- home
- Advanced Search
- Energy Research
- other engineering and technologies
- 7. Clean energy
- DE
- CH
- Energy Research
- other engineering and technologies
- 7. Clean energy
- DE
- CH
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Stephan Rinderknecht;Christoph H. Glock;
Hendrik Schaede; S. Pfaller; +2 AuthorsChristoph H. Glock
Christoph H. Glock in OpenAIREStephan Rinderknecht;Christoph H. Glock;
Hendrik Schaede; S. Pfaller; Maximilian Schneider; K. Biel;Christoph H. Glock
Christoph H. Glock in OpenAIREAbstractThis paper adopts a single-period newsvendor model with supply uncertainties to be used for optimally sizing an electrical energy storage system (EESS) for an apartment house with a photovoltaic (PV) system. Hence, typical inventory cost components and supply chain characteristics are translated to the EESS application. The results show that inventory management and energy storage can be aligned. The optimal size of the EESS takes into account the total cost of the storage system including energetic losses as well as the costs for energy supply from the own energy systems and from the energy supplier.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2012Publisher:American Society of Mechanical Engineers Authors: Hanns Mueller-Vahl;Christian Oliver Paschereit;
Georgios Pechlivanoglou;Christian Oliver Paschereit
Christian Oliver Paschereit in OpenAIREChristian Navid Nayeri;
Christian Navid Nayeri
Christian Navid Nayeri in OpenAIREdoi: 10.1115/gt2012-69197
Vortex generators (VGs) are passive flow control devices commonly employed to prevent flow separation on wind turbine blades. They mitigate the damaging fatigue loads resulting from stall while increasing lift and consequently lead to rotor torque increase. This work summarizes a research project aimed at optimizing the sectional as well as the full rotor-blade aerodynamics using VGs. The effects of chordwise position, spanwise spacing and VG size were studied with force balance measurements of a 2D wing section. Reducing the distance between adjacent VGs produced large increases in the static stall angle and maximum lift, but also resulted in a significant increase in drag as well as sharp lift excursions at angles exceeding the static stall angle. The optimal chordwise position of the vortex generators was found to be in the range of x/c = 15%–20%, where a comparatively low parasitic drag and a smooth post-stall lift curve were achieved. Particle Image Velocimetry measurements were conducted at various chordwise positions to provide insight into the interaction between adjacent streamwise vortices. The experimental aerodynamic performance curves of the optimal VG configuration were used to project their effect on wind turbine blade aerodynamics. Three different rotorblades were designed and several stall and pitch regulated wind turbine models were simulated by means of a Blade Element Momentum (BEM) code (QBlade) developed by Smart Blade GmbH. The performance of the rotorblades with and without VGs was simulated in order to assess their effect on the aerodynamic performance and loads. Finally, previously measured steady state performance curves under high-roughness conditions were used to simulate the detrimental effect of surface roughness on the performance of the aforementioned rotorblades. This allows for an estimate of the potential of the VGs to be employed as retrofit elements for performance recovery of blades with a contaminated surface.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2012-69197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2012-69197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:MDPI AG doi: 10.3390/en16145390
Increasing wind capacity and capacity factors (CF) are essential for achieving the goals set by the Paris Climate Agreement. From 2010–2012 to 2018–2020, the 3-year mean CF of the global onshore wind turbine fleet rose from 0.22 to 0.25. Wind turbine siting, wind turbine technology, hub height, and curtailed wind energy are well-known CF drivers. However, the extent of these drivers for CF is unknown. Thus, the goal is to quantify the shares of the four drivers in CF development in Germany as a case. Newly developed national power curves from high-resolution wind speed models and hourly energy market data are the basis for the study. We created four scenarios, each with one driver kept constant at the 2010–2012 level, in order to quantify the share of a driver for CF change between 2010–2012 and 2019–2021. The results indicated that rising hub heights increased CF by 10.4%. Improved wind turbine technology caused 7.3% higher CF. However, the absolute CF increase amounted to only 11.9%. It is because less favorable wind turbine sites and curtailment in the later period moderated the CF increase by 2.1% and 3.6%, respectively. The drivers are mainly responsible for perennial CF development. In contrast, variations in wind resource availability drive the enormous CF inter-annual variability. No multi-year wind resource change was detected.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/237908Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16145390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/237908Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16145390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Ulf Christian Müller; Jonas Hurter; Lukas Gasser; Adrian Rettig;Abstract In many European countries the production of combined heat and power based on renewable energies is well established though the efficient and economical operation of such plants remains a challenging task. This also applies to the existing district heating network at Baden-Dattwil (Switzerland) where a conventional gas boiler is substituted by a wood-fired boiler comprising an Organic Rankine Cycle. An overall control strategy that allows fully exploring governmental incentives is therefore of paramount importance. In addition, the highly fluctuating heat demands combined with the thermal inertia of the different plant components impose demanding requirements to the control system to guarantee a stable as well as highly efficient operation. The overall control concept is successfully tested and verified by means of dynamic simulations of the overall plant with a simplified model for the district heating network. The models are implemented using the object oriented modeling language Modelica. The overall model is based on open source Modelica libraries such as ThermoCycle, Modelica Standard Library and StateGraph2 as well as on own Modelica models. The overall model is prepared to be coupled to the real plant control system which will allow virtual commissioning in the next step. This allows pre-tuning of control parameters as well as a weakness analysis which again helps to speed up the commissioning process. In General, the dynamic simulations proved to be a useful tool that deepened the insight and understanding of the plant operation at an early project phase and therefore greatly supported the making of design decisions. After commissioning, the calibrated simulation models will be used for monitoring purposes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:International Solar Energy Society Funded by:EC | RES4BUILDEC| RES4BUILDMiguel Lanca; Joao Gomes; Diogo Cabral; Rajan Panchal; Abideme Eleyele;Photovoltaic thermal (PVT) solar collectors can be an effective solution for system output improvement. Photovoltaic thermal collectors naturally have a more expensive receiver than simpler photovo ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18086/swc.2019.05.02&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 17visibility views 17 download downloads 39 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18086/swc.2019.05.02&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1981Publisher:Institute of Electrical and Electronics Engineers (IEEE) K. Yoshinaga; H. Sasao; Y. Ueda; Y. Murai; Shotaro Tominaga; T. Miyamoto;A simulation program of the arc quenching process in gas circuit breakers was developed. The program calculates the thermodynamic quantities of the gas as a function of time taking into account all spaces concerned with the arc quenching process such as the puffer cylinder, the arc space and the exhaust space. The simulation program was verified by experiments carried out on two model breakers. As an important result of the simulation, a new arc quenching principle is proposed based on self-flow generation without puffer action. The feasibility of the principle was confirmed experimentally.
IEEE Power Engineeri... arrow_drop_down IEEE Power Engineering ReviewArticle . 1981 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Power Apparatus and SystemsArticle . 1981 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mper.1981.5511781&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Power Engineeri... arrow_drop_down IEEE Power Engineering ReviewArticle . 1981 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Power Apparatus and SystemsArticle . 1981 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mper.1981.5511781&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | MARCOPOLOEC| MARCOPOLOAuthors: Jianhui Bai;Anu Heikkilä;
Anu Heikkilä
Anu Heikkilä in OpenAIREXuemei Zong;
Xuemei Zong
Xuemei Zong in OpenAIREAn empirical model of global solar irradiance (EMGSI) under all sky conditions was developed by using solar radiation and meteorological parameters at Sodankylä. The calculated hourly global solar irradiance is in agreement with that observed at the ground during 2008–2011 and at the top of the atmosphere (TOA). This model is used to calculate the global solar irradiance at the ground and its attenuation in the atmosphere due to absorbing and scattering substances in 2000–2018. The sensitivity test indicates that the responses of global solar irradiance to changes in water vapor and scattering factors are nonlinear and negative, and global solar irradiance is more sensitive to changes in scattering (expressed by the scattering factor S/G, S and G are diffuse and global solar radiation, respectively) than to changes in water vapor. Using this empirical model, we calculated the albedos at the TOA and the surface, which are in agreement with the satellite-retrieved values. A good relationship between S/G and aerosol optical depth (AOD) was determined and used to estimate AOD in 2000–2018. An empirical model for estimation of tropospheric NO2 vertical column density (VCD) was also developed and used to calculate tropospheric NO2 VCD in 2000–2018. During 2000–2018, the estimated global solar irradiance decreased by 0.92%, and diffuse irradiance increased by 1.28% per year, which is ascribed to the increases of S/G (1.73%) and water vapor (0.43%). Annual surface air temperature increases by 0.07 °C per year. Annual mean loss of global solar irradiance caused by absorbing and scattering substances and total loss are 1.94, 1.17 and 3.11 MJ m−2, respectively. Annual mean losses of absorbing and scattering global solar irradiance show negative and positive trends, respectively, and the annual total loss increases by 0.24% per year. Annual mean losses due to absorption were much larger than those due to scattering. The calculated albedos at the TOA are smaller than at the surface. The calculated and satellite-retrieved annual albedos decrease at the TOA and increase at the surface. During 2000–2018, annual means of the AOD and the tropospheric NO2 VCD increased by 8.23% and 0.03% per year, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos12060749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos12060749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2010Publisher:IEEE Authors: Kevin Tomsovic; Y. Zhu;Recently, there has been great interest in the integration of Distributed Energy Resources (DER) at the distribution level. DERs are potentially valuable providers of ancillary services such as load following and contingency reserve in distribution systems. This will require new control strategies for coordinating their system performance. One issue that has not been addressed sufficiently is the coordinated dispatch of large numbers of DERs under normal operation or system outage. In this paper, an AGC type control strategy is proposed and implemented for the real time control of DERs. Simulation results show that DERs are capable of providing load following and contingency reserve services under the proportional control mode or competitive control mode.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pes.2010.5590095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pes.2010.5590095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV Authors: Christian J. Saxer; Stefan Brühlmann; Anna-Maria Forss; Norbert V. Heeb;Abstract Ammonia (NH3) emissions from gasoline-fueled vehicles have become an important source of pollution affecting urban air chemistry. NH3 influences the acidity of atmospheric depositions and it is involved in secondary aerosol formation. NH3 has to be considered as a secondary pollutant of the three-way-catalyst (TWC), since it is formed de novo during the DeNOx process. The extent of traffic-related hydrogen (H2) emissions and its impact on atmospheric redox chemistry is not well understood but is of increasing importance when we develop towards a hydrogen-based society. Herein we report on tail-pipe H2, NH3, and NO emissions of gasoline-fueled Euro-3 passenger cars at transient driving from 0 to 150 km h−1. The effects of velocity, acceleration, deceleration, and cold start were deduced from time-resolved EI- and CI-MS data. On a molar basis, H2 emissions were always higher than those of NH3 and NO by about an order of magnitude. H2 and NH3 emissions are correlated to some degree, as soon as catalyst light-off occurred. NH3 emissions exceeded those of NO for most vehicle conditions. Mean NH3/NO mixing ratios around two were observed with the exception of the cold start, where NO was present in large excess. Catalyst light-off is indicated by a fast transition from a NO- to a NH3-rich exhaust gas. All emissions clearly depend on speed and acceleration. Mean velocity-dependent emission factors varied by about one order of magnitude from 17 to 720, 8 to 170, and 7 to 80 mg km−1 for H2, NH3, and NO, respectively, with emission minima for all three pollutants when driving 70–90 km h−1. We conclude that the investigated Euro-3 vehicles are mainly operated under slightly reducing conditions, where NH3 and H2 emissions dominate over those of NO. Under these conditions, all vehicles fulfill the valid emission limit for NOx.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2006.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2006.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 GermanyPublisher:MDPI AG Authors: Schicks, J.; Spangenberg, E.; Giese, R.;Steinhauer, B.;
+2 AuthorsSteinhauer, B.
Steinhauer, B. in OpenAIRESchicks, J.; Spangenberg, E.; Giese, R.;Steinhauer, B.;
Steinhauer, B.
Steinhauer, B. in OpenAIREKlump, J.;
Luzi-Helbing Luzi , M.;Klump, J.
Klump, J. in OpenAIREdoi: 10.3390/en4010151
The presence of natural gas hydrates at all active and passive continental margins has been proven. Their global occurrence as well as the fact that huge amounts of methane and other lighter hydrocarbons are stored in natural gas hydrates has led to the idea of using hydrate bearing sediments as an energy resource. However, natural gas hydrates remain stable as long as they are in mechanical, thermal and chemical equilibrium with their environment. Thus, for the production of gas from hydrate bearing sediments, at least one of these equilibrium states must be disturbed by depressurization, heating or addition of chemicals such as CO2. Depressurization, thermal or chemical stimulation may be used alone or in combination, but the idea of producing hydrocarbons from hydrate bearing sediments by CO2 injection suggests the potential of an almost emission free use of this unconventional natural gas resource. However, up to now there are still open questions regarding all three production principles. Within the framework of the German national research project SUGAR the thermal stimulation method by use of in situ combustion was developed and tested on a pilot plant scale and the CH4-CO2 swapping process in gas hydrates studied on a molecular level. Microscopy, confocal Raman spectroscopy and X-ray diffraction were used for in situ investigations of the CO2-hydrocarbon exchange process in gas hydrates and its driving forces. For the thermal stimulation a heat exchange reactor was designed and tested for the exothermal catalytic oxidation of methane. Furthermore, a large scale reservoir simulator was realized to synthesize hydrates in sediments under conditions similar to nature and to test the efficiency of the reactor. Thermocouples placed in the reservoir simulator with a total volume of 425 L collect data regarding the propagation of the heat front. In addition, CH4 sensors are placed in the water saturated sediment to detect the distribution of CH4 in the sample. These data are used for numerical simulations for up-scaling from laboratory to field conditions. This study presents the experimental set up of the large scale reservoir simulator and the reactor design. Preliminary results indicate that the catalytic oxidation of CH4 operated as a temperature controlled, autothermal reaction in a countercurrent heat exchange reactor is a safe and promising tool for the thermal stimulation of hydrates. In addition, preliminary results from the laboratory studies on the CO2-hydrocarbon swapping process in simple and mixed gas hydrates are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4010151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 124 citations 124 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4010151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu