- home
- Advanced Search
- Energy Research
- Closed Access
- Restricted
- Open Source
- DE
- FR
- EU
- UA
- Energy Research
- Closed Access
- Restricted
- Open Source
- DE
- FR
- EU
- UA
description Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:Elsevier BV Authors: Michael Löffler; Michael Steffen; Michael Steffen; Karlheinz Schaber;Abstract A Triangle Cycle with a piston engine expansion unit is used to convert low temperature heat into electrical energy. In this process, the isentropic efficiency of the expansion unit is considered to be unknown, and a theoretical approach for the calculation of isentropic efficiency is presented. A number of influences are taken into account – dead volume, residual mass, liquid injection performance and wall heat transfer. Various working fluids are investigated in a wide range of temperatures (333K–573K), engine speeds (5 Hz–30 Hz) and stroke volumes (0.1 L–50 L). The isentropic efficiency of water as working fluid is in the range of 0.75–0.88 and drops significantly for high stroke volumes and engine speeds. In general, injection mass has the most impact on isentropic efficiency because it influences dead volume and injection performance. The injection mass increases with vapor density and therefore is significantly influenced by working fluid and temperatures. The Triangle Cycle is compared with Organic Rankine Cycles by using determined isentropic efficiency. The exergetic efficiency of the Triangle Cycle using water is up to 35–70% higher than that of supercritical Organic Rankine Cycles in situations with a heat source temperature of up to 450K.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2012.11.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2012.11.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Katrin Martens;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2022.112796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2022.112796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 China (People's Republic of)Publisher:Wiley Yuanjing Lin; Michael Moseler; Andreas Waag; Leonhard Mayrhofer; Markus Hoefer; Zhiyong Fan; Xiaodan Wang; Xiaodan Wang; Hao Shen; Hao Shen; Lothar Schaefer; Hao Zhou; Sònia Estradé; G. Braeuer; Lluís López-Conesa; Francesca Peiró;AbstractBlack TiO2 has demonstrated a great potential for a variety of renewable energy technologies. However, its practical application is heavily hindered due to lack of efficient hydrogenation methods and a deeper understanding of hydrogenation mechanisms. Here, a simple and straightforward hot wire annealing (HWA) method is presented to prepare black TiO2 (H–TiO2) nanorods with enhanced photo‐electrochemical (PEC) activity by means of atomic hydrogen [H]. Compared to conventional molecular hydrogen approaches, the HWA shows remarkable effectiveness without any detrimental side effects on the device structure, and simultaneously the photocurrent density of H–TiO2 reaches 2.5 mA cm−2 (at 1.23 V vs reversible hydrogen electrode (RHE)). Due to the controllable and reproducible [H] flux, the HWA can be developed as a standard hydrogenation method for black TiO2. Meanwhile, the relationships between the wire temperatures, structural, optical, and photo‐electrochemical properties are systematically investigated to verify the improved PEC activity. Furthermore, the density functional theory (DFT) study provides a comprehensive insight not only into the highly efficient mechanism of the HWA approach but also its favorably low‐energy‐barrier hydrogenation pathway. The findings will have a profound impact on the broad energy applications of H–TiO2 and contribute to the fundamental understanding of its hydrogenation.
Advanced Energy Mate... arrow_drop_down Advanced Energy MaterialsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.201900725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Advanced Energy Mate... arrow_drop_down Advanced Energy MaterialsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.201900725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 FrancePublisher:SAGE Publications Authors: Boubekri, Noureddine; Doudou, Sofiane; Saifia, Dounia; Chadli, Mohammed;This paper focuses on mixed [Formula: see text] fuzzy maximum power point tracking (MPPT) of photovoltaic (PV) system under asymmetric saturation and variations in climatic conditions. To maximize the power from the PV panel array, the DC–DC boost converter is controlled by its duty ratio which is practically saturated between 0 and 1. MPPT based on conventional control presents the problems of oscillations around maximum power point (MPP) and divergence under rapid climatic changes. In order to attenuate the effect of atmospheric condition variation and take into account asymmetric saturation of the duty ratio, we propose a novel robust saturated controller based on both [Formula: see text] performances and Takagi-Sugeno (T-S) representation of PV-boost nonlinear system. Within this approach, the nonlinear PV-boost system and its reference are first described by T-S fuzzy models. Second, the saturation effect is represented by a polytopic model. Then, a fuzzy integral state feedback controller is designed to achieve stable MPPT control. Based on Lyapunov function, the mixed [Formula: see text] stabilization conditions are derived in terms of linear matrix inequalities (LMIs). The optimization of the attraction domain of closed-loop system is solved as a convex optimization problem in LMI terms. Finally, the efficiency of the proposed controller under irradiance and temperature variations is demonstrated through the simulation results. The comparison with some existing controllers shows an improvement of MPPT control performance in terms of power extraction.
Transactions of the ... arrow_drop_down Transactions of the Institute of Measurement and ControlArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/01423312211052123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Transactions of the ... arrow_drop_down Transactions of the Institute of Measurement and ControlArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/01423312211052123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research 2022 GermanyPublisher:Elsevier BV Authors: Fabian Arnold; Samir Jeddi; Amelie Sitzmann;handle: 10419/244341
Within the regulation of net purchasing, investment incentives for residential PV depend on the remuneration for grid feed-in and the consumption costs that households can save by self-consumption. Network tariffs constitute a substantial part of these consumption costs. We use postcode-level data for Germany between 2009 and 2017 and exploit the regional heterogeneity of network tariffs to investigate whether they encourage to invest in PV installations and evaluate how the nonlinear tariff structure impacts residential PV adoption. Our results show that network tariffs do impact PV adoption. The effect has increased in recent years when self-consumption has become financially more attractive, and the results confirm the expectation that PV investments are driven by the volumetric tariff. Policy reforms that alter the share between the price components are, thus, likely to affect residential PV adoption. Further, with self-consumption becoming a key incentive, price signals can effectively support the coordination of electricity demand and supply in Germany.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2022.106177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2022.106177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Atul Dhar; Gaurav Tripathi; Priybrat Sharma; Amsini Sadiki;Abstract This paper deals with the numerical study of hydrogen-diesel dual fuel engine characteristics under various diesel injection strategies. Here, CONVERGE CFD software package is used to simulate a hydrogen diesel dual fuel engine, under split injection of diesel. The combustion and spray is modeled using coupled solution of chemical kinetics and fluid mechanics (CFD) equations. The study was performed at four strokes direct injection compression ignition engine. The engine speed (1500 rpm) and compression ratio (19.5:1) remain constant throughout the study. The developed model was validated against already published experimental data of 18.5% hydrogen energy share. The simulation result showed that 8° bTDC was optimum injection timing for single injection case and 16° bTDC was optimum injection timing for pilot fuel injection and 10% pilot mass was optimum pilot mass amount for minimum NOx, soot, CO and HC emissions and higher gIMEP.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2019.100543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2019.100543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Authors: Michael S.A. Kamel; Ahmed Al-jumaili; Michael Oelgemöller; Mohan V. Jacob;Organic photovoltaics (OPVs) have received considerable attention over the past two decades as a promising alternative to their inorganic counterparts. Although the power conversion efficiency (PCE) of OPVs has rapidly increased in the last ten years exceeding 18%, higher PCEs are still needed to commercialize this emerging technology. The weak light absorption, particularly at wavelengths outside the visible region, and the recombination losses of the photo-generated charge carriers represent the major challenges for the PCE of OPVS. The light harvest and survival of the photo-generated charge carriers within OPVs are restricted to multiple factors such as material properties and device engineering. The application of different types of inorganic nanoparticles (INPs) in OPVs has been reported by many researchers as an effective strategy to overcome most of the PCE limitations. Here, a comprehensive overview of the progress in the performance of OPVs due to the application of different INPs over the past decade is provided. This review also presents an in-depth analysis of the efficiency loss pathways at the different steps of the photovoltaic effect and how INPs can address these issues resulting in PCE enhancement of OPVs. Finally, the impacts of this approach on the stability and cost of the device in addition to challenges and outlook are discussed.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Gloria Amoruso; Natasha Donevska; Gunstein Skomedal;Buildings in private and domestic use are responsible for about 30% of the global greenhouse gas emissions attributable mainly to their need for heating and cooling energy. This corresponds to about 40% of the global final energy consumption. Therefore, a viable implementation of building energy efficiency policies is inevitable to realize a transformation of the energy system to mitigate climate change. Within the building sector lies a huge potential for emission reduction consisting in the renovation of the existing building stock and climate-friendly building guidelines applicable to new constructions, both adapting CO2-neutral technology solutions. However, as there are several different pathways leading to a decarbonized energy system, there is always the question which political and technological solutions are most efficient, effective, and feasible. This paper aims to analyze building efficiency policy measures and instruments and the related technological solutions in two front-runner countries of the energy transition, possessing different structural conditions: Germany and Norway. We hence apply a comparative approach which allows us to present and assess the policies in place. The paper answers three research questions: (1) Which policies prevail in Germany and Norway to foster the deployment of energy efficient and decarbonized solutions for residential buildings? (2) How do these policies respond to country-specific barriers to the energy transition in the building sector, and (3) What effects do they have on the actual implementation of technological and societal solutions? This research provides a new insight to the highly relevant topic of energy efficiency in buildings in the context of international Intended Nationally Determined Contribution benchmarking and discusses some unsolved trade-offs in the translation of the global climate governance into the national building sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-018-9637-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-018-9637-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2013 FrancePublisher:D.M. HOGARTH Authors: Chopart, Jean-Louis; Bonnal, Laurent; Martiné, Jean-François; Sabatier, Daniel;Two studies conducted in Guadeloupe (West Indies) and Réunion (Indian Ocean) islands were designed to investigate the benefits of producing sugarcane as an energy crop and to assess the influence of agroclimatic factors on energy efficiency, respectively. In this context, it is essential to know the low heating value of the dry above-ground biomass (LHVd, MJ/kg) and its energy yield (EY, MJ/m2) in order to select the best varieties and set up a payment method for growers. Eighteen Poaceae (sugarcane and Erianthus) cultivars were compared under wet tropical environmental conditions in Guadeloupe. Three sugarcane cultivars were studied in four contrasting environments in Réunion. The partition sampling and biomass measurement procedures were identical at both locations. Low heating value (LHV) predictions were achieved using near-infrared reflectance spectroscopy (NIRS) after specific calibration (Guadeloupe), or arithmetically after lignocellulosic compound prediction (Réunion). In both studies, LHV variability was very low and slightly dependent on the site, cultivar and above-ground biomass components (millable stalks and tops, and green and dead leaves). Considering the overall dry above-ground biomass (DAB, kg/m2), the LHVd was calculated by averaging 159 samples (mean 16.65 MJ/kg) in Guadeloupe and 315 samples (mean 16.45 MJ/kg) for Réunion. An excellent linear relationship between the DAB and its EY, regardless of cultivar, age and environment, was found (n = 474 and R² = 0.99). Sugarcane energy content assessment could thus be simplified by measuring the DAB, while enabling development of a faster method of payment for growers based on the DAB measurement and the correlation between DAB and EY. Finally, the findings of this study should allow growers to rapidly determine the commercial value of their sugarcane crops, and also enable purchasers to assess the amount of recoverable energy. (Résumé d'auteur)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3631::946c6df442eabfeaed8816005e0a97e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3631::946c6df442eabfeaed8816005e0a97e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Elsevier BV Authors: Ulrich Renz; Ulrich Meingast; Lars Reichelt;Wall heat fluxes can be derived from time resolved measurements of the surface temperature. This paper describes an analytical approach to calculate the heat flux from an analytical solution of the one-dimensional transient energy equation with transient boundary conditions using the Laplace transformation. The results are compared to simple test cases for which the heat fluxes are given in literature. The method is used to calculate the heat flux from a fuel spray to a wall at diesel engine conditions.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0017-9310(01)00157-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0017-9310(01)00157-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:Elsevier BV Authors: Michael Löffler; Michael Steffen; Michael Steffen; Karlheinz Schaber;Abstract A Triangle Cycle with a piston engine expansion unit is used to convert low temperature heat into electrical energy. In this process, the isentropic efficiency of the expansion unit is considered to be unknown, and a theoretical approach for the calculation of isentropic efficiency is presented. A number of influences are taken into account – dead volume, residual mass, liquid injection performance and wall heat transfer. Various working fluids are investigated in a wide range of temperatures (333K–573K), engine speeds (5 Hz–30 Hz) and stroke volumes (0.1 L–50 L). The isentropic efficiency of water as working fluid is in the range of 0.75–0.88 and drops significantly for high stroke volumes and engine speeds. In general, injection mass has the most impact on isentropic efficiency because it influences dead volume and injection performance. The injection mass increases with vapor density and therefore is significantly influenced by working fluid and temperatures. The Triangle Cycle is compared with Organic Rankine Cycles by using determined isentropic efficiency. The exergetic efficiency of the Triangle Cycle using water is up to 35–70% higher than that of supercritical Organic Rankine Cycles in situations with a heat source temperature of up to 450K.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2012.11.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2012.11.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Katrin Martens;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2022.112796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2022.112796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 China (People's Republic of)Publisher:Wiley Yuanjing Lin; Michael Moseler; Andreas Waag; Leonhard Mayrhofer; Markus Hoefer; Zhiyong Fan; Xiaodan Wang; Xiaodan Wang; Hao Shen; Hao Shen; Lothar Schaefer; Hao Zhou; Sònia Estradé; G. Braeuer; Lluís López-Conesa; Francesca Peiró;AbstractBlack TiO2 has demonstrated a great potential for a variety of renewable energy technologies. However, its practical application is heavily hindered due to lack of efficient hydrogenation methods and a deeper understanding of hydrogenation mechanisms. Here, a simple and straightforward hot wire annealing (HWA) method is presented to prepare black TiO2 (H–TiO2) nanorods with enhanced photo‐electrochemical (PEC) activity by means of atomic hydrogen [H]. Compared to conventional molecular hydrogen approaches, the HWA shows remarkable effectiveness without any detrimental side effects on the device structure, and simultaneously the photocurrent density of H–TiO2 reaches 2.5 mA cm−2 (at 1.23 V vs reversible hydrogen electrode (RHE)). Due to the controllable and reproducible [H] flux, the HWA can be developed as a standard hydrogenation method for black TiO2. Meanwhile, the relationships between the wire temperatures, structural, optical, and photo‐electrochemical properties are systematically investigated to verify the improved PEC activity. Furthermore, the density functional theory (DFT) study provides a comprehensive insight not only into the highly efficient mechanism of the HWA approach but also its favorably low‐energy‐barrier hydrogenation pathway. The findings will have a profound impact on the broad energy applications of H–TiO2 and contribute to the fundamental understanding of its hydrogenation.
Advanced Energy Mate... arrow_drop_down Advanced Energy MaterialsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.201900725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Advanced Energy Mate... arrow_drop_down Advanced Energy MaterialsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.201900725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 FrancePublisher:SAGE Publications Authors: Boubekri, Noureddine; Doudou, Sofiane; Saifia, Dounia; Chadli, Mohammed;This paper focuses on mixed [Formula: see text] fuzzy maximum power point tracking (MPPT) of photovoltaic (PV) system under asymmetric saturation and variations in climatic conditions. To maximize the power from the PV panel array, the DC–DC boost converter is controlled by its duty ratio which is practically saturated between 0 and 1. MPPT based on conventional control presents the problems of oscillations around maximum power point (MPP) and divergence under rapid climatic changes. In order to attenuate the effect of atmospheric condition variation and take into account asymmetric saturation of the duty ratio, we propose a novel robust saturated controller based on both [Formula: see text] performances and Takagi-Sugeno (T-S) representation of PV-boost nonlinear system. Within this approach, the nonlinear PV-boost system and its reference are first described by T-S fuzzy models. Second, the saturation effect is represented by a polytopic model. Then, a fuzzy integral state feedback controller is designed to achieve stable MPPT control. Based on Lyapunov function, the mixed [Formula: see text] stabilization conditions are derived in terms of linear matrix inequalities (LMIs). The optimization of the attraction domain of closed-loop system is solved as a convex optimization problem in LMI terms. Finally, the efficiency of the proposed controller under irradiance and temperature variations is demonstrated through the simulation results. The comparison with some existing controllers shows an improvement of MPPT control performance in terms of power extraction.
Transactions of the ... arrow_drop_down Transactions of the Institute of Measurement and ControlArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/01423312211052123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Transactions of the ... arrow_drop_down Transactions of the Institute of Measurement and ControlArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/01423312211052123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research 2022 GermanyPublisher:Elsevier BV Authors: Fabian Arnold; Samir Jeddi; Amelie Sitzmann;handle: 10419/244341
Within the regulation of net purchasing, investment incentives for residential PV depend on the remuneration for grid feed-in and the consumption costs that households can save by self-consumption. Network tariffs constitute a substantial part of these consumption costs. We use postcode-level data for Germany between 2009 and 2017 and exploit the regional heterogeneity of network tariffs to investigate whether they encourage to invest in PV installations and evaluate how the nonlinear tariff structure impacts residential PV adoption. Our results show that network tariffs do impact PV adoption. The effect has increased in recent years when self-consumption has become financially more attractive, and the results confirm the expectation that PV investments are driven by the volumetric tariff. Policy reforms that alter the share between the price components are, thus, likely to affect residential PV adoption. Further, with self-consumption becoming a key incentive, price signals can effectively support the coordination of electricity demand and supply in Germany.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2022.106177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2022.106177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Atul Dhar; Gaurav Tripathi; Priybrat Sharma; Amsini Sadiki;Abstract This paper deals with the numerical study of hydrogen-diesel dual fuel engine characteristics under various diesel injection strategies. Here, CONVERGE CFD software package is used to simulate a hydrogen diesel dual fuel engine, under split injection of diesel. The combustion and spray is modeled using coupled solution of chemical kinetics and fluid mechanics (CFD) equations. The study was performed at four strokes direct injection compression ignition engine. The engine speed (1500 rpm) and compression ratio (19.5:1) remain constant throughout the study. The developed model was validated against already published experimental data of 18.5% hydrogen energy share. The simulation result showed that 8° bTDC was optimum injection timing for single injection case and 16° bTDC was optimum injection timing for pilot fuel injection and 10% pilot mass was optimum pilot mass amount for minimum NOx, soot, CO and HC emissions and higher gIMEP.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2019.100543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2019.100543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Authors: Michael S.A. Kamel; Ahmed Al-jumaili; Michael Oelgemöller; Mohan V. Jacob;Organic photovoltaics (OPVs) have received considerable attention over the past two decades as a promising alternative to their inorganic counterparts. Although the power conversion efficiency (PCE) of OPVs has rapidly increased in the last ten years exceeding 18%, higher PCEs are still needed to commercialize this emerging technology. The weak light absorption, particularly at wavelengths outside the visible region, and the recombination losses of the photo-generated charge carriers represent the major challenges for the PCE of OPVS. The light harvest and survival of the photo-generated charge carriers within OPVs are restricted to multiple factors such as material properties and device engineering. The application of different types of inorganic nanoparticles (INPs) in OPVs has been reported by many researchers as an effective strategy to overcome most of the PCE limitations. Here, a comprehensive overview of the progress in the performance of OPVs due to the application of different INPs over the past decade is provided. This review also presents an in-depth analysis of the efficiency loss pathways at the different steps of the photovoltaic effect and how INPs can address these issues resulting in PCE enhancement of OPVs. Finally, the impacts of this approach on the stability and cost of the device in addition to challenges and outlook are discussed.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Gloria Amoruso; Natasha Donevska; Gunstein Skomedal;Buildings in private and domestic use are responsible for about 30% of the global greenhouse gas emissions attributable mainly to their need for heating and cooling energy. This corresponds to about 40% of the global final energy consumption. Therefore, a viable implementation of building energy efficiency policies is inevitable to realize a transformation of the energy system to mitigate climate change. Within the building sector lies a huge potential for emission reduction consisting in the renovation of the existing building stock and climate-friendly building guidelines applicable to new constructions, both adapting CO2-neutral technology solutions. However, as there are several different pathways leading to a decarbonized energy system, there is always the question which political and technological solutions are most efficient, effective, and feasible. This paper aims to analyze building efficiency policy measures and instruments and the related technological solutions in two front-runner countries of the energy transition, possessing different structural conditions: Germany and Norway. We hence apply a comparative approach which allows us to present and assess the policies in place. The paper answers three research questions: (1) Which policies prevail in Germany and Norway to foster the deployment of energy efficient and decarbonized solutions for residential buildings? (2) How do these policies respond to country-specific barriers to the energy transition in the building sector, and (3) What effects do they have on the actual implementation of technological and societal solutions? This research provides a new insight to the highly relevant topic of energy efficiency in buildings in the context of international Intended Nationally Determined Contribution benchmarking and discusses some unsolved trade-offs in the translation of the global climate governance into the national building sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-018-9637-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-018-9637-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2013 FrancePublisher:D.M. HOGARTH Authors: Chopart, Jean-Louis; Bonnal, Laurent; Martiné, Jean-François; Sabatier, Daniel;Two studies conducted in Guadeloupe (West Indies) and Réunion (Indian Ocean) islands were designed to investigate the benefits of producing sugarcane as an energy crop and to assess the influence of agroclimatic factors on energy efficiency, respectively. In this context, it is essential to know the low heating value of the dry above-ground biomass (LHVd, MJ/kg) and its energy yield (EY, MJ/m2) in order to select the best varieties and set up a payment method for growers. Eighteen Poaceae (sugarcane and Erianthus) cultivars were compared under wet tropical environmental conditions in Guadeloupe. Three sugarcane cultivars were studied in four contrasting environments in Réunion. The partition sampling and biomass measurement procedures were identical at both locations. Low heating value (LHV) predictions were achieved using near-infrared reflectance spectroscopy (NIRS) after specific calibration (Guadeloupe), or arithmetically after lignocellulosic compound prediction (Réunion). In both studies, LHV variability was very low and slightly dependent on the site, cultivar and above-ground biomass components (millable stalks and tops, and green and dead leaves). Considering the overall dry above-ground biomass (DAB, kg/m2), the LHVd was calculated by averaging 159 samples (mean 16.65 MJ/kg) in Guadeloupe and 315 samples (mean 16.45 MJ/kg) for Réunion. An excellent linear relationship between the DAB and its EY, regardless of cultivar, age and environment, was found (n = 474 and R² = 0.99). Sugarcane energy content assessment could thus be simplified by measuring the DAB, while enabling development of a faster method of payment for growers based on the DAB measurement and the correlation between DAB and EY. Finally, the findings of this study should allow growers to rapidly determine the commercial value of their sugarcane crops, and also enable purchasers to assess the amount of recoverable energy. (Résumé d'auteur)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3631::946c6df442eabfeaed8816005e0a97e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3631::946c6df442eabfeaed8816005e0a97e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Elsevier BV Authors: Ulrich Renz; Ulrich Meingast; Lars Reichelt;Wall heat fluxes can be derived from time resolved measurements of the surface temperature. This paper describes an analytical approach to calculate the heat flux from an analytical solution of the one-dimensional transient energy equation with transient boundary conditions using the Laplace transformation. The results are compared to simple test cases for which the heat fluxes are given in literature. The method is used to calculate the heat flux from a fuel spray to a wall at diesel engine conditions.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0017-9310(01)00157-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0017-9310(01)00157-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu