- home
- Advanced Search
- Energy Research
- 15. Life on land
- DE
- IN
- PK
- SA
- Sustainability
- Energy Research
- 15. Life on land
- DE
- IN
- PK
- SA
- Sustainability
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015Publisher:MDPI AG Sadroddin Alavipanah; Martin Wegmann; Salman Qureshi; Qihao Weng; Thomas Koellner;doi: 10.3390/su7044689
The Urban Heat Island (UHI) is the phenomenon of altered increased temperatures in urban areas compared to their rural surroundings. UHIs grow and intensify under extreme hot periods, such as during heat waves, which can affect human health and also increase the demand for energy for cooling. This study applies remote sensing and land use/land cover (LULC) data to assess the cooling effect of varying urban vegetation cover, especially during extreme warm periods, in the city of Munich, Germany. To compute the relationship between Land Surface Temperature (LST) and Land Use Land Cover (LULC), MODIS eight-day interval LST data for the months of June, July and August from 2002 to 2012 and the Corine Land Cover (CLC) database were used. Due to similarities in the behavior of surface temperature of different CLCs, some classes were reclassified and combined to form two major, rather simplified, homogenized classes: one of built-up area and one of urban vegetation. The homogenized map was merged with the MODIS eight-day interval LST data to compute the relationship between them. The results revealed that (i) the cooling effect accrued from urban vegetation tended to be non-linear; and (ii) a remarkable and stronger cooling effect in terms of LST was identified in regions where the proportion of vegetation cover was between seventy and almost eighty percent per square kilometer. The results also demonstrated that LST within urban vegetation was affected by the temperature of the surrounding built-up and that during the well-known European 2003 heat wave, suburb areas were cooler from the core of the urbanized region. This study concluded that the optimum green space for obtaining the lowest temperature is a non-linear trend. This could support urban planning strategies to facilitate appropriate applications to mitigate heat-stress in urban area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7044689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 134 citations 134 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7044689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG null Neha; Gajender Yadav; Rajender Kumar Yadav; Ashwani Kumar; Aravind Kumar Rai; Junya Onishi; Keisuke Omori; Parbodh Chander Sharma;doi: 10.3390/su14074146
Soil salinity and the use of saline groundwater are two major constraints in crop production, which covers a ~1.0 billion ha area of arid and semi-arid regions. The improved drainage function of soil can modify the salty growing environment for higher agricultural production. The present study evaluated the effectiveness of cut-soiler-constructed rice residue-filled preferential shallow subsurface drainage (PSSD) to improve the drainage function and its effect on the yield, quality and plant–water relations of mustard over 2019–2021. Cut-soiler-simulated drains were made in a semi-controlled lysimeter (2 × 2 × 3; L*W*H m) as the main plot treatment in a double replicated split–split experiment with two soil types (subplot) and three irrigation water salinities (4, 8 and 12 dS m−1) as the sub-sub-plot treatment. The drainage volume of variable salinity (EC), dependent on the total water input, was substantially higher in the rainy season (April to October), i.e., 16.6, 7.76 and 12.0% during 2018, 2019 and 2020, with 1.7, 0.32 and 0.77 kg salt removal per lysimeter, compared to the post-rainy season. The mustard seed, straw and biological yields were improved by 31.4, 14.41 and 18.08%, respectively, due to a positive effect on plant–water relations. The mustard seeds produced in the cut-soiler-treated plots recorded higher oil, crude fiber and protein contents and a lower erucic acid content. The increase in salt load, by higher-salinity irrigation water, was also efficiently managed by using cut-soiler PSSD. It was found that the saline irrigation water up to 12.0 dS m−1 can be used under such PSSD without any extra salt loading. The present study showed the potential of cut-soiler PSSD in root zone salinity management by improving drainage in salt-affected arid regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Muhammad Mumtaz Khan; Muhammad Tahir Akram; Rhonda Janke; Rashad Waseem Khan Qadri; +2 AuthorsMuhammad Mumtaz Khan; Muhammad Tahir Akram; Rhonda Janke; Rashad Waseem Khan Qadri; Abdullah Mohammed Al-Sadi; Aitazaz A. Farooque;doi: 10.3390/su12229592
Sufficient production, consistent food supply, and environmental protection in urban +settings are major global concerns for future sustainable cities. Currently, sustainable food supply is under intense pressure due to exponential population growth, expanding urban dwellings, climate change, and limited natural resources. The recent novel coronavirus 2019 (COVID-19) pandemic crisis has impacted sustainable fresh food supply, and has disrupted the food supply chain and prices significantly. Under these circumstances, urban horticulture and crop cultivation have emerged as potential ways to expand to new locations through urban green infrastructure. Therefore, the objective of this study is to review the salient features of contemporary urban horticulture, in addition to illustrating traditional and innovative developments occurring in urban environments. Current urban cropping systems, such as home gardening, community gardens, edible landscape, and indoor planting systems, can be enhanced with new techniques, such as vertical gardening, hydroponics, aeroponics, aquaponics, and rooftop gardening. These modern techniques are ecofriendly, energy- saving, and promise food security through steady supplies of fresh fruits and vegetables to urban neighborhoods. There is a need, in this modern era, to integrate information technology tools in urban horticulture, which could help in maintaining consistent food supply during (and after) a pandemic, as well as make agriculture more sustainable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12229592&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12229592&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Authors: Jingzhong Li; Yongmei Liu; Mingming Cao; Bing Xue;doi: 10.3390/su70911967
Vegetation indicators and spatial distribution characteristics are the core and basis to study the complex human-natural coupled system. In this paper, with Landsat 5 and Landsat 8 remote sensing data, we quantitatively estimated vegetation coverage in Henan Province, China. According to the urbanization rate, altitude, slope degree, and slope exposure, we analyzed spatial and temporal variation laws of vegetation coverage under the action of different factors to provide a reference for the improvement of the ecological environment and the quality assessment of Chinese granary. From 2000 to 2013, the vegetation coverage in Henan Province declined by 30.49% and the ecological environment deteriorated. The spatial change of vegetation coverage was evenly distributed in Henan Province. The vegetation coverage was increased in the west, south, and southwest parts of Henan Province and slightly decreased in the central, east, and the eastern part of Taihang Mountain. Vegetation coverage in a city was related to its population urbanization rate. The population urbanization rate was often negatively correlated with the vegetation coverage. According to the results of terrain factors based analysis, the low-altitude areas were in a good vegetation cover condition with the high vegetation coverage grade; the areas with a smaller slope degree had the large vegetation coverage and the coverage decreased with the increase in the slope degree; the coverage showed no significant difference between sunny and shady slopes and was less limited by light, temperature, and humidity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su70911967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su70911967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 GermanyPublisher:MDPI AG Authors: Lukas Beule; Ena Lehtsaar; Anna Rathgeb; Petr Karlovsky;doi: 10.3390/su11102925
Background: Temperate agroforestry is regarded as a sustainable alternative to monoculture agriculture due to enhanced provisioning of ecosystem services. Plant health and food safety are crucial requirements for sustainable agriculture; however, studies of fungal diseases and mycotoxin contamination of crops grown under temperate agroforestry are lacking. This study therefore aimed to compare fungal colonization and mycotoxin contamination of crops grown in temperate agroforestry against conventional monoculture. Methods: The biomass of plant pathogenic fungi in oilseed rape plants and barley and wheat grain harvested in 2016 to 2018 at four paired agroforestry and monoculture sites was quantified using species-specific real-time PCR. Mycotoxin content of barley and wheat grain was determined by HPLC-MS/MS. Results: The colonization of oilseed rape plants with the vascular pathogen Verticillium longisporum and wheat grain with the head blight pathogen Fusarium tricinctum was lower in agroforestry than in conventional monoculture. Mycotoxin content of barley and wheat grain did not differ between agroforestry and monoculture systems and did not exceed the legal limits of the EU. Remarkably, fumonisin B1 was detected in wheat grains at two sites in two years, yet the low levels found do not raise food safety concerns. No differences were found between the two production systems with regard to infection of wheat and barley grain with five Fusarium species (F. avenaceum, F. culmorum, F. graminearum, F. poae, and F. proliferatum) and oilseed rape with fungal pathogens Leptosphaeria biglobosa, Leptosphaeria maculans, and Sclerotinia sclerotiorum. Conclusions: Temperate agroforestry does not negatively affect the infection of wheat, barley and oilseed rape with major fungal pathogens though it may suppress the infection of oilseed rape with V. longisporum and wheat grain with F. tricinctum. Furthermore, temperate agroforestry does not increase mycotoxin contamination of barley and wheat. Therefore, temperate agroforestry does not negatively affect food safety.
Sustainability arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Russian FederationPublisher:MDPI AG Authors: Ahmed A. El Baroudy; Abdelraouf. M. Ali; Elsayed Said Mohamed; Farahat S. Moghanm; +9 AuthorsAhmed A. El Baroudy; Abdelraouf. M. Ali; Elsayed Said Mohamed; Farahat S. Moghanm; Mohamed S. Shokr; Igor Savin; Anton Poddubsky; Zheli Ding; Ahmed M.S. Kheir; Ali A. Aldosari; Abdelaziz Elfadaly; Peter Dokukin; Rosa Lasaponara;doi: 10.3390/su12229653
Today, the global food security is one of the most pressing issues for humanity, and, according to Food and Agriculture Organisation (FAO), the increasing demand for food is likely to grow by 70% until 2050. In this current condition and future scenario, the agricultural production is a critical factor for global food security and for facing the food security challenge, with specific reference to many African countries, where a large quantities of rice are imported from other continents. According to FAO, to face the Africa’s inability to reach self-sufficiency in rice, it is urgent “to redress to stem the trend of over-reliance on imports and to satisfy the increasing demand for rice in areas where the potential of local production resources is exploited at very low levels” The present study was undertaken to design a new method for land evaluation based on soil quality indicators and remote sensing data, to assess and map soil suitability for rice crop. Results from the investigations, performed in some areas in the northern part of the Nile Delta, were compared with the most common approaches, two parametric (the square root, Storie methods) and two qualitative (ALES and MicrioLEIS) methods. From the qualitative point of view, the results showed that: (i) all the models provided partly similar outputs related to the soil quality assessments, so that the distinction using the crop productivity played an important role, and (ii) outputs from the soil suitability models were consistent with both the satellite Sentinel-2 Normalize Difference Vegetation Indices (NDVI) during the crop growth and the yield production. From the quantitative point of view, the comparison of the results from the diverse approaches well fit each other, and the model, herein proposed, provided the highest performance. As a whole, a significant increasing in R2 values was provided by the model herein proposed, with R2 equal to 0.92, followed by MicroLES, Storie, ALES and Root as R2 with value equal to 0.87, 0.86, 0.84 and 0.84, respectively, with increasing percentage in R2 equal to 5%, 6% and 8%, respectively. Furthermore, the proposed model illustrated that around (i) 44.44% of the total soils of the study area are highly suitable, (ii) 44% are moderately suitable, and (iii) approximately 11.56% are unsuitable for rice due to their adverse physical and chemical soil properties. The approach herein presented can be promptly re-applied in arid region and the quantitative results obtained can be used by decision makers and regional governments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12229653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12229653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Huzaifah Zahran; Muhammad Zeeshan Ali; Khan Zaib Jadoon; Hammad Ullah Khan Yousafzai; +2 AuthorsHuzaifah Zahran; Muhammad Zeeshan Ali; Khan Zaib Jadoon; Hammad Ullah Khan Yousafzai; Khalil Ur Rahman; Nadeem Ahmed Sheikh;doi: 10.3390/su15086864
The over-exploitation of groundwater resources is a significant concern due to the potential risks associated with the depletion of this valuable freshwater source. Future planning must consider changes in groundwater availability and urban expansion which are critical for understanding urban growth patterns. This study aims to investigate the impact of land cover change on groundwater depletion. Further, the Land surface temperature (LST) analysis has been performed to find the spatial spread of urbanization and its impact on surface temperature. The Gravity Recovery and Climate Experiment (GRACE) data for groundwater storage monitoring and Landsat data for land cover and LST mapping have been used. The GRACE-based Groundwater Storage (GWS) anomaly has been correlated with Tropical Rainfall Measuring Mission (TRMM)-based precipitation data. The GWS is further cross validated with the groundwater monitoring stations in the study area and the correlation of 0.7 is found. The time series analysis of GWS and the land cover maps with a decadal interval from 1990 to 2020 has been developed to find the impact of groundwater change due to urbanization. The results demonstrate a rapid increase in groundwater depletion and urbanization rates over the past decade. The LST spatial pattern is increasing similarly with the study area’s urban expansion, indicating the temperature rise due to urbanization. The study highlights the limitation of effective policies to regulate groundwater extraction in urban areas and the importance of proper planning to ensure the long-term sustainability of freshwater resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15086864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15086864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Shahid Naeem; Chunxiang Cao; Khunsa Fatima; Omaid Najmuddin; Bipin Acharya;doi: 10.3390/su10041049
City green infrastructure (CGI) makes cities more resilient and sustainable, as required by the United Nations’ (UN) Sustainable Development Goal 11–Sustainable Cities and Communities. Based on the CGI policies of Beijing, land use/land cover (LULC) changes of two Asian capitals, Beijing, China and Islamabad, Pakistan, are simulated. LULC maps for 2010 and 2015 are developed by applying object-based image analysis (OBIA) to Landsat imagery. Dynamics of land system (DLS) model was used to simulate the LULC changes for 2020 and 2025 under three scenarios: (1) business-as-usual (BAU); (2) urban green space work plan (UGWP); and (3) landscape and greening policies (LGP). Results reveal that DLS is efficient than other simulation models. The BAU scenario predicts an overall expansion in Beijing’s greenery, while Islamabad will encounter a decline by 7.3 km2 per year. Under the UGWP scenario, urban green spaces and other vegetation area of Beijing will expand by 7.6 km2, while, for Islamabad, vegetation degradation rate will slow down to 6.9 km2 per year. The LGP scenario envisage a massive increase of 23.5 km2 per year in green resources of Beijing and Islamabad’s green land loss rate will further slowdown to 6.1 km2 per year. It is inferred from the results that vegetation degradation in Islamabad need to lessen by implementing LGP policy after basic amendments according to the local conditions and available resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10041049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10041049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Syeda Fasiha Amjad; Nida Mansoora; Samia Yaseen; Afifa Kamal; Beenish Butt; Humera Matloob; Saad A. M. Alamri; Sulaiman A. Alrumman; Ebrahem M. Eid; Muhammad Shahbaz;doi: 10.3390/su13126582
On a global scale, wheat (Triticum aestivum L.) is a widely cultivated crop among all cereals. Increasing pollution, population expansion, socio-economic development, ecological and industrial policies have induced changes in overall climatic attributes. The impact of these factors on agriculture dynamics has led to various biotic and abiotic stresses, i.e., significant decline in rainfall, directly affect sustainable agriculture. Increasing abiotic stresses have a direct negative effect on worldwide crop production. More promising and improved stress-tolerant strategies that can help to feed the increasing global population are required. A laboratory experiment was performed on two of the latest wheat (Triticum aestivum L.) genotypes (Akbar 2019 and Anaj 2017) from Punjab Pakistan, to determine the influence of seed priming with thiamine (vitamin B1) along with soil inoculation of Endophytic bacterial strains to mitigate the effects of drought stress at different degrees. Results revealed that thiamine helped in the remote germination; seeds of Anaj 2017 germinated within 16 hours while Akbar 2019 germinated after one day. Overall growth parameters of Anaj 2017 were negatively affected even under higher levels of drought stress, while Akbar 2019 proved to be a susceptible cultivar. A significant increase in RFW (54%), SFW (85%), RDW (69%), SDW (67%) and TChl (136%) validated the effectiveness of D-T3 compared to C-T0 in drought stress. Significant decrease in MDA, EL and H2O2 signified the imperative function of D-T3 over C-T0 under drought stress. In conclusion and recommendation, we declare that farmers can get better wheat growth under drought stress by application of D-T3 over C-T0.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Roua Amami; Khaled Ibrahimi; Farooq Sher; Paul Milham; Hiba Ghazouani; Sayed Chehaibi; Zahra Hussain; Hafiz M. N. Iqbal;doi: 10.3390/su13063155
Over the years, cultivation using sustainable tillage practices has gained significant importance, but the impact of tillage on soil water infiltration is still a concern for landowners due to the possible effects on crop yield. This study investigates the impact of different tillage managements on the infiltration rate of sandy clay loam soil under a semiarid environment. Field experiments were conducted in Chott Mariem Sousse, Tunisia. The tillage practices consisted of three treatments, including a tine cultivator (TC, 16 cm), moldboard plows (MP, 36 cm) and no-tillage (NT). Three infiltration models, Kostiakov, Philip and Horton, were applied to adjust the observed data and evaluate the infiltration characteristics of the studied soils. Comparison criteria, including the coefficient of determination (R2), along with the root mean square error (RMSE) and mean absolute error (MAE), were used to investigate the best-fit model. The results showed that moldboard plowing enhanced soil infiltration capacity relative to tine cultivation and no-tillage treatments. The mean saturated hydraulic conductivity was highest under MP, while it was lowest in NT, with 33.4% and 34.1% reduction compared to TC and MP, respectively. Based on the obtained results, Philip’s model showed better results with observed infiltration due to a higher R2 (0.981, 0.973 and 0.967), lower RMSE (3.36, 9.04 and 9.21) and lower MAE (1.46, 3.53 and 3.72) recorded, respectively, for NT, MP and TC. Horton’s model had a low regression coefficient between observed and predicted values. It was suggested that the Philip two-term model can adequately describe the infiltration process in the study area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015Publisher:MDPI AG Sadroddin Alavipanah; Martin Wegmann; Salman Qureshi; Qihao Weng; Thomas Koellner;doi: 10.3390/su7044689
The Urban Heat Island (UHI) is the phenomenon of altered increased temperatures in urban areas compared to their rural surroundings. UHIs grow and intensify under extreme hot periods, such as during heat waves, which can affect human health and also increase the demand for energy for cooling. This study applies remote sensing and land use/land cover (LULC) data to assess the cooling effect of varying urban vegetation cover, especially during extreme warm periods, in the city of Munich, Germany. To compute the relationship between Land Surface Temperature (LST) and Land Use Land Cover (LULC), MODIS eight-day interval LST data for the months of June, July and August from 2002 to 2012 and the Corine Land Cover (CLC) database were used. Due to similarities in the behavior of surface temperature of different CLCs, some classes were reclassified and combined to form two major, rather simplified, homogenized classes: one of built-up area and one of urban vegetation. The homogenized map was merged with the MODIS eight-day interval LST data to compute the relationship between them. The results revealed that (i) the cooling effect accrued from urban vegetation tended to be non-linear; and (ii) a remarkable and stronger cooling effect in terms of LST was identified in regions where the proportion of vegetation cover was between seventy and almost eighty percent per square kilometer. The results also demonstrated that LST within urban vegetation was affected by the temperature of the surrounding built-up and that during the well-known European 2003 heat wave, suburb areas were cooler from the core of the urbanized region. This study concluded that the optimum green space for obtaining the lowest temperature is a non-linear trend. This could support urban planning strategies to facilitate appropriate applications to mitigate heat-stress in urban area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7044689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 134 citations 134 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7044689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG null Neha; Gajender Yadav; Rajender Kumar Yadav; Ashwani Kumar; Aravind Kumar Rai; Junya Onishi; Keisuke Omori; Parbodh Chander Sharma;doi: 10.3390/su14074146
Soil salinity and the use of saline groundwater are two major constraints in crop production, which covers a ~1.0 billion ha area of arid and semi-arid regions. The improved drainage function of soil can modify the salty growing environment for higher agricultural production. The present study evaluated the effectiveness of cut-soiler-constructed rice residue-filled preferential shallow subsurface drainage (PSSD) to improve the drainage function and its effect on the yield, quality and plant–water relations of mustard over 2019–2021. Cut-soiler-simulated drains were made in a semi-controlled lysimeter (2 × 2 × 3; L*W*H m) as the main plot treatment in a double replicated split–split experiment with two soil types (subplot) and three irrigation water salinities (4, 8 and 12 dS m−1) as the sub-sub-plot treatment. The drainage volume of variable salinity (EC), dependent on the total water input, was substantially higher in the rainy season (April to October), i.e., 16.6, 7.76 and 12.0% during 2018, 2019 and 2020, with 1.7, 0.32 and 0.77 kg salt removal per lysimeter, compared to the post-rainy season. The mustard seed, straw and biological yields were improved by 31.4, 14.41 and 18.08%, respectively, due to a positive effect on plant–water relations. The mustard seeds produced in the cut-soiler-treated plots recorded higher oil, crude fiber and protein contents and a lower erucic acid content. The increase in salt load, by higher-salinity irrigation water, was also efficiently managed by using cut-soiler PSSD. It was found that the saline irrigation water up to 12.0 dS m−1 can be used under such PSSD without any extra salt loading. The present study showed the potential of cut-soiler PSSD in root zone salinity management by improving drainage in salt-affected arid regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Muhammad Mumtaz Khan; Muhammad Tahir Akram; Rhonda Janke; Rashad Waseem Khan Qadri; +2 AuthorsMuhammad Mumtaz Khan; Muhammad Tahir Akram; Rhonda Janke; Rashad Waseem Khan Qadri; Abdullah Mohammed Al-Sadi; Aitazaz A. Farooque;doi: 10.3390/su12229592
Sufficient production, consistent food supply, and environmental protection in urban +settings are major global concerns for future sustainable cities. Currently, sustainable food supply is under intense pressure due to exponential population growth, expanding urban dwellings, climate change, and limited natural resources. The recent novel coronavirus 2019 (COVID-19) pandemic crisis has impacted sustainable fresh food supply, and has disrupted the food supply chain and prices significantly. Under these circumstances, urban horticulture and crop cultivation have emerged as potential ways to expand to new locations through urban green infrastructure. Therefore, the objective of this study is to review the salient features of contemporary urban horticulture, in addition to illustrating traditional and innovative developments occurring in urban environments. Current urban cropping systems, such as home gardening, community gardens, edible landscape, and indoor planting systems, can be enhanced with new techniques, such as vertical gardening, hydroponics, aeroponics, aquaponics, and rooftop gardening. These modern techniques are ecofriendly, energy- saving, and promise food security through steady supplies of fresh fruits and vegetables to urban neighborhoods. There is a need, in this modern era, to integrate information technology tools in urban horticulture, which could help in maintaining consistent food supply during (and after) a pandemic, as well as make agriculture more sustainable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12229592&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12229592&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Authors: Jingzhong Li; Yongmei Liu; Mingming Cao; Bing Xue;doi: 10.3390/su70911967
Vegetation indicators and spatial distribution characteristics are the core and basis to study the complex human-natural coupled system. In this paper, with Landsat 5 and Landsat 8 remote sensing data, we quantitatively estimated vegetation coverage in Henan Province, China. According to the urbanization rate, altitude, slope degree, and slope exposure, we analyzed spatial and temporal variation laws of vegetation coverage under the action of different factors to provide a reference for the improvement of the ecological environment and the quality assessment of Chinese granary. From 2000 to 2013, the vegetation coverage in Henan Province declined by 30.49% and the ecological environment deteriorated. The spatial change of vegetation coverage was evenly distributed in Henan Province. The vegetation coverage was increased in the west, south, and southwest parts of Henan Province and slightly decreased in the central, east, and the eastern part of Taihang Mountain. Vegetation coverage in a city was related to its population urbanization rate. The population urbanization rate was often negatively correlated with the vegetation coverage. According to the results of terrain factors based analysis, the low-altitude areas were in a good vegetation cover condition with the high vegetation coverage grade; the areas with a smaller slope degree had the large vegetation coverage and the coverage decreased with the increase in the slope degree; the coverage showed no significant difference between sunny and shady slopes and was less limited by light, temperature, and humidity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su70911967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su70911967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 GermanyPublisher:MDPI AG Authors: Lukas Beule; Ena Lehtsaar; Anna Rathgeb; Petr Karlovsky;doi: 10.3390/su11102925
Background: Temperate agroforestry is regarded as a sustainable alternative to monoculture agriculture due to enhanced provisioning of ecosystem services. Plant health and food safety are crucial requirements for sustainable agriculture; however, studies of fungal diseases and mycotoxin contamination of crops grown under temperate agroforestry are lacking. This study therefore aimed to compare fungal colonization and mycotoxin contamination of crops grown in temperate agroforestry against conventional monoculture. Methods: The biomass of plant pathogenic fungi in oilseed rape plants and barley and wheat grain harvested in 2016 to 2018 at four paired agroforestry and monoculture sites was quantified using species-specific real-time PCR. Mycotoxin content of barley and wheat grain was determined by HPLC-MS/MS. Results: The colonization of oilseed rape plants with the vascular pathogen Verticillium longisporum and wheat grain with the head blight pathogen Fusarium tricinctum was lower in agroforestry than in conventional monoculture. Mycotoxin content of barley and wheat grain did not differ between agroforestry and monoculture systems and did not exceed the legal limits of the EU. Remarkably, fumonisin B1 was detected in wheat grains at two sites in two years, yet the low levels found do not raise food safety concerns. No differences were found between the two production systems with regard to infection of wheat and barley grain with five Fusarium species (F. avenaceum, F. culmorum, F. graminearum, F. poae, and F. proliferatum) and oilseed rape with fungal pathogens Leptosphaeria biglobosa, Leptosphaeria maculans, and Sclerotinia sclerotiorum. Conclusions: Temperate agroforestry does not negatively affect the infection of wheat, barley and oilseed rape with major fungal pathogens though it may suppress the infection of oilseed rape with V. longisporum and wheat grain with F. tricinctum. Furthermore, temperate agroforestry does not increase mycotoxin contamination of barley and wheat. Therefore, temperate agroforestry does not negatively affect food safety.
Sustainability arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Russian FederationPublisher:MDPI AG Authors: Ahmed A. El Baroudy; Abdelraouf. M. Ali; Elsayed Said Mohamed; Farahat S. Moghanm; +9 AuthorsAhmed A. El Baroudy; Abdelraouf. M. Ali; Elsayed Said Mohamed; Farahat S. Moghanm; Mohamed S. Shokr; Igor Savin; Anton Poddubsky; Zheli Ding; Ahmed M.S. Kheir; Ali A. Aldosari; Abdelaziz Elfadaly; Peter Dokukin; Rosa Lasaponara;doi: 10.3390/su12229653
Today, the global food security is one of the most pressing issues for humanity, and, according to Food and Agriculture Organisation (FAO), the increasing demand for food is likely to grow by 70% until 2050. In this current condition and future scenario, the agricultural production is a critical factor for global food security and for facing the food security challenge, with specific reference to many African countries, where a large quantities of rice are imported from other continents. According to FAO, to face the Africa’s inability to reach self-sufficiency in rice, it is urgent “to redress to stem the trend of over-reliance on imports and to satisfy the increasing demand for rice in areas where the potential of local production resources is exploited at very low levels” The present study was undertaken to design a new method for land evaluation based on soil quality indicators and remote sensing data, to assess and map soil suitability for rice crop. Results from the investigations, performed in some areas in the northern part of the Nile Delta, were compared with the most common approaches, two parametric (the square root, Storie methods) and two qualitative (ALES and MicrioLEIS) methods. From the qualitative point of view, the results showed that: (i) all the models provided partly similar outputs related to the soil quality assessments, so that the distinction using the crop productivity played an important role, and (ii) outputs from the soil suitability models were consistent with both the satellite Sentinel-2 Normalize Difference Vegetation Indices (NDVI) during the crop growth and the yield production. From the quantitative point of view, the comparison of the results from the diverse approaches well fit each other, and the model, herein proposed, provided the highest performance. As a whole, a significant increasing in R2 values was provided by the model herein proposed, with R2 equal to 0.92, followed by MicroLES, Storie, ALES and Root as R2 with value equal to 0.87, 0.86, 0.84 and 0.84, respectively, with increasing percentage in R2 equal to 5%, 6% and 8%, respectively. Furthermore, the proposed model illustrated that around (i) 44.44% of the total soils of the study area are highly suitable, (ii) 44% are moderately suitable, and (iii) approximately 11.56% are unsuitable for rice due to their adverse physical and chemical soil properties. The approach herein presented can be promptly re-applied in arid region and the quantitative results obtained can be used by decision makers and regional governments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12229653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12229653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Huzaifah Zahran; Muhammad Zeeshan Ali; Khan Zaib Jadoon; Hammad Ullah Khan Yousafzai; +2 AuthorsHuzaifah Zahran; Muhammad Zeeshan Ali; Khan Zaib Jadoon; Hammad Ullah Khan Yousafzai; Khalil Ur Rahman; Nadeem Ahmed Sheikh;doi: 10.3390/su15086864
The over-exploitation of groundwater resources is a significant concern due to the potential risks associated with the depletion of this valuable freshwater source. Future planning must consider changes in groundwater availability and urban expansion which are critical for understanding urban growth patterns. This study aims to investigate the impact of land cover change on groundwater depletion. Further, the Land surface temperature (LST) analysis has been performed to find the spatial spread of urbanization and its impact on surface temperature. The Gravity Recovery and Climate Experiment (GRACE) data for groundwater storage monitoring and Landsat data for land cover and LST mapping have been used. The GRACE-based Groundwater Storage (GWS) anomaly has been correlated with Tropical Rainfall Measuring Mission (TRMM)-based precipitation data. The GWS is further cross validated with the groundwater monitoring stations in the study area and the correlation of 0.7 is found. The time series analysis of GWS and the land cover maps with a decadal interval from 1990 to 2020 has been developed to find the impact of groundwater change due to urbanization. The results demonstrate a rapid increase in groundwater depletion and urbanization rates over the past decade. The LST spatial pattern is increasing similarly with the study area’s urban expansion, indicating the temperature rise due to urbanization. The study highlights the limitation of effective policies to regulate groundwater extraction in urban areas and the importance of proper planning to ensure the long-term sustainability of freshwater resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15086864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15086864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Shahid Naeem; Chunxiang Cao; Khunsa Fatima; Omaid Najmuddin; Bipin Acharya;doi: 10.3390/su10041049
City green infrastructure (CGI) makes cities more resilient and sustainable, as required by the United Nations’ (UN) Sustainable Development Goal 11–Sustainable Cities and Communities. Based on the CGI policies of Beijing, land use/land cover (LULC) changes of two Asian capitals, Beijing, China and Islamabad, Pakistan, are simulated. LULC maps for 2010 and 2015 are developed by applying object-based image analysis (OBIA) to Landsat imagery. Dynamics of land system (DLS) model was used to simulate the LULC changes for 2020 and 2025 under three scenarios: (1) business-as-usual (BAU); (2) urban green space work plan (UGWP); and (3) landscape and greening policies (LGP). Results reveal that DLS is efficient than other simulation models. The BAU scenario predicts an overall expansion in Beijing’s greenery, while Islamabad will encounter a decline by 7.3 km2 per year. Under the UGWP scenario, urban green spaces and other vegetation area of Beijing will expand by 7.6 km2, while, for Islamabad, vegetation degradation rate will slow down to 6.9 km2 per year. The LGP scenario envisage a massive increase of 23.5 km2 per year in green resources of Beijing and Islamabad’s green land loss rate will further slowdown to 6.1 km2 per year. It is inferred from the results that vegetation degradation in Islamabad need to lessen by implementing LGP policy after basic amendments according to the local conditions and available resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10041049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10041049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Syeda Fasiha Amjad; Nida Mansoora; Samia Yaseen; Afifa Kamal; Beenish Butt; Humera Matloob; Saad A. M. Alamri; Sulaiman A. Alrumman; Ebrahem M. Eid; Muhammad Shahbaz;doi: 10.3390/su13126582
On a global scale, wheat (Triticum aestivum L.) is a widely cultivated crop among all cereals. Increasing pollution, population expansion, socio-economic development, ecological and industrial policies have induced changes in overall climatic attributes. The impact of these factors on agriculture dynamics has led to various biotic and abiotic stresses, i.e., significant decline in rainfall, directly affect sustainable agriculture. Increasing abiotic stresses have a direct negative effect on worldwide crop production. More promising and improved stress-tolerant strategies that can help to feed the increasing global population are required. A laboratory experiment was performed on two of the latest wheat (Triticum aestivum L.) genotypes (Akbar 2019 and Anaj 2017) from Punjab Pakistan, to determine the influence of seed priming with thiamine (vitamin B1) along with soil inoculation of Endophytic bacterial strains to mitigate the effects of drought stress at different degrees. Results revealed that thiamine helped in the remote germination; seeds of Anaj 2017 germinated within 16 hours while Akbar 2019 germinated after one day. Overall growth parameters of Anaj 2017 were negatively affected even under higher levels of drought stress, while Akbar 2019 proved to be a susceptible cultivar. A significant increase in RFW (54%), SFW (85%), RDW (69%), SDW (67%) and TChl (136%) validated the effectiveness of D-T3 compared to C-T0 in drought stress. Significant decrease in MDA, EL and H2O2 signified the imperative function of D-T3 over C-T0 under drought stress. In conclusion and recommendation, we declare that farmers can get better wheat growth under drought stress by application of D-T3 over C-T0.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Roua Amami; Khaled Ibrahimi; Farooq Sher; Paul Milham; Hiba Ghazouani; Sayed Chehaibi; Zahra Hussain; Hafiz M. N. Iqbal;doi: 10.3390/su13063155
Over the years, cultivation using sustainable tillage practices has gained significant importance, but the impact of tillage on soil water infiltration is still a concern for landowners due to the possible effects on crop yield. This study investigates the impact of different tillage managements on the infiltration rate of sandy clay loam soil under a semiarid environment. Field experiments were conducted in Chott Mariem Sousse, Tunisia. The tillage practices consisted of three treatments, including a tine cultivator (TC, 16 cm), moldboard plows (MP, 36 cm) and no-tillage (NT). Three infiltration models, Kostiakov, Philip and Horton, were applied to adjust the observed data and evaluate the infiltration characteristics of the studied soils. Comparison criteria, including the coefficient of determination (R2), along with the root mean square error (RMSE) and mean absolute error (MAE), were used to investigate the best-fit model. The results showed that moldboard plowing enhanced soil infiltration capacity relative to tine cultivation and no-tillage treatments. The mean saturated hydraulic conductivity was highest under MP, while it was lowest in NT, with 33.4% and 34.1% reduction compared to TC and MP, respectively. Based on the obtained results, Philip’s model showed better results with observed infiltration due to a higher R2 (0.981, 0.973 and 0.967), lower RMSE (3.36, 9.04 and 9.21) and lower MAE (1.46, 3.53 and 3.72) recorded, respectively, for NT, MP and TC. Horton’s model had a low regression coefficient between observed and predicted values. It was suggested that the Philip two-term model can adequately describe the infiltration process in the study area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu