- home
- Advanced Search
- Energy Research
- Open Access
- Open Source
- DE
- AU
- Energy Procedia
- Energy Research
- Open Access
- Open Source
- DE
- AU
- Energy Procedia
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Robert A. Shanks; Matthew P. Gustafason; Raymond Davy; Brodie M. Zambergs; Selvakannan Periasamy;AbstractThe aim is to develop a catalysed water-based capture process, avoiding the energy intensive steam stripping steps necessary with amine solvents. The naturally occurring zinc metallo-enzyme carbonic anhydrase/hydratase (CAH) can concentrate CO2 using a reversible hydration/dehydration cycle at neutral pH and at ambient temperatures. Some tripodal complexes of zinc (II)–[zinc-itrilo-tris(2-benzimidazoyl-methyl-6-sulfonic acid, (zinc-L1S), and zinc-tris(2-benzimidazoylmethyl)-amine, (zinc-LI)], and also cadmium (II), cobalt (II) and other metals complexed to these tripodal ligands have been prepared, and show activity that mimics the CAH catalytic process–hydration of CO2 to bicarbonate followed by the reverse dehydration of the bicarbonate to regenerate CO2 in a pH dependent mechanism. The thermal stability of these complex catalysts has been demonstrated by Differential Thermo-Gravimetric (DTG) studies to above 200 °C. A process for fast absorption/desorption is proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Michael Böttiger; Martin Paulitschke; Thilo Bocklisch;Abstract The paper presents an equivalent circuit based simulation model for the static and dynamic behavior of lithium-ion battery systems and explains the different steps of the theoretical and experimental modeling process. The equivalent circuit based model describes the voltage-current characteristic, the state of charge behavior and the occurring losses of the battery system. A parameter identification method based on three characteristic experiments, a cycle test, an open circuit voltage test and pulse tests, is introduced. The model parameters are estimated employing a nonlinear optimization method. Furthermore, the experimental test bed for investigation of lithium-ion battery systems is described. The battery model approach is demonstrated and validated for a commercial 5 kWh lithium-ion battery system, including the model validation for test profiles and emulated battery charging and discharging profiles of a real photovoltaic home storage application. The comparison of measured and simulated voltage profiles indicates an excellent performance of the battery model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Funded by:EC | ACSEPTEC| ACSEPTAuthors: Christophe Nourry; Rikard Malmbeck; Jean-Paul Glatz; Pavel Soucek;AbstractPyrochemical methods for reprocessing of spent nuclear fuel are under development as an alternative to the hydrometallurgical processes. The pyrochemical reprocessing process developed in ITU is based on electrorefining of spent fuel in molten LiCl-KCl salt using solid aluminium cathodes. This is followed by a chlorination process for the recovery of actinides from the actinide-aluminium alloys formed and exhaustive electrolysis is proposed for clean-up of the salt from the remaining actinides. In this paper, all investigated techniques are described and the main achievements are summarised. The emphasis is given to the electrorefining, which represents the core process for homogeneous recovery of all actinides from the spent fuel. High efficiency of the process and excellent recovery of actinides over lanthanides have been achieved and very high capacity of solid aluminium to take up actinides has been demonstrated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.06.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.06.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Davide Trabucchi; Martin Kühn; Juan-José Trujillo;Abstract Commonly, wake models are calibrated in wind tunnels or using flow simulations with a wide degree of physical details. In general, it is assumed that these methods cannot fully reproduce the real operating conditions of wind turbines. This research aims at investigating the calibration of an analytical single wake model in relation to full-scale measurements. Within this scope, we fitted the wake model to wake measurements realised with a lidar installed on the nacelle of an offshore wind turbine. We studied the parameters returned by the fit separating cases at different levels of atmospheric turbulence and thrust on the wind turbine rotor. Comparing the results with a published calibration based on few LES wind fields representative for partial load conditions, we achieved good agreement when the considered wind turbines operated in similar conditions. For other situations, i.e. at full load, we found different calibrations of the model parameters. Our results show that and how nacelle-based lidar measurements can be complementary in the development of wake models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.10.335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.10.335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Other literature type 2014 GermanyPublisher:Elsevier BV Authors: Wagner, Patrick H.; Wittmann, Michael;AbstractOne of the advantages of solar thermal power plants (STPPs) with molten salt as heat transfer fluid is the direct storage system. This means that the thermal energy collected by the solar field and the electric power generation can be fully decoupled. The plant operator must therefore make the daily decision when to start-up or to shut-down the power block (PB). Normally, the solar field of these STPPs is overdesigned which leads to dumping of solar energy during days with high solar radiation, due to the inability of the hot tank and the PB to consume all the collected thermal energy. The PB must therefore start as soon as possible to prevent excessive dumping of solar energy. Contrarily, on days with low solar radiation, the PB should not start too early to prevent a second start-up on this day, because of a low hot tank level. In order to operate within these counter bounds, a fixed and a dynamic operation strategy are proposed. The so-called solar-driven strategy serves as a reference. Using this strategy, the PB operates whenever the solar field is online. The two proposed operation strategies are compared to the reference strategy by means of a transient STPP simulation model. Using the dynamic operation strategy, the annual unnecessary PB start-ups and the auxiliary heater thermal energy for anti-freeze protection are decreased, whereas the annual net electricity is increased.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Song, N; Hsiao, PC; Zhang, W; Wang, X; Colwell, J; Li, Z; Lennon, A; Zhang, Dylan Wei;handle: 1959.4/unsworks_44577
Abstract Light-induced plating (LIP)of Ni/Cu presents a potentially lower-cost alternative to screen-printed Ag for silicon solar cell metallization. This paper presents results of self-annealing and post-plating rapid thermal processing (RTP) of plated Cu finger microstructure, texture and resistance. It is shown that the plated Cu conductors, if not thermally-annealed immediately after plating, self-anneal with time resulting in grain growth and increased (200) to (111) grain texture which occurs with increased tensile stress. Post-plating RTP annealing enables fast annealing and stable Cu fingers with a low ratio of (200) to (111) grain texture. These findings have important implications for plated finger adhesion and highlight the importance of annealing after plating for reliable Cu plated metallization.
UNSWorks arrow_drop_down UNSWorksArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_44577Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_44577Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Other literature type 2014 GermanyPublisher:Elsevier BV Moser, Massimo; Trieb, Franz; Fichter, Tobias; Kern, Jürgen; Maier, Hartmut; Schicktanz, Philipp;AbstractEvaporation cooling systems are currently deployed in the majority of operating Concentrating Solar Power (CSP) plants. However, the fundamental drawback of this approach is that large quantities of water are used in the cooling tower, so that this solution will be not applicable for a large-scale CSP development in arid regions. In fact, in most of the sites suitable for CSP applications, ambient temperatures are typically high and water is scarcely available, or the cost of transporting water to these sites is prohibitive. For this reason, at these sites dry cooling will be the only viable option. This paper analyses the impact of dry cooling systems on technical and economic plant performances, considering several condenser layouts, different operation strategies and economic boundary conditions. In particular, the capacity and the operation of the thermal energy storage can be optimized in order to maximize power production, e.g. by preferential plant commitment at night hours. The analysis is carried out for three selected locations with real meteorological data by means of annual simulations with hourly time steps.
Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Cecily Maller; Nicola Willand; Ian Ridley;Abstract: Drawing on evidence from a mixed methods retrofit intervention trial of the homes of low-income, older and frail people in Victoria, Australia, this study explored practices of heating and keeping warm in terms of equity and health. In most homes, heating restrictions led to inadequate indoor temperatures. Adaptation practices increased householder resilience, however, some technical responses presented safety risks. Low-cost retrofits did not eliminate underheating and had little effect on householder practices. The study highlights that a promotion of no-cost energy saving activities acknowledges the adaptive capacity of individuals. However, failure to address material and technical conditions and the vulnerability of older people may lead to unintended health risks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Jan Haschke; Bernd Rech; Nicola Mingirulli;AbstractWe present the latest results of our back contact back silicon heterojunction (BCB-SHJ) solar cells with punctiform absorber contacts. We discuss the technological challenges and present a basic cell structure reaching an e_ciency of (17.1 _ 0.5)% on our BCB-SHJ solar cells. The main loss mechanisms a_ecting the fill factor and the VOC are identified and are found to be avoided by minor process modifications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Abhijit Date; Erinofiardi; Erinofiardi; Ahmad Fauzan Suryono; Putra Bismantolo; Agus Nuramal; Afdhal Kurniawan Mainil; Aliakbar Akbarzadeh;Abstract Potential energy from fluid flow of small rivers or irrigations could be extracted become electricity by using screw turbine. This turbine is promising because the advantages of ultra-low head and fish friendly.Experimental performance of screw turbine for ultra-low head hydro resource is presented in this paper. The screw turbine with anoutside diameter of 142 mm and the water flowrate of 1.2 l/s with the head of 0.25 m, can produce maximum power 1.4 W with 49% efficiency at 22 o angle of inclination. This turbine has one blade screw and screw turbine experiment apparatus is made by using locally available materials. The screw turbine has shown good potential to be used for low head micro hydro-electric installations. This paper reports on a performance analysis based on the experimental data collected from different performance tests carried out on some inclination angle position of screw turbine prototype.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Robert A. Shanks; Matthew P. Gustafason; Raymond Davy; Brodie M. Zambergs; Selvakannan Periasamy;AbstractThe aim is to develop a catalysed water-based capture process, avoiding the energy intensive steam stripping steps necessary with amine solvents. The naturally occurring zinc metallo-enzyme carbonic anhydrase/hydratase (CAH) can concentrate CO2 using a reversible hydration/dehydration cycle at neutral pH and at ambient temperatures. Some tripodal complexes of zinc (II)–[zinc-itrilo-tris(2-benzimidazoyl-methyl-6-sulfonic acid, (zinc-L1S), and zinc-tris(2-benzimidazoylmethyl)-amine, (zinc-LI)], and also cadmium (II), cobalt (II) and other metals complexed to these tripodal ligands have been prepared, and show activity that mimics the CAH catalytic process–hydration of CO2 to bicarbonate followed by the reverse dehydration of the bicarbonate to regenerate CO2 in a pH dependent mechanism. The thermal stability of these complex catalysts has been demonstrated by Differential Thermo-Gravimetric (DTG) studies to above 200 °C. A process for fast absorption/desorption is proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Michael Böttiger; Martin Paulitschke; Thilo Bocklisch;Abstract The paper presents an equivalent circuit based simulation model for the static and dynamic behavior of lithium-ion battery systems and explains the different steps of the theoretical and experimental modeling process. The equivalent circuit based model describes the voltage-current characteristic, the state of charge behavior and the occurring losses of the battery system. A parameter identification method based on three characteristic experiments, a cycle test, an open circuit voltage test and pulse tests, is introduced. The model parameters are estimated employing a nonlinear optimization method. Furthermore, the experimental test bed for investigation of lithium-ion battery systems is described. The battery model approach is demonstrated and validated for a commercial 5 kWh lithium-ion battery system, including the model validation for test profiles and emulated battery charging and discharging profiles of a real photovoltaic home storage application. The comparison of measured and simulated voltage profiles indicates an excellent performance of the battery model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Funded by:EC | ACSEPTEC| ACSEPTAuthors: Christophe Nourry; Rikard Malmbeck; Jean-Paul Glatz; Pavel Soucek;AbstractPyrochemical methods for reprocessing of spent nuclear fuel are under development as an alternative to the hydrometallurgical processes. The pyrochemical reprocessing process developed in ITU is based on electrorefining of spent fuel in molten LiCl-KCl salt using solid aluminium cathodes. This is followed by a chlorination process for the recovery of actinides from the actinide-aluminium alloys formed and exhaustive electrolysis is proposed for clean-up of the salt from the remaining actinides. In this paper, all investigated techniques are described and the main achievements are summarised. The emphasis is given to the electrorefining, which represents the core process for homogeneous recovery of all actinides from the spent fuel. High efficiency of the process and excellent recovery of actinides over lanthanides have been achieved and very high capacity of solid aluminium to take up actinides has been demonstrated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.06.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.06.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Davide Trabucchi; Martin Kühn; Juan-José Trujillo;Abstract Commonly, wake models are calibrated in wind tunnels or using flow simulations with a wide degree of physical details. In general, it is assumed that these methods cannot fully reproduce the real operating conditions of wind turbines. This research aims at investigating the calibration of an analytical single wake model in relation to full-scale measurements. Within this scope, we fitted the wake model to wake measurements realised with a lidar installed on the nacelle of an offshore wind turbine. We studied the parameters returned by the fit separating cases at different levels of atmospheric turbulence and thrust on the wind turbine rotor. Comparing the results with a published calibration based on few LES wind fields representative for partial load conditions, we achieved good agreement when the considered wind turbines operated in similar conditions. For other situations, i.e. at full load, we found different calibrations of the model parameters. Our results show that and how nacelle-based lidar measurements can be complementary in the development of wake models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.10.335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.10.335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Other literature type 2014 GermanyPublisher:Elsevier BV Authors: Wagner, Patrick H.; Wittmann, Michael;AbstractOne of the advantages of solar thermal power plants (STPPs) with molten salt as heat transfer fluid is the direct storage system. This means that the thermal energy collected by the solar field and the electric power generation can be fully decoupled. The plant operator must therefore make the daily decision when to start-up or to shut-down the power block (PB). Normally, the solar field of these STPPs is overdesigned which leads to dumping of solar energy during days with high solar radiation, due to the inability of the hot tank and the PB to consume all the collected thermal energy. The PB must therefore start as soon as possible to prevent excessive dumping of solar energy. Contrarily, on days with low solar radiation, the PB should not start too early to prevent a second start-up on this day, because of a low hot tank level. In order to operate within these counter bounds, a fixed and a dynamic operation strategy are proposed. The so-called solar-driven strategy serves as a reference. Using this strategy, the PB operates whenever the solar field is online. The two proposed operation strategies are compared to the reference strategy by means of a transient STPP simulation model. Using the dynamic operation strategy, the annual unnecessary PB start-ups and the auxiliary heater thermal energy for anti-freeze protection are decreased, whereas the annual net electricity is increased.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Song, N; Hsiao, PC; Zhang, W; Wang, X; Colwell, J; Li, Z; Lennon, A; Zhang, Dylan Wei;handle: 1959.4/unsworks_44577
Abstract Light-induced plating (LIP)of Ni/Cu presents a potentially lower-cost alternative to screen-printed Ag for silicon solar cell metallization. This paper presents results of self-annealing and post-plating rapid thermal processing (RTP) of plated Cu finger microstructure, texture and resistance. It is shown that the plated Cu conductors, if not thermally-annealed immediately after plating, self-anneal with time resulting in grain growth and increased (200) to (111) grain texture which occurs with increased tensile stress. Post-plating RTP annealing enables fast annealing and stable Cu fingers with a low ratio of (200) to (111) grain texture. These findings have important implications for plated finger adhesion and highlight the importance of annealing after plating for reliable Cu plated metallization.
UNSWorks arrow_drop_down UNSWorksArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_44577Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_44577Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Other literature type 2014 GermanyPublisher:Elsevier BV Moser, Massimo; Trieb, Franz; Fichter, Tobias; Kern, Jürgen; Maier, Hartmut; Schicktanz, Philipp;AbstractEvaporation cooling systems are currently deployed in the majority of operating Concentrating Solar Power (CSP) plants. However, the fundamental drawback of this approach is that large quantities of water are used in the cooling tower, so that this solution will be not applicable for a large-scale CSP development in arid regions. In fact, in most of the sites suitable for CSP applications, ambient temperatures are typically high and water is scarcely available, or the cost of transporting water to these sites is prohibitive. For this reason, at these sites dry cooling will be the only viable option. This paper analyses the impact of dry cooling systems on technical and economic plant performances, considering several condenser layouts, different operation strategies and economic boundary conditions. In particular, the capacity and the operation of the thermal energy storage can be optimized in order to maximize power production, e.g. by preferential plant commitment at night hours. The analysis is carried out for three selected locations with real meteorological data by means of annual simulations with hourly time steps.
Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Cecily Maller; Nicola Willand; Ian Ridley;Abstract: Drawing on evidence from a mixed methods retrofit intervention trial of the homes of low-income, older and frail people in Victoria, Australia, this study explored practices of heating and keeping warm in terms of equity and health. In most homes, heating restrictions led to inadequate indoor temperatures. Adaptation practices increased householder resilience, however, some technical responses presented safety risks. Low-cost retrofits did not eliminate underheating and had little effect on householder practices. The study highlights that a promotion of no-cost energy saving activities acknowledges the adaptive capacity of individuals. However, failure to address material and technical conditions and the vulnerability of older people may lead to unintended health risks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Jan Haschke; Bernd Rech; Nicola Mingirulli;AbstractWe present the latest results of our back contact back silicon heterojunction (BCB-SHJ) solar cells with punctiform absorber contacts. We discuss the technological challenges and present a basic cell structure reaching an e_ciency of (17.1 _ 0.5)% on our BCB-SHJ solar cells. The main loss mechanisms a_ecting the fill factor and the VOC are identified and are found to be avoided by minor process modifications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Abhijit Date; Erinofiardi; Erinofiardi; Ahmad Fauzan Suryono; Putra Bismantolo; Agus Nuramal; Afdhal Kurniawan Mainil; Aliakbar Akbarzadeh;Abstract Potential energy from fluid flow of small rivers or irrigations could be extracted become electricity by using screw turbine. This turbine is promising because the advantages of ultra-low head and fish friendly.Experimental performance of screw turbine for ultra-low head hydro resource is presented in this paper. The screw turbine with anoutside diameter of 142 mm and the water flowrate of 1.2 l/s with the head of 0.25 m, can produce maximum power 1.4 W with 49% efficiency at 22 o angle of inclination. This turbine has one blade screw and screw turbine experiment apparatus is made by using locally available materials. The screw turbine has shown good potential to be used for low head micro hydro-electric installations. This paper reports on a performance analysis based on the experimental data collected from different performance tests carried out on some inclination angle position of screw turbine prototype.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu