
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Landscape Greening Policies-based Land Use/Land Cover Simulation for Beijing and Islamabad—An Implication of Sustainable Urban Ecosystems

doi: 10.3390/su10041049
City green infrastructure (CGI) makes cities more resilient and sustainable, as required by the United Nations’ (UN) Sustainable Development Goal 11–Sustainable Cities and Communities. Based on the CGI policies of Beijing, land use/land cover (LULC) changes of two Asian capitals, Beijing, China and Islamabad, Pakistan, are simulated. LULC maps for 2010 and 2015 are developed by applying object-based image analysis (OBIA) to Landsat imagery. Dynamics of land system (DLS) model was used to simulate the LULC changes for 2020 and 2025 under three scenarios: (1) business-as-usual (BAU); (2) urban green space work plan (UGWP); and (3) landscape and greening policies (LGP). Results reveal that DLS is efficient than other simulation models. The BAU scenario predicts an overall expansion in Beijing’s greenery, while Islamabad will encounter a decline by 7.3 km2 per year. Under the UGWP scenario, urban green spaces and other vegetation area of Beijing will expand by 7.6 km2, while, for Islamabad, vegetation degradation rate will slow down to 6.9 km2 per year. The LGP scenario envisage a massive increase of 23.5 km2 per year in green resources of Beijing and Islamabad’s green land loss rate will further slowdown to 6.1 km2 per year. It is inferred from the results that vegetation degradation in Islamabad need to lessen by implementing LGP policy after basic amendments according to the local conditions and available resources.
- University of Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Institute of Geographic Sciences and Natural Resources Research China (People's Republic of)
- National University of Sciences and Technology Pakistan
- University of Chinese Academy of Social Sciences China (People's Republic of)
Environmental effects of industries and plants, TJ807-830, city green infrastructure, simulation, TD194-195, Renewable energy sources, Environmental sciences, dynamics of land system model, land-cover/land-use, GE1-350
Environmental effects of industries and plants, TJ807-830, city green infrastructure, simulation, TD194-195, Renewable energy sources, Environmental sciences, dynamics of land system model, land-cover/land-use, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
