid regions of the NTP (i.e., Nakchu, Shantsa, Palgonand Amdo counties), suggesting that the ET0 is one limiting factor affecting grasslanddegradation. In the temperate-humid, sub-frigid and sub-humid regions of the NTP (Chaliand Sokshan counties), a significant inverse correlation between VP-NDVI and populationindicates that human activities have adversely affected the grassland condition as waspreviously reported in the literature. Results from this research suggest that the alterationand degradation of the grassland in the lower altitude of the NTP over the last two decades of the 20th century are likely caused by variations of climate and anthropogenic activities.
Sensors arrow_drop_down SensorsOther literature type . 2007License: CC BYFull-Text: http://www.mdpi.com/1424-8220/7/12/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s7123312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 49 citations 49 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2007License: CC BYFull-Text: http://www.mdpi.com/1424-8220/7/12/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s7123312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2008Publisher:MDPI AG Xiaomin Sun; Jun Xia; Jing Tian; Renhua Zhang; Hongbo Su; Shaohui Chen;In order to make the prediction of land surface heat fluxes more robust, two improvements were made to an operational two-layer model proposed previously by Zhang. These improvements are: 1) a surface energy balance method is used to determine the theoretical boundary lines (namely ‘true wet/cool edge’ and ‘true dry/warm edge’ in the trapezoid) in the scatter plot for the surface temperature versus the fractional vegetation cover in mixed pixels; 2) a new assumption that the slope of the Tm – f curves is mainly controlled by soil water content is introduced. The variables required by the improved method include near surface vapor pressure, air temperature, surface resistance, aerodynamic resistance, fractional vegetation cover, surface temperature and net radiation. The model predictions from the improved model were assessed in this study by in situ measurements, which show that the total latent heat flux from the soil and vegetation are in close agreement with the in situ measurement with an RMSE (Root Mean Square Error) ranging from 30 w/m2~50 w/m2,which is consistent with the site scale measurement of latent heat flux. Because soil evaporation and vegetation transpiration are not measured separately from the field site, in situ measured CO2 flux is used to examine the modeled λEveg. Similar trends of seasonal variations of vegetation were found for the canopy transpiration retrievals and in situ CO2 flux measurements. The above differences are mainly caused by 1) the scale disparity between the field measurement and the MODIS observation; 2) the non-closure problem of the surface energy balance from the surface fluxes observations themselves. The improved method was successfully used to predict the component surface heat fluxes from the soil and vegetation and it provides a promising approach to study the canopy transpiration and the soil evaporation quantitatively during the rapid growing season of winter wheat in northern China.
Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/10/6165/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8106165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 119 citations 119 popularity Top 1% influence Top 10% impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/10/6165/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8106165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2008Publisher:MDPI AG Xiaomin Sun; Jun Xia; Jing Tian; Renhua Zhang; Hongbo Su; Shaohui Chen;In order to make the prediction of land surface heat fluxes more robust, two improvements were made to an operational two-layer model proposed previously by Zhang. These improvements are: 1) a surface energy balance method is used to determine the theoretical boundary lines (namely ‘true wet/cool edge’ and ‘true dry/warm edge’ in the trapezoid) in the scatter plot for the surface temperature versus the fractional vegetation cover in mixed pixels; 2) a new assumption that the slope of the Tm – f curves is mainly controlled by soil water content is introduced. The variables required by the improved method include near surface vapor pressure, air temperature, surface resistance, aerodynamic resistance, fractional vegetation cover, surface temperature and net radiation. The model predictions from the improved model were assessed in this study by in situ measurements, which show that the total latent heat flux from the soil and vegetation are in close agreement with the in situ measurement with an RMSE (Root Mean Square Error) ranging from 30 w/m2~50 w/m2,which is consistent with the site scale measurement of latent heat flux. Because soil evaporation and vegetation transpiration are not measured separately from the field site, in situ measured CO2 flux is used to examine the modeled λEveg. Similar trends of seasonal variations of vegetation were found for the canopy transpiration retrievals and in situ CO2 flux measurements. The above differences are mainly caused by 1) the scale disparity between the field measurement and the MODIS observation; 2) the non-closure problem of the surface energy balance from the surface fluxes observations themselves. The improved method was successfully used to predict the component surface heat fluxes from the soil and vegetation and it provides a promising approach to study the canopy transpiration and the soil evaporation quantitatively during the rapid growing season of winter wheat in northern China.
Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/10/6165/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8106165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 119 citations 119 popularity Top 1% influence Top 10% impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/10/6165/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8106165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2008Publisher:MDPI AG Authors: Xiaohong Gu; Hongtao Duan; Shouxuan Zhang; Ronghua Ma;We have measured the water quality and bio-optical parameters of 94 samples from Taihu Lake in situ and/or in the lab between June 10-18, 2007. A transparencyassisted decision tree was developed to more accurately divide the aquatic vegetation zone into a floating vegetation-dominated zone and a submerged vegetation-dominated zone, whose respective present biomass retrieval models were easily developed with an empirical approach because of the quasi-concurrence of ground field investigations with the satellite sensor flight over the lake. The significant quantitative relationships between the vegetation index NDVI (Normalized Difference Vegetation Index) of different images at different times were used to help develop the past biomass retrieval model on the basis of the present developed model. In Taihu Lake, the total covering area of aquatic vegetations decreased from 454.6 km2 in 2001 to 364.1 km2 in 2007. Correspondingly, the total biomass decreased from 489,000 tons in 2001 to 406,000 tons in 2007, suggesting that a great change in the ecological environment has been taking place in Taihu Lake over this period.
Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/6/3988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8063988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 93 citations 93 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/6/3988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8063988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2008Publisher:MDPI AG Authors: Xiaohong Gu; Hongtao Duan; Shouxuan Zhang; Ronghua Ma;We have measured the water quality and bio-optical parameters of 94 samples from Taihu Lake in situ and/or in the lab between June 10-18, 2007. A transparencyassisted decision tree was developed to more accurately divide the aquatic vegetation zone into a floating vegetation-dominated zone and a submerged vegetation-dominated zone, whose respective present biomass retrieval models were easily developed with an empirical approach because of the quasi-concurrence of ground field investigations with the satellite sensor flight over the lake. The significant quantitative relationships between the vegetation index NDVI (Normalized Difference Vegetation Index) of different images at different times were used to help develop the past biomass retrieval model on the basis of the present developed model. In Taihu Lake, the total covering area of aquatic vegetations decreased from 454.6 km2 in 2001 to 364.1 km2 in 2007. Correspondingly, the total biomass decreased from 489,000 tons in 2001 to 406,000 tons in 2007, suggesting that a great change in the ecological environment has been taking place in Taihu Lake over this period.
Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/6/3988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8063988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 93 citations 93 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/6/3988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8063988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Xin Lu; Hongli Zhao; Yanyan Huang; Shuangmei Liu; Zelong Ma; Yunzhong Jiang; Wei Zhang; Chuan Zhao;Soil moisture (SM) is an important parameter in land surface processes and the global water cycle. Remote sensing technologies are widely used to produce global-scale SM products (e.g., European Space Agency’s Climate Change Initiative (ESA CCI)). However, the current spatial resolutions of such products are low (e.g., >3 km). In recent years, using auxiliary data to downscale the spatial resolutions of SM products has been a hot research topic in the remote sensing research area. A new method, which spatially downscalesan SM product to generate a daily SM dataset at a 16 m spatial resolution based on a spatiotemporal fusion model (STFM) and modified perpendicular drought index (MPDI), was proposed in this paper. (1) First, a daily surface reflectance dataset with a 16 m spatial resolution was produced based on an STFM. (2) Then, a spatial scale conversion factor (SSCF) dataset was obtained by an MPDI dataset, which was calculated based on the dataset fused in the first step. (3) Third, a downscaled daily SM product with a 16 m spatial resolution was generated by combining the SSCF dataset and the original SM product. Five cities in southern Hebei Province were selected as study areas. Two 16 m GF6 images and nine 500 m MOD09GA images were used as auxiliary data to downscale a timeseries 25 km CCI SM dataset for nine dates from May to June 2019. A total of 151 in situ SM observations collected on 1 May, 21 May, 1 June, and 11 June were used for verification. The results indicated that the downscaled SM data with a 16 m spatial resolution had higher correlation coefficients and lower RMSE values compared with the original CCI SM data. The correlation coefficients between the downscaled SM data and in situ data ranged from 0.45 to 0.67 versus 0.33 to 0.54 for the original CCI SM data; the RMSE values ranged from 0.023 to 0.031 cm3/cm3 versus 0.027 to 0.032 cm3/cm3 for the original CCI SM data. The findings described in this paper can ensure effective farmland management and other practical production applications.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/14/5366/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22145366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/14/5366/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22145366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Xin Lu; Hongli Zhao; Yanyan Huang; Shuangmei Liu; Zelong Ma; Yunzhong Jiang; Wei Zhang; Chuan Zhao;Soil moisture (SM) is an important parameter in land surface processes and the global water cycle. Remote sensing technologies are widely used to produce global-scale SM products (e.g., European Space Agency’s Climate Change Initiative (ESA CCI)). However, the current spatial resolutions of such products are low (e.g., >3 km). In recent years, using auxiliary data to downscale the spatial resolutions of SM products has been a hot research topic in the remote sensing research area. A new method, which spatially downscalesan SM product to generate a daily SM dataset at a 16 m spatial resolution based on a spatiotemporal fusion model (STFM) and modified perpendicular drought index (MPDI), was proposed in this paper. (1) First, a daily surface reflectance dataset with a 16 m spatial resolution was produced based on an STFM. (2) Then, a spatial scale conversion factor (SSCF) dataset was obtained by an MPDI dataset, which was calculated based on the dataset fused in the first step. (3) Third, a downscaled daily SM product with a 16 m spatial resolution was generated by combining the SSCF dataset and the original SM product. Five cities in southern Hebei Province were selected as study areas. Two 16 m GF6 images and nine 500 m MOD09GA images were used as auxiliary data to downscale a timeseries 25 km CCI SM dataset for nine dates from May to June 2019. A total of 151 in situ SM observations collected on 1 May, 21 May, 1 June, and 11 June were used for verification. The results indicated that the downscaled SM data with a 16 m spatial resolution had higher correlation coefficients and lower RMSE values compared with the original CCI SM data. The correlation coefficients between the downscaled SM data and in situ data ranged from 0.45 to 0.67 versus 0.33 to 0.54 for the original CCI SM data; the RMSE values ranged from 0.023 to 0.031 cm3/cm3 versus 0.027 to 0.032 cm3/cm3 for the original CCI SM data. The findings described in this paper can ensure effective farmland management and other practical production applications.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/14/5366/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22145366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/14/5366/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22145366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Publisher:MDPI AG Authors: Xiaoman Lu; Guang Zheng; Colton Miller; Ernesto Alvarado;Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% (n = 35, p < 0.05, RMSE = 2.20 kg/m2) and 85% (n = 100, p < 0.01, RMSE = 1.71 kg/m2) of variation in field- and ALS-based forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB.
Sensors arrow_drop_down SensorsOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1424-8220/17/9/2062/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17092062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1424-8220/17/9/2062/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17092062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Publisher:MDPI AG Authors: Xiaoman Lu; Guang Zheng; Colton Miller; Ernesto Alvarado;Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% (n = 35, p < 0.05, RMSE = 2.20 kg/m2) and 85% (n = 100, p < 0.01, RMSE = 1.71 kg/m2) of variation in field- and ALS-based forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB.
Sensors arrow_drop_down SensorsOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1424-8220/17/9/2062/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17092062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1424-8220/17/9/2062/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17092062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Chunyan Zhang; Shan Guo; Yanning Guan; Danlu Cai; Xiaolin Bian;The Loess Plateau, covering approximately 640,000 km2, has experienced the most severe soil erosion in the world. A greening tendency has been noticed since implementing the Grain to Green Program (GTGP), which may prevent further soil erosion. Therefore, understanding the underpinning basis of greening stability and persistence is important for sustainable improvement. Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) datasets for 1982–2013 were used to investigate the temporal stability and persistent time (PT) of vegetation over the Loess Plateau, utilizing the coefficient of variation (CV) and the estimation of tendencies of vegetation greening starting from the selected reference conditions. Two periods from 1982 to 1999 (as the reference period) and 2000 to 2013 were selected by considering the GTGP since 1999. The results indicate that: (1) A significant increase in vegetation cover occurred in the low NDVI area (NDVI < 0.3), with a high fluctuation from 2000 to 2013 compared with the reference period. Moreover, the fluctuation in vegetation is more related to precipitation variation since 1999. (2) Most areas recovered in the greening trend of the first period starting in 2009, occurring in 28.7% (2628 of 9148) of the total area. (3) The revegetated areas have a low PT and a high CVvi, that is, the revegetated areas need a long time to recover from disturbances. Therefore, we identify the sensitive areas with PT = 4; further management needs to be implemented for sustainable development in these areas. These results provide a method to quantify the stability and persistence of the complex interactions between vegetation greenness and environmental changes, particularly in fragile areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Chunyan Zhang; Shan Guo; Yanning Guan; Danlu Cai; Xiaolin Bian;The Loess Plateau, covering approximately 640,000 km2, has experienced the most severe soil erosion in the world. A greening tendency has been noticed since implementing the Grain to Green Program (GTGP), which may prevent further soil erosion. Therefore, understanding the underpinning basis of greening stability and persistence is important for sustainable improvement. Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) datasets for 1982–2013 were used to investigate the temporal stability and persistent time (PT) of vegetation over the Loess Plateau, utilizing the coefficient of variation (CV) and the estimation of tendencies of vegetation greening starting from the selected reference conditions. Two periods from 1982 to 1999 (as the reference period) and 2000 to 2013 were selected by considering the GTGP since 1999. The results indicate that: (1) A significant increase in vegetation cover occurred in the low NDVI area (NDVI < 0.3), with a high fluctuation from 2000 to 2013 compared with the reference period. Moreover, the fluctuation in vegetation is more related to precipitation variation since 1999. (2) Most areas recovered in the greening trend of the first period starting in 2009, occurring in 28.7% (2628 of 9148) of the total area. (3) The revegetated areas have a low PT and a high CVvi, that is, the revegetated areas need a long time to recover from disturbances. Therefore, we identify the sensitive areas with PT = 4; further management needs to be implemented for sustainable development in these areas. These results provide a method to quantify the stability and persistence of the complex interactions between vegetation greenness and environmental changes, particularly in fragile areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Li Li; Xiaozhou Xin; Jing Zhao; Aixia Yang; Shanlong Wu; Hailong Zhang; Shanshan Yu;Vegetation plays a fundamental role within terrestrial ecosystems, serving as a cornerstone of their functionality. Presently, these crucial ecosystems face a myriad of threats, including deforestation, overgrazing, wildfires, and the impact of climate change. The implementation of remote sensing for monitoring the status and dynamics of vegetation ecosystems has emerged as an indispensable tool for advancing ecological research and effective resource management. This study takes a comprehensive approach by integrating ecosystem monitoring indicators and aligning them with the objectives of SDG15. We conducted a thorough analysis by leveraging global 500 m resolution products for vegetation Leaf Area Index (LAI) and land cover classification spanning the period from 2016 to 2020. This encompassed the calculation of annual average LAI, identification of anomalies, and evaluation of change rates, thereby enabling a comprehensive assessment of the global status and transformations occurring within major vegetation ecosystems. In 2020, a discernible rise in the annual Average LAI of major vegetation ecosystems on a global scale became evident when compared to data from 2016. Notably, the ecosystems demonstrating a slight increase in area constituted the largest proportion (34.23%), while those exhibiting a significant decrease were the least prevalent (6.09%). Within various regions, such as Eastern Europe, Central Africa, and South Asia, substantial increases in both forest ecosystem area and annual Average LAI were observed. Furthermore, Eastern Europe and Central America recorded significant expansions in both grassland ecosystem area and annual average LAI. Similarly, regions experiencing notable growth in both cropland ecosystem areas and annual average LAI encompassed Southern Africa, Northern Europe, and Eastern Africa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23208452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23208452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Li Li; Xiaozhou Xin; Jing Zhao; Aixia Yang; Shanlong Wu; Hailong Zhang; Shanshan Yu;Vegetation plays a fundamental role within terrestrial ecosystems, serving as a cornerstone of their functionality. Presently, these crucial ecosystems face a myriad of threats, including deforestation, overgrazing, wildfires, and the impact of climate change. The implementation of remote sensing for monitoring the status and dynamics of vegetation ecosystems has emerged as an indispensable tool for advancing ecological research and effective resource management. This study takes a comprehensive approach by integrating ecosystem monitoring indicators and aligning them with the objectives of SDG15. We conducted a thorough analysis by leveraging global 500 m resolution products for vegetation Leaf Area Index (LAI) and land cover classification spanning the period from 2016 to 2020. This encompassed the calculation of annual average LAI, identification of anomalies, and evaluation of change rates, thereby enabling a comprehensive assessment of the global status and transformations occurring within major vegetation ecosystems. In 2020, a discernible rise in the annual Average LAI of major vegetation ecosystems on a global scale became evident when compared to data from 2016. Notably, the ecosystems demonstrating a slight increase in area constituted the largest proportion (34.23%), while those exhibiting a significant decrease were the least prevalent (6.09%). Within various regions, such as Eastern Europe, Central Africa, and South Asia, substantial increases in both forest ecosystem area and annual Average LAI were observed. Furthermore, Eastern Europe and Central America recorded significant expansions in both grassland ecosystem area and annual average LAI. Similarly, regions experiencing notable growth in both cropland ecosystem areas and annual average LAI encompassed Southern Africa, Northern Europe, and Eastern Africa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23208452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23208452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:MDPI AG Lijun Xu; Qiyun Ran; Li Wang; Jianzhong Feng; Yan Zhao; Kui Wang; Xiaosong Lin; Linyan Bai;Multiple cropping provides China with a very important system of intensive cultivation, and can effectively enhance the efficiency of farmland use while improving regional food production and security. A multiple cropping index (MCI), which represents the intensity of multiple cropping and reflects the effects of climate change on agricultural production and cropping systems, often serves as a useful parameter. Therefore, monitoring the dynamic changes in the MCI of farmland over a large area using remote sensing data is essential. For this purpose, nearly 30 years of MCIs related to dry land in the North China Plain (NCP) were efficiently extracted from remotely sensed leaf area index (LAI) data from the Global LAnd Surface Satellite (GLASS). Next, the characteristics of the spatial-temporal change in MCI were analyzed. First, 2162 typical arable sample sites were selected based on a gridded spatial sampling strategy, and then the LAI information was extracted from the samples. Second, the Savizky-Golay filter was used to smooth the LAI time-series data of the samples, and then the MCIs of the samples were obtained using a second-order difference algorithm. Finally, the geo-statistical Kriging method was employed to map the spatial distribution of the MCIs and to obtain a time-series dataset of the MCIs of dry land over the NCP. The results showed that all of the MCIs in the NCP showed an increasing trend over the entire study period and increased most rapidly from 1982 to 2002. Spatially, MCIs decreased from south to north; also, high MCIs were mainly concentrated in the relatively flat areas. In addition, the partial spatial changes of MCIs had clear geographical characteristics, with the largest change in Henan Province.
Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/4/557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16040557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/4/557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16040557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:MDPI AG Lijun Xu; Qiyun Ran; Li Wang; Jianzhong Feng; Yan Zhao; Kui Wang; Xiaosong Lin; Linyan Bai;Multiple cropping provides China with a very important system of intensive cultivation, and can effectively enhance the efficiency of farmland use while improving regional food production and security. A multiple cropping index (MCI), which represents the intensity of multiple cropping and reflects the effects of climate change on agricultural production and cropping systems, often serves as a useful parameter. Therefore, monitoring the dynamic changes in the MCI of farmland over a large area using remote sensing data is essential. For this purpose, nearly 30 years of MCIs related to dry land in the North China Plain (NCP) were efficiently extracted from remotely sensed leaf area index (LAI) data from the Global LAnd Surface Satellite (GLASS). Next, the characteristics of the spatial-temporal change in MCI were analyzed. First, 2162 typical arable sample sites were selected based on a gridded spatial sampling strategy, and then the LAI information was extracted from the samples. Second, the Savizky-Golay filter was used to smooth the LAI time-series data of the samples, and then the MCIs of the samples were obtained using a second-order difference algorithm. Finally, the geo-statistical Kriging method was employed to map the spatial distribution of the MCIs and to obtain a time-series dataset of the MCIs of dry land over the NCP. The results showed that all of the MCIs in the NCP showed an increasing trend over the entire study period and increased most rapidly from 1982 to 2002. Spatially, MCIs decreased from south to north; also, high MCIs were mainly concentrated in the relatively flat areas. In addition, the partial spatial changes of MCIs had clear geographical characteristics, with the largest change in Henan Province.
Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/4/557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16040557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/4/557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16040557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Hu, Yang; Wu, Fayun; Sun, Zhongqiu; Lister, Andrew; Gao, Xianlian; Li, Weitao; Peng, Daoli;The use of satellite-borne large-footprint LiDAR (light detection and ranging) systems allows for the acquisition of forest monitoring data. This paper mainly describes the design, use, operating principles, installation and data properties of the new Laser Vegetation Detecting Sensor (LVDS), a LiDAR system designed and developed at the Academy of Forest Inventory and Planning (AFIP) and the Beijing Institute of Telemetry (BIT). Data from LVDS were used to calculate the mean height of forest trees on sample plots using data collected in the Hunan province of China. The results show that the full waveform data obtained by LVDS has the ability to accurately characterize forest height. The mean absolute percentage error of mean forest height per plot in flat areas was 6.8%, with a mean absolute deviation of 0.78 m. The airborne LVDS system provides prototype data sets and a platform for instrument proof-of-concept studies for China’s Terrestrial Ecosystem Carbon Monitoring (TECM) mission, which is an Earth remote sensing satellite due for launch in 2020. The information produced by LVDS allows for forest structure studies with high accuracy and coverage of large areas.
Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/7/1699/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19071699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/7/1699/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19071699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Hu, Yang; Wu, Fayun; Sun, Zhongqiu; Lister, Andrew; Gao, Xianlian; Li, Weitao; Peng, Daoli;The use of satellite-borne large-footprint LiDAR (light detection and ranging) systems allows for the acquisition of forest monitoring data. This paper mainly describes the design, use, operating principles, installation and data properties of the new Laser Vegetation Detecting Sensor (LVDS), a LiDAR system designed and developed at the Academy of Forest Inventory and Planning (AFIP) and the Beijing Institute of Telemetry (BIT). Data from LVDS were used to calculate the mean height of forest trees on sample plots using data collected in the Hunan province of China. The results show that the full waveform data obtained by LVDS has the ability to accurately characterize forest height. The mean absolute percentage error of mean forest height per plot in flat areas was 6.8%, with a mean absolute deviation of 0.78 m. The airborne LVDS system provides prototype data sets and a platform for instrument proof-of-concept studies for China’s Terrestrial Ecosystem Carbon Monitoring (TECM) mission, which is an Earth remote sensing satellite due for launch in 2020. The information produced by LVDS allows for forest structure studies with high accuracy and coverage of large areas.
Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/7/1699/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19071699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/7/1699/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19071699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Siyuan Wang; Sida Li; Shaoyan Zheng; Weilun Gao; Yong Zhang; Bo Cao; Baoshan Cui; Dongdong Shao;Estimating the biomass of Phragmites australis (Cav.) Trin. ex Steud., i.e., a common wetland macrophyte, and the associated carbon sequestration capacity has attracted increasing attention. Hanshiqiao Wetland Nature Reserve (HWNR) is a large P. australis wetland in Beijing, China, and provides an ideal case study site for such purpose in an urban setting. In this study, an existing P. australis growth dynamics model was adapted to estimate the plant biomass, which was in turn converted to the associated carbon sequestration capacity in the HWNR throughout a typical year. To account for local differences, the modeling parameters were calibrated against the above-ground biomass (AGB) of P. australis retrieved from hyperspectral images of the study site. We also analyzed the sensitivity of the modeling parameters and the influence of environmental factors, particularly the nutrient availability, on the growth dynamics and carbon sequestration capacity of P. australis. Our results show that the maximum AGB and below-ground biomass (BGB) of P. australis in the HWNR are 2.93 × 103 and 2.49 × 103 g m−2, respectively, which are higher than the reported level from nearby sites with similar latitudes, presumably due to the relatively high nutrient availability and more suitable inundation conditions in the HWNR. The annual carbon sequestration capacity of P. australis in the HWNR was estimated to be 2040.73 gC m−2 yr−1, which was also found to be highly dependent on nutrient availability, with a 50% increase (decrease) in the constant of the nutrient availability KNP, resulting in a 12% increase (23% decrease) in the annual carbon sequestration capacity. This implies that a comprehensive management of urban wetlands that often encounter eutrophication problems to synergize the effects of nutrient control and carbon sequestration is worth considering in future practices.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/9/3141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22093141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/9/3141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22093141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Siyuan Wang; Sida Li; Shaoyan Zheng; Weilun Gao; Yong Zhang; Bo Cao; Baoshan Cui; Dongdong Shao;Estimating the biomass of Phragmites australis (Cav.) Trin. ex Steud., i.e., a common wetland macrophyte, and the associated carbon sequestration capacity has attracted increasing attention. Hanshiqiao Wetland Nature Reserve (HWNR) is a large P. australis wetland in Beijing, China, and provides an ideal case study site for such purpose in an urban setting. In this study, an existing P. australis growth dynamics model was adapted to estimate the plant biomass, which was in turn converted to the associated carbon sequestration capacity in the HWNR throughout a typical year. To account for local differences, the modeling parameters were calibrated against the above-ground biomass (AGB) of P. australis retrieved from hyperspectral images of the study site. We also analyzed the sensitivity of the modeling parameters and the influence of environmental factors, particularly the nutrient availability, on the growth dynamics and carbon sequestration capacity of P. australis. Our results show that the maximum AGB and below-ground biomass (BGB) of P. australis in the HWNR are 2.93 × 103 and 2.49 × 103 g m−2, respectively, which are higher than the reported level from nearby sites with similar latitudes, presumably due to the relatively high nutrient availability and more suitable inundation conditions in the HWNR. The annual carbon sequestration capacity of P. australis in the HWNR was estimated to be 2040.73 gC m−2 yr−1, which was also found to be highly dependent on nutrient availability, with a 50% increase (decrease) in the constant of the nutrient availability KNP, resulting in a 12% increase (23% decrease) in the annual carbon sequestration capacity. This implies that a comprehensive management of urban wetlands that often encounter eutrophication problems to synergize the effects of nutrient control and carbon sequestration is worth considering in future practices.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/9/3141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22093141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/9/3141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22093141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2007Publisher:MDPI AG Authors: Li-Min Yang; Lingyun Zheng; Fengmei Yao; Jiahua Zhang;The grassland ecosystem in the Northern-Tibet Plateau (NTP) of China is verysensitive to weather and climate conditions of the region. In this study, we investigate thespatial and temporal variations of the grassland ecosystem in the NTP using theNOAA/AVHRR ten-day maximum NDVI composite data of 1981-2001. The relationshipsamong Vegetation Peak-Normalized Difference Vegetation Index (VP-NDVI) and climatevariables were quantified for six counties within the NTP. The notable and unevenalterations of the grassland in response to variation of climate and human impact in theNTP were revealed. Over the last two decades of the 20th century, the maximum greennessof the grassland has exhibited high increase, slight increase, no-change, slight decrease andhigh decrease, each occupies 0.27%, 8.71%, 77.27%, 13.06% and 0.69% of the total area ofthe NTP, respectively. A remarkable increase (decrease) in VP-NDVI occurred in thecentral-eastern (eastern) NTP whereas little change was observed in the western andnorthwestern NTP. A strong negative relationship between VP-NDVI and ET0 was foundin sub-frigid, semi-arid and frigid- arid regions of the NTP (i.e., Nakchu, Shantsa, Palgonand Amdo counties), suggesting that the ET0 is one limiting factor affecting grasslanddegradation. In the temperate-humid, sub-frigid and sub-humid regions of the NTP (Chaliand Sokshan counties), a significant inverse correlation between VP-NDVI and populationindicates that human activities have adversely affected the grassland condition as waspreviously reported in the literature. Results from this research suggest that the alterationand degradation of the grassland in the lower altitude of the NTP over the last two decades of the 20th century are likely caused by variations of climate and anthropogenic activities.
Sensors arrow_drop_down SensorsOther literature type . 2007License: CC BYFull-Text: http://www.mdpi.com/1424-8220/7/12/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s7123312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 49 citations 49 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2007License: CC BYFull-Text: http://www.mdpi.com/1424-8220/7/12/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s7123312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2007Publisher:MDPI AG Authors: Li-Min Yang; Lingyun Zheng; Fengmei Yao; Jiahua Zhang;The grassland ecosystem in the Northern-Tibet Plateau (NTP) of China is verysensitive to weather and climate conditions of the region. In this study, we investigate thespatial and temporal variations of the grassland ecosystem in the NTP using theNOAA/AVHRR ten-day maximum NDVI composite data of 1981-2001. The relationshipsamong Vegetation Peak-Normalized Difference Vegetation Index (VP-NDVI) and climatevariables were quantified for six counties within the NTP. The notable and unevenalterations of the grassland in response to variation of climate and human impact in theNTP were revealed. Over the last two decades of the 20th century, the maximum greennessof the grassland has exhibited high increase, slight increase, no-change, slight decrease andhigh decrease, each occupies 0.27%, 8.71%, 77.27%, 13.06% and 0.69% of the total area ofthe NTP, respectively. A remarkable increase (decrease) in VP-NDVI occurred in thecentral-eastern (eastern) NTP whereas little change was observed in the western andnorthwestern NTP. A strong negative relationship between VP-NDVI and ET0 was foundin sub-frigid, semi-arid and frigid- arid regions of the NTP (i.e., Nakchu, Shantsa, Palgonand Amdo counties), suggesting that the ET0 is one limiting factor affecting grasslanddegradation. In the temperate-humid, sub-frigid and sub-humid regions of the NTP (Chaliand Sokshan counties), a significant inverse correlation between VP-NDVI and populationindicates that human activities have adversely affected the grassland condition as waspreviously reported in the literature. Results from this research suggest that the alterationand degradation of the grassland in the lower altitude of the NTP over the last two decades of the 20th century are likely caused by variations of climate and anthropogenic activities.
Sensors arrow_drop_down SensorsOther literature type . 2007License: CC BYFull-Text: http://www.mdpi.com/1424-8220/7/12/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s7123312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 49 citations 49 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2007License: CC BYFull-Text: http://www.mdpi.com/1424-8220/7/12/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s7123312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2008Publisher:MDPI AG Xiaomin Sun; Jun Xia; Jing Tian; Renhua Zhang; Hongbo Su; Shaohui Chen;In order to make the prediction of land surface heat fluxes more robust, two improvements were made to an operational two-layer model proposed previously by Zhang. These improvements are: 1) a surface energy balance method is used to determine the theoretical boundary lines (namely ‘true wet/cool edge’ and ‘true dry/warm edge’ in the trapezoid) in the scatter plot for the surface temperature versus the fractional vegetation cover in mixed pixels; 2) a new assumption that the slope of the Tm – f curves is mainly controlled by soil water content is introduced. The variables required by the improved method include near surface vapor pressure, air temperature, surface resistance, aerodynamic resistance, fractional vegetation cover, surface temperature and net radiation. The model predictions from the improved model were assessed in this study by in situ measurements, which show that the total latent heat flux from the soil and vegetation are in close agreement with the in situ measurement with an RMSE (Root Mean Square Error) ranging from 30 w/m2~50 w/m2,which is consistent with the site scale measurement of latent heat flux. Because soil evaporation and vegetation transpiration are not measured separately from the field site, in situ measured CO2 flux is used to examine the modeled λEveg. Similar trends of seasonal variations of vegetation were found for the canopy transpiration retrievals and in situ CO2 flux measurements. The above differences are mainly caused by 1) the scale disparity between the field measurement and the MODIS observation; 2) the non-closure problem of the surface energy balance from the surface fluxes observations themselves. The improved method was successfully used to predict the component surface heat fluxes from the soil and vegetation and it provides a promising approach to study the canopy transpiration and the soil evaporation quantitatively during the rapid growing season of winter wheat in northern China.
Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/10/6165/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8106165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 119 citations 119 popularity Top 1% influence Top 10% impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/10/6165/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8106165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2008Publisher:MDPI AG Xiaomin Sun; Jun Xia; Jing Tian; Renhua Zhang; Hongbo Su; Shaohui Chen;In order to make the prediction of land surface heat fluxes more robust, two improvements were made to an operational two-layer model proposed previously by Zhang. These improvements are: 1) a surface energy balance method is used to determine the theoretical boundary lines (namely ‘true wet/cool edge’ and ‘true dry/warm edge’ in the trapezoid) in the scatter plot for the surface temperature versus the fractional vegetation cover in mixed pixels; 2) a new assumption that the slope of the Tm – f curves is mainly controlled by soil water content is introduced. The variables required by the improved method include near surface vapor pressure, air temperature, surface resistance, aerodynamic resistance, fractional vegetation cover, surface temperature and net radiation. The model predictions from the improved model were assessed in this study by in situ measurements, which show that the total latent heat flux from the soil and vegetation are in close agreement with the in situ measurement with an RMSE (Root Mean Square Error) ranging from 30 w/m2~50 w/m2,which is consistent with the site scale measurement of latent heat flux. Because soil evaporation and vegetation transpiration are not measured separately from the field site, in situ measured CO2 flux is used to examine the modeled λEveg. Similar trends of seasonal variations of vegetation were found for the canopy transpiration retrievals and in situ CO2 flux measurements. The above differences are mainly caused by 1) the scale disparity between the field measurement and the MODIS observation; 2) the non-closure problem of the surface energy balance from the surface fluxes observations themselves. The improved method was successfully used to predict the component surface heat fluxes from the soil and vegetation and it provides a promising approach to study the canopy transpiration and the soil evaporation quantitatively during the rapid growing season of winter wheat in northern China.
Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/10/6165/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8106165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 119 citations 119 popularity Top 1% influence Top 10% impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/10/6165/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8106165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2008Publisher:MDPI AG Authors: Xiaohong Gu; Hongtao Duan; Shouxuan Zhang; Ronghua Ma;We have measured the water quality and bio-optical parameters of 94 samples from Taihu Lake in situ and/or in the lab between June 10-18, 2007. A transparencyassisted decision tree was developed to more accurately divide the aquatic vegetation zone into a floating vegetation-dominated zone and a submerged vegetation-dominated zone, whose respective present biomass retrieval models were easily developed with an empirical approach because of the quasi-concurrence of ground field investigations with the satellite sensor flight over the lake. The significant quantitative relationships between the vegetation index NDVI (Normalized Difference Vegetation Index) of different images at different times were used to help develop the past biomass retrieval model on the basis of the present developed model. In Taihu Lake, the total covering area of aquatic vegetations decreased from 454.6 km2 in 2001 to 364.1 km2 in 2007. Correspondingly, the total biomass decreased from 489,000 tons in 2001 to 406,000 tons in 2007, suggesting that a great change in the ecological environment has been taking place in Taihu Lake over this period.
Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/6/3988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8063988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 93 citations 93 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/6/3988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8063988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2008Publisher:MDPI AG Authors: Xiaohong Gu; Hongtao Duan; Shouxuan Zhang; Ronghua Ma;We have measured the water quality and bio-optical parameters of 94 samples from Taihu Lake in situ and/or in the lab between June 10-18, 2007. A transparencyassisted decision tree was developed to more accurately divide the aquatic vegetation zone into a floating vegetation-dominated zone and a submerged vegetation-dominated zone, whose respective present biomass retrieval models were easily developed with an empirical approach because of the quasi-concurrence of ground field investigations with the satellite sensor flight over the lake. The significant quantitative relationships between the vegetation index NDVI (Normalized Difference Vegetation Index) of different images at different times were used to help develop the past biomass retrieval model on the basis of the present developed model. In Taihu Lake, the total covering area of aquatic vegetations decreased from 454.6 km2 in 2001 to 364.1 km2 in 2007. Correspondingly, the total biomass decreased from 489,000 tons in 2001 to 406,000 tons in 2007, suggesting that a great change in the ecological environment has been taking place in Taihu Lake over this period.
Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/6/3988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8063988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 93 citations 93 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2008License: CC BYFull-Text: http://www.mdpi.com/1424-8220/8/6/3988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s8063988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Xin Lu; Hongli Zhao; Yanyan Huang; Shuangmei Liu; Zelong Ma; Yunzhong Jiang; Wei Zhang; Chuan Zhao;Soil moisture (SM) is an important parameter in land surface processes and the global water cycle. Remote sensing technologies are widely used to produce global-scale SM products (e.g., European Space Agency’s Climate Change Initiative (ESA CCI)). However, the current spatial resolutions of such products are low (e.g., >3 km). In recent years, using auxiliary data to downscale the spatial resolutions of SM products has been a hot research topic in the remote sensing research area. A new method, which spatially downscalesan SM product to generate a daily SM dataset at a 16 m spatial resolution based on a spatiotemporal fusion model (STFM) and modified perpendicular drought index (MPDI), was proposed in this paper. (1) First, a daily surface reflectance dataset with a 16 m spatial resolution was produced based on an STFM. (2) Then, a spatial scale conversion factor (SSCF) dataset was obtained by an MPDI dataset, which was calculated based on the dataset fused in the first step. (3) Third, a downscaled daily SM product with a 16 m spatial resolution was generated by combining the SSCF dataset and the original SM product. Five cities in southern Hebei Province were selected as study areas. Two 16 m GF6 images and nine 500 m MOD09GA images were used as auxiliary data to downscale a timeseries 25 km CCI SM dataset for nine dates from May to June 2019. A total of 151 in situ SM observations collected on 1 May, 21 May, 1 June, and 11 June were used for verification. The results indicated that the downscaled SM data with a 16 m spatial resolution had higher correlation coefficients and lower RMSE values compared with the original CCI SM data. The correlation coefficients between the downscaled SM data and in situ data ranged from 0.45 to 0.67 versus 0.33 to 0.54 for the original CCI SM data; the RMSE values ranged from 0.023 to 0.031 cm3/cm3 versus 0.027 to 0.032 cm3/cm3 for the original CCI SM data. The findings described in this paper can ensure effective farmland management and other practical production applications.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/14/5366/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22145366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/14/5366/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22145366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Xin Lu; Hongli Zhao; Yanyan Huang; Shuangmei Liu; Zelong Ma; Yunzhong Jiang; Wei Zhang; Chuan Zhao;Soil moisture (SM) is an important parameter in land surface processes and the global water cycle. Remote sensing technologies are widely used to produce global-scale SM products (e.g., European Space Agency’s Climate Change Initiative (ESA CCI)). However, the current spatial resolutions of such products are low (e.g., >3 km). In recent years, using auxiliary data to downscale the spatial resolutions of SM products has been a hot research topic in the remote sensing research area. A new method, which spatially downscalesan SM product to generate a daily SM dataset at a 16 m spatial resolution based on a spatiotemporal fusion model (STFM) and modified perpendicular drought index (MPDI), was proposed in this paper. (1) First, a daily surface reflectance dataset with a 16 m spatial resolution was produced based on an STFM. (2) Then, a spatial scale conversion factor (SSCF) dataset was obtained by an MPDI dataset, which was calculated based on the dataset fused in the first step. (3) Third, a downscaled daily SM product with a 16 m spatial resolution was generated by combining the SSCF dataset and the original SM product. Five cities in southern Hebei Province were selected as study areas. Two 16 m GF6 images and nine 500 m MOD09GA images were used as auxiliary data to downscale a timeseries 25 km CCI SM dataset for nine dates from May to June 2019. A total of 151 in situ SM observations collected on 1 May, 21 May, 1 June, and 11 June were used for verification. The results indicated that the downscaled SM data with a 16 m spatial resolution had higher correlation coefficients and lower RMSE values compared with the original CCI SM data. The correlation coefficients between the downscaled SM data and in situ data ranged from 0.45 to 0.67 versus 0.33 to 0.54 for the original CCI SM data; the RMSE values ranged from 0.023 to 0.031 cm3/cm3 versus 0.027 to 0.032 cm3/cm3 for the original CCI SM data. The findings described in this paper can ensure effective farmland management and other practical production applications.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/14/5366/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22145366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/14/5366/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22145366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Publisher:MDPI AG Authors: Xiaoman Lu; Guang Zheng; Colton Miller; Ernesto Alvarado;Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% (n = 35, p < 0.05, RMSE = 2.20 kg/m2) and 85% (n = 100, p < 0.01, RMSE = 1.71 kg/m2) of variation in field- and ALS-based forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB.
Sensors arrow_drop_down SensorsOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1424-8220/17/9/2062/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17092062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1424-8220/17/9/2062/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17092062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Publisher:MDPI AG Authors: Xiaoman Lu; Guang Zheng; Colton Miller; Ernesto Alvarado;Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% (n = 35, p < 0.05, RMSE = 2.20 kg/m2) and 85% (n = 100, p < 0.01, RMSE = 1.71 kg/m2) of variation in field- and ALS-based forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB.
Sensors arrow_drop_down SensorsOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1424-8220/17/9/2062/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17092062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1424-8220/17/9/2062/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17092062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Chunyan Zhang; Shan Guo; Yanning Guan; Danlu Cai; Xiaolin Bian;The Loess Plateau, covering approximately 640,000 km2, has experienced the most severe soil erosion in the world. A greening tendency has been noticed since implementing the Grain to Green Program (GTGP), which may prevent further soil erosion. Therefore, understanding the underpinning basis of greening stability and persistence is important for sustainable improvement. Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) datasets for 1982–2013 were used to investigate the temporal stability and persistent time (PT) of vegetation over the Loess Plateau, utilizing the coefficient of variation (CV) and the estimation of tendencies of vegetation greening starting from the selected reference conditions. Two periods from 1982 to 1999 (as the reference period) and 2000 to 2013 were selected by considering the GTGP since 1999. The results indicate that: (1) A significant increase in vegetation cover occurred in the low NDVI area (NDVI < 0.3), with a high fluctuation from 2000 to 2013 compared with the reference period. Moreover, the fluctuation in vegetation is more related to precipitation variation since 1999. (2) Most areas recovered in the greening trend of the first period starting in 2009, occurring in 28.7% (2628 of 9148) of the total area. (3) The revegetated areas have a low PT and a high CVvi, that is, the revegetated areas need a long time to recover from disturbances. Therefore, we identify the sensitive areas with PT = 4; further management needs to be implemented for sustainable development in these areas. These results provide a method to quantify the stability and persistence of the complex interactions between vegetation greenness and environmental changes, particularly in fragile areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Chunyan Zhang; Shan Guo; Yanning Guan; Danlu Cai; Xiaolin Bian;The Loess Plateau, covering approximately 640,000 km2, has experienced the most severe soil erosion in the world. A greening tendency has been noticed since implementing the Grain to Green Program (GTGP), which may prevent further soil erosion. Therefore, understanding the underpinning basis of greening stability and persistence is important for sustainable improvement. Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) datasets for 1982–2013 were used to investigate the temporal stability and persistent time (PT) of vegetation over the Loess Plateau, utilizing the coefficient of variation (CV) and the estimation of tendencies of vegetation greening starting from the selected reference conditions. Two periods from 1982 to 1999 (as the reference period) and 2000 to 2013 were selected by considering the GTGP since 1999. The results indicate that: (1) A significant increase in vegetation cover occurred in the low NDVI area (NDVI < 0.3), with a high fluctuation from 2000 to 2013 compared with the reference period. Moreover, the fluctuation in vegetation is more related to precipitation variation since 1999. (2) Most areas recovered in the greening trend of the first period starting in 2009, occurring in 28.7% (2628 of 9148) of the total area. (3) The revegetated areas have a low PT and a high CVvi, that is, the revegetated areas need a long time to recover from disturbances. Therefore, we identify the sensitive areas with PT = 4; further management needs to be implemented for sustainable development in these areas. These results provide a method to quantify the stability and persistence of the complex interactions between vegetation greenness and environmental changes, particularly in fragile areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Li Li; Xiaozhou Xin; Jing Zhao; Aixia Yang; Shanlong Wu; Hailong Zhang; Shanshan Yu;Vegetation plays a fundamental role within terrestrial ecosystems, serving as a cornerstone of their functionality. Presently, these crucial ecosystems face a myriad of threats, including deforestation, overgrazing, wildfires, and the impact of climate change. The implementation of remote sensing for monitoring the status and dynamics of vegetation ecosystems has emerged as an indispensable tool for advancing ecological research and effective resource management. This study takes a comprehensive approach by integrating ecosystem monitoring indicators and aligning them with the objectives of SDG15. We conducted a thorough analysis by leveraging global 500 m resolution products for vegetation Leaf Area Index (LAI) and land cover classification spanning the period from 2016 to 2020. This encompassed the calculation of annual average LAI, identification of anomalies, and evaluation of change rates, thereby enabling a comprehensive assessment of the global status and transformations occurring within major vegetation ecosystems. In 2020, a discernible rise in the annual Average LAI of major vegetation ecosystems on a global scale became evident when compared to data from 2016. Notably, the ecosystems demonstrating a slight increase in area constituted the largest proportion (34.23%), while those exhibiting a significant decrease were the least prevalent (6.09%). Within various regions, such as Eastern Europe, Central Africa, and South Asia, substantial increases in both forest ecosystem area and annual Average LAI were observed. Furthermore, Eastern Europe and Central America recorded significant expansions in both grassland ecosystem area and annual average LAI. Similarly, regions experiencing notable growth in both cropland ecosystem areas and annual average LAI encompassed Southern Africa, Northern Europe, and Eastern Africa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23208452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23208452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Li Li; Xiaozhou Xin; Jing Zhao; Aixia Yang; Shanlong Wu; Hailong Zhang; Shanshan Yu;Vegetation plays a fundamental role within terrestrial ecosystems, serving as a cornerstone of their functionality. Presently, these crucial ecosystems face a myriad of threats, including deforestation, overgrazing, wildfires, and the impact of climate change. The implementation of remote sensing for monitoring the status and dynamics of vegetation ecosystems has emerged as an indispensable tool for advancing ecological research and effective resource management. This study takes a comprehensive approach by integrating ecosystem monitoring indicators and aligning them with the objectives of SDG15. We conducted a thorough analysis by leveraging global 500 m resolution products for vegetation Leaf Area Index (LAI) and land cover classification spanning the period from 2016 to 2020. This encompassed the calculation of annual average LAI, identification of anomalies, and evaluation of change rates, thereby enabling a comprehensive assessment of the global status and transformations occurring within major vegetation ecosystems. In 2020, a discernible rise in the annual Average LAI of major vegetation ecosystems on a global scale became evident when compared to data from 2016. Notably, the ecosystems demonstrating a slight increase in area constituted the largest proportion (34.23%), while those exhibiting a significant decrease were the least prevalent (6.09%). Within various regions, such as Eastern Europe, Central Africa, and South Asia, substantial increases in both forest ecosystem area and annual Average LAI were observed. Furthermore, Eastern Europe and Central America recorded significant expansions in both grassland ecosystem area and annual average LAI. Similarly, regions experiencing notable growth in both cropland ecosystem areas and annual average LAI encompassed Southern Africa, Northern Europe, and Eastern Africa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23208452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23208452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:MDPI AG Lijun Xu; Qiyun Ran; Li Wang; Jianzhong Feng; Yan Zhao; Kui Wang; Xiaosong Lin; Linyan Bai;Multiple cropping provides China with a very important system of intensive cultivation, and can effectively enhance the efficiency of farmland use while improving regional food production and security. A multiple cropping index (MCI), which represents the intensity of multiple cropping and reflects the effects of climate change on agricultural production and cropping systems, often serves as a useful parameter. Therefore, monitoring the dynamic changes in the MCI of farmland over a large area using remote sensing data is essential. For this purpose, nearly 30 years of MCIs related to dry land in the North China Plain (NCP) were efficiently extracted from remotely sensed leaf area index (LAI) data from the Global LAnd Surface Satellite (GLASS). Next, the characteristics of the spatial-temporal change in MCI were analyzed. First, 2162 typical arable sample sites were selected based on a gridded spatial sampling strategy, and then the LAI information was extracted from the samples. Second, the Savizky-Golay filter was used to smooth the LAI time-series data of the samples, and then the MCIs of the samples were obtained using a second-order difference algorithm. Finally, the geo-statistical Kriging method was employed to map the spatial distribution of the MCIs and to obtain a time-series dataset of the MCIs of dry land over the NCP. The results showed that all of the MCIs in the NCP showed an increasing trend over the entire study period and increased most rapidly from 1982 to 2002. Spatially, MCIs decreased from south to north; also, high MCIs were mainly concentrated in the relatively flat areas. In addition, the partial spatial changes of MCIs had clear geographical characteristics, with the largest change in Henan Province.
Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/4/557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16040557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/4/557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16040557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:MDPI AG Lijun Xu; Qiyun Ran; Li Wang; Jianzhong Feng; Yan Zhao; Kui Wang; Xiaosong Lin; Linyan Bai;Multiple cropping provides China with a very important system of intensive cultivation, and can effectively enhance the efficiency of farmland use while improving regional food production and security. A multiple cropping index (MCI), which represents the intensity of multiple cropping and reflects the effects of climate change on agricultural production and cropping systems, often serves as a useful parameter. Therefore, monitoring the dynamic changes in the MCI of farmland over a large area using remote sensing data is essential. For this purpose, nearly 30 years of MCIs related to dry land in the North China Plain (NCP) were efficiently extracted from remotely sensed leaf area index (LAI) data from the Global LAnd Surface Satellite (GLASS). Next, the characteristics of the spatial-temporal change in MCI were analyzed. First, 2162 typical arable sample sites were selected based on a gridded spatial sampling strategy, and then the LAI information was extracted from the samples. Second, the Savizky-Golay filter was used to smooth the LAI time-series data of the samples, and then the MCIs of the samples were obtained using a second-order difference algorithm. Finally, the geo-statistical Kriging method was employed to map the spatial distribution of the MCIs and to obtain a time-series dataset of the MCIs of dry land over the NCP. The results showed that all of the MCIs in the NCP showed an increasing trend over the entire study period and increased most rapidly from 1982 to 2002. Spatially, MCIs decreased from south to north; also, high MCIs were mainly concentrated in the relatively flat areas. In addition, the partial spatial changes of MCIs had clear geographical characteristics, with the largest change in Henan Province.
Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/4/557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16040557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/4/557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16040557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Hu, Yang; Wu, Fayun; Sun, Zhongqiu; Lister, Andrew; Gao, Xianlian; Li, Weitao; Peng, Daoli;The use of satellite-borne large-footprint LiDAR (light detection and ranging) systems allows for the acquisition of forest monitoring data. This paper mainly describes the design, use, operating principles, installation and data properties of the new Laser Vegetation Detecting Sensor (LVDS), a LiDAR system designed and developed at the Academy of Forest Inventory and Planning (AFIP) and the Beijing Institute of Telemetry (BIT). Data from LVDS were used to calculate the mean height of forest trees on sample plots using data collected in the Hunan province of China. The results show that the full waveform data obtained by LVDS has the ability to accurately characterize forest height. The mean absolute percentage error of mean forest height per plot in flat areas was 6.8%, with a mean absolute deviation of 0.78 m. The airborne LVDS system provides prototype data sets and a platform for instrument proof-of-concept studies for China’s Terrestrial Ecosystem Carbon Monitoring (TECM) mission, which is an Earth remote sensing satellite due for launch in 2020. The information produced by LVDS allows for forest structure studies with high accuracy and coverage of large areas.
Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/7/1699/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19071699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/7/1699/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19071699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Hu, Yang; Wu, Fayun; Sun, Zhongqiu; Lister, Andrew; Gao, Xianlian; Li, Weitao; Peng, Daoli;The use of satellite-borne large-footprint LiDAR (light detection and ranging) systems allows for the acquisition of forest monitoring data. This paper mainly describes the design, use, operating principles, installation and data properties of the new Laser Vegetation Detecting Sensor (LVDS), a LiDAR system designed and developed at the Academy of Forest Inventory and Planning (AFIP) and the Beijing Institute of Telemetry (BIT). Data from LVDS were used to calculate the mean height of forest trees on sample plots using data collected in the Hunan province of China. The results show that the full waveform data obtained by LVDS has the ability to accurately characterize forest height. The mean absolute percentage error of mean forest height per plot in flat areas was 6.8%, with a mean absolute deviation of 0.78 m. The airborne LVDS system provides prototype data sets and a platform for instrument proof-of-concept studies for China’s Terrestrial Ecosystem Carbon Monitoring (TECM) mission, which is an Earth remote sensing satellite due for launch in 2020. The information produced by LVDS allows for forest structure studies with high accuracy and coverage of large areas.
Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/7/1699/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19071699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/7/1699/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19071699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Siyuan Wang; Sida Li; Shaoyan Zheng; Weilun Gao; Yong Zhang; Bo Cao; Baoshan Cui; Dongdong Shao;Estimating the biomass of Phragmites australis (Cav.) Trin. ex Steud., i.e., a common wetland macrophyte, and the associated carbon sequestration capacity has attracted increasing attention. Hanshiqiao Wetland Nature Reserve (HWNR) is a large P. australis wetland in Beijing, China, and provides an ideal case study site for such purpose in an urban setting. In this study, an existing P. australis growth dynamics model was adapted to estimate the plant biomass, which was in turn converted to the associated carbon sequestration capacity in the HWNR throughout a typical year. To account for local differences, the modeling parameters were calibrated against the above-ground biomass (AGB) of P. australis retrieved from hyperspectral images of the study site. We also analyzed the sensitivity of the modeling parameters and the influence of environmental factors, particularly the nutrient availability, on the growth dynamics and carbon sequestration capacity of P. australis. Our results show that the maximum AGB and below-ground biomass (BGB) of P. australis in the HWNR are 2.93 × 103 and 2.49 × 103 g m−2, respectively, which are higher than the reported level from nearby sites with similar latitudes, presumably due to the relatively high nutrient availability and more suitable inundation conditions in the HWNR. The annual carbon sequestration capacity of P. australis in the HWNR was estimated to be 2040.73 gC m−2 yr−1, which was also found to be highly dependent on nutrient availability, with a 50% increase (decrease) in the constant of the nutrient availability KNP, resulting in a 12% increase (23% decrease) in the annual carbon sequestration capacity. This implies that a comprehensive management of urban wetlands that often encounter eutrophication problems to synergize the effects of nutrient control and carbon sequestration is worth considering in future practices.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/9/3141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22093141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/9/3141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22093141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Siyuan Wang; Sida Li; Shaoyan Zheng; Weilun Gao; Yong Zhang; Bo Cao; Baoshan Cui; Dongdong Shao;Estimating the biomass of Phragmites australis (Cav.) Trin. ex Steud., i.e., a common wetland macrophyte, and the associated carbon sequestration capacity has attracted increasing attention. Hanshiqiao Wetland Nature Reserve (HWNR) is a large P. australis wetland in Beijing, China, and provides an ideal case study site for such purpose in an urban setting. In this study, an existing P. australis growth dynamics model was adapted to estimate the plant biomass, which was in turn converted to the associated carbon sequestration capacity in the HWNR throughout a typical year. To account for local differences, the modeling parameters were calibrated against the above-ground biomass (AGB) of P. australis retrieved from hyperspectral images of the study site. We also analyzed the sensitivity of the modeling parameters and the influence of environmental factors, particularly the nutrient availability, on the growth dynamics and carbon sequestration capacity of P. australis. Our results show that the maximum AGB and below-ground biomass (BGB) of P. australis in the HWNR are 2.93 × 103 and 2.49 × 103 g m−2, respectively, which are higher than the reported level from nearby sites with similar latitudes, presumably due to the relatively high nutrient availability and more suitable inundation conditions in the HWNR. The annual carbon sequestration capacity of P. australis in the HWNR was estimated to be 2040.73 gC m−2 yr−1, which was also found to be highly dependent on nutrient availability, with a 50% increase (decrease) in the constant of the nutrient availability KNP, resulting in a 12% increase (23% decrease) in the annual carbon sequestration capacity. This implies that a comprehensive management of urban wetlands that often encounter eutrophication problems to synergize the effects of nutrient control and carbon sequestration is worth considering in future practices.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/9/3141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22093141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/9/3141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22093141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu