Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
17,035 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • DE
  • IT
  • ES
  • English

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gallo, M.; D'ACIERNO, LUCA; MONTELLA, BRUNO;

    The road network design problem is widely studied in the literature, both in urban and rural areas; most papers deal with the solution algorithms and with the mathematical formulation of the problem. The road network design problem is NP-hard and is very difficult to solve in acceptable computing times for real-scale networks. In urban areas, the objective of the design is usually the minimisation in total travel time on the network, while in rural areas it is usually a sum of total travel time and total (i.e. construction and maintenance) road costs. Very few papers consider other terms in the objective function and/or propose a multicriteria approach. In our best knowledge, no papers consider as objective of the design to minimise the fuel consumption, even if it is an actual objective of road network planning and design. In this paper, we compare the results obtained by solving some road network design problems adopting the classic objective functions and adopting as objective the minimisation in fuel consumptions on the network. In order to obtain this result, in the paper a fuel consumption function is proposed, based on CORINAIR models and depending on the vehicle fleet of the study area; this function is used both for estimating the reduction in fuel consumption due to the design obtained with the classic objective functions and for designing the road network using as objective function the total consumption on the network. The results obtained with these approaches are compared in terms of fuel consumed and total travel time spent on the network. The minimisation in fuel consumption is very important since greenhouse gas emissions and air pollutants are directly related to the consumption. Initial tests highlighted that the results obtained with the two different approaches are more significant in rural areas, where higher average flow speeds may produce higher consumption, according to the CORINAIR models.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nicola Armaroli;

    The unprecedented improvement of the quality of life occurred in some regions of the world during the last century has been predominantly powered by fossil fuels, which still provide over 80% of our primary energy supply. This share has to be drastically reduced to curb the effects of a catastrophic climate change. The chief candidate to phase out the oil-gas-coal age is solar energy, which is available in several direct and indirect forms and is by far the most abundant, sustainable, and safe energy source we can rely on [1,2]. The transition to a solar-powered civilization will be a long and difficult process in which some key trends can be already envisaged: (1) growing share of electricity in energy end use [3]; (2) increase of efficiency in energy production [1,2]; (3) establishment of technologies for the manufacturing of solar fuels [4]; (4) recycling the equipment used for converting renewable energy flows that is often made of materials available in limited supply [5]. Solutions to the tremendous challenge of energy transition require the mobilization of huge human and economic resources in several scientific and technological fields, with chemistry playing a prominent role. In this broader context, some research results from our laboratories in the fields of materials for solar energy conversion and efficient lighting technologies will be illustrated [6,7]. [1] N. Armaroli and V. Balzani, Energy for a Sustainable World - From the Oil Age to a Sun Powered Future, Wiley-VCH, Weinheim, Germany, 2011. [2] N. Armaroli, V. Balzani and N. Serpone, Powering Planet Earth - Energy Solutions for the Future, Wiley-VCH, Weinheim, Germany, 2013. [3] N. Armaroli and V. Balzani Energ. Environ. Sci., 2011, 4, 3193-3222. [4] J. Barber Chem. Soc. Rev., 2009, 38, 185-196. [5] B. K. Reck and T. E. Graedel Science, 2012, 337, 690-695. [6] R. D. Costa, E. Orti, H. J. Bolink, F. Monti, G. Accorsi and N. Armaroli Angew. Chem. Int. Ed., 2012, 51, 8178-8211. [7] K. Yoosaf, J. Iehl, I. Nierengarten, M. Hmadeh, A.-M. Albrecht-Gary, J.-F. Nierengarten and N. Armaroli Chem.-Eur. J., 2014, 20, 223-231.?

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Conference object . 2014
    Data sources: IRIS Cnr
    CNR ExploRA
    Conference object . 2014
    Data sources: CNR ExploRA
    CNR ExploRA
    Conference object . 2014
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Conference object . 2014
      Data sources: IRIS Cnr
      CNR ExploRA
      Conference object . 2014
      Data sources: CNR ExploRA
      CNR ExploRA
      Conference object . 2014
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Francesco Gullì;

    Emissions trading is a “cap and trade” regulation aimed at reducing the cost of meeting environmental targets. This paper studies how this regulation interacts with energy and competition policies. Two vertically related and imperfectly competitive markets are investigated: 1) the electricity market (output market); 2) the market for natural gas (input market). The effect of energy policy is simulated by assuming that the supporting scheme is able to improve the competitiveness of the low carbon technologies which are able, at the same time, to increase security of supply. The effect of the competition policy is accounted for by assuming that firms try to meet a profit target rather than to maximize profits, because of the regulatory pressure exerted by the competition and sector-specific authorities. By using the dominant firm model (in both markets) and the auction approach (in the output market), the paper highlights a trade-off between these policies. Without regulatory pressure, the result is ambiguous. Together, environmental and energy policies can lead to an increase in market power and its effects, but this in turn not necessarily amplifies their performances. However the worst case, the absolute increase in pollution in the short-run, is excluded. With regulatory pressure, the environmental and energy policies may imply a decrease in market power and this in turn can lessen their performance. In addition, this time the absolute increase in pollution in the short-run is not only possible but even likely. However this unfavourable effect would happen only if the pollution price is sufficiently low, that is if the environmental policy is rather modest. From the policy implications point of view, the analysis suggests what follows. If the models used to estimate performances and costs of environmental and energy policies ignore the full role of imperfect competition (the impact on prices combined with the strategic use of power capacity), this may induce incorrect estimations of the cost of the public action or may lead to incorrect policy calibrations, depending on how the policy targets are set. Finally, although the results are based on a series of simple assumptions about the operation and the structure of energy markets, they seem to be enough robust. Nevertheless the paper suggests caution in extending to other market structures the outcome of the dominant firm model.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cadmus, EUI Research...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cadmus, EUI Research...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: RUGGERI, MATTEO;

    Oggigiorno i dibattiti riguardanti il significato di sostenibilità, la sua misurazione attraverso indicatori e le metodologie nei quali quest’ultimi dovrebbero essere utilizzati rimangono spesso inconcludenti. Questo elaborato si propone come un prototipo per superare questi limiti. L’approccio, applicato per la coltura frumento duro, è un esempio di come è possibile consolidare i paradigmi teorici della sostenibilità e trasformarli in utili raccomandazioni per attività agricole più sostenibili. Attraverso l’implementazione di un Decision Support System (DSS) chiamato granoduro.net® e la stesura di un decalogo per una coltivazione del grano duro più competitiva (10 regole agronomiche), il divario tra i principi teorici e pratici della sostenibilità viene ridotto. Grazie alla disponibilità di Barilla S.p.A., sono stati pianificati per diversi anni, a partire dal 2011, studi di campo e il progetto è stato considerato dagli operatori del settore un esempio di come i principi teorici della sostenibilità possono essere messi in pratica con facilità. Le differenti fasi della validazione (un iniziale studio teorico, il confronto tra situazioni reali e teoriche ottimali e due anni di utilizzo sul campo di granoduro.net® e del decalogo) hanno permesso di dimostrare agli agricoltori che gli impatti antropici possono essere monitorati e ridotti e che quindi la sostenibilità è fruibile e calcolabile. Inoltre, il decalogo e granoduro.net® hanno dimostrato di essere due esempi di come è possibile migliorare la qualità delle decisioni strategiche (scelta della rotazione, lavorazione del terreno, scelta delle varietà, tecnica di fertilizzazione e uso di seme certificato) e tattiche (in risposta agli eventi generati da attacchi biotici, infestanti e necessità nutrizionali) intraprese dagli imprenditori agricoli. ; Current debates concerning the meaning of sustainability, its measurement by means of indicators, and the framework in which these should be applied, often remain inconclusive. This work is a prototype aimed to ...

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pardini C.; Anselmo L.;

    As of mid-2017, there were ~7500 metric tons of mass in orbit around the Earth, of which about 95% concentrated in almost 6700 intact spacecraft and orbital stages. Among them, nearly 80% were abandoned and more than 90% could not be maneuvered. The intact objects abandoned in LEO above ~650 km, i.e. with a typical residual lifetime of more than 25 years, represent the main potential mass reservoir for the generation of new detrimental orbital debris in case of mutual collisions with the existing debris environment. A practicable strategy to assess the latent long-term environmental impact of an orbiting object is to devise a ranking scheme based on simplified and reasonable inferences. Several ranking schemes have been proposed by different authors during the last decade. Various "criticality indexes" have been devised by us (at ISTI-CNR) in the last few years, and they have been applied to evaluate the environmental impact of many families of rocket bodies and selected spacecraft. A couple of the most complete indexes formulated by us are herein applied to assess the potential criticality of the most massive objects abandoned in LEO.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2018
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2018
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bregnard, Danaé; Leins, Alessio; Vieth-Hillebrand, Andrea; Regenspurg, Simona; +1 Authors

    This deliverable contains the raw data that constitutes the database of microbial diversity and organic compounds in geothermal fluids used for electricity production generated during the project.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.48440/gf...
    Project deliverable . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.48440/gf...
      Project deliverable . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: BIAGINI, ENRICO; M. FALCITELLI; TOGNOTTI, LEONARDO;

    The devolatilization of solid fuels is of crucial importance for all thermo­chemical processes and is the basic step in gasification and combustion models. Here a structural model is developed to provide an Advanced tool for Biomass and Coal Devolatilization (ABCD model), even in blend. The main features are founded on the original approach of the CPD (Chemical Percolation Devolatilization) model by Fletcher [1]. The ABCD model extends the approach also to biomass fuels. Further improvements of the ABCD model are: (i) a population balance between n­mers in liquid metaplast; (ii) elemental balance closure with the speciation of light gases, hetero­species and tar composition; (iii) introduction of secondary reactions of tar­cracking and crosslinking. The ABCD model results agree with a selection of experimental data (from homemade and literature works) on different biomasses. The results reported in this paper encouraged IFRF in continuing the experimental campaign for the validation of the model by extending the Solid Fuel DataBase SFDB. The inclusion of ABCD in comprehensive codes (e.g., Reactor Network Analysis, RNA [2]) and process models is valuable because it gives detailed distribution of pyrolysis products in a wide range of conditions with a low computational cost. Proceedings of the 18th European Biomass Conference and Exhibition, 3-7 May 2010, Lyon, France, pp. 923-930

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/18t...
    Conference object . 2010
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/18t...
      Conference object . 2010
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: DUQUE CICERI, NATALIA; GARETTI, MARCO; TERZI, SERGIO;

    Organised by: Cranfield University Starting from the framework of Product Lifecycle Management (PLM), sustainability should be provided by continuous sharing of information among the different product lifecycle phases. A PLM system provides lifecycle knowledge generated by PLM systems through product lifecycle activities. The paper aims at presenting how PLM systems represent a very important foundation for achieving a more sustainable paradigm for life, a more sustainable development, engineering, manufacturing, use and disposal of products. Mori Seiki – The Machine Tool Company

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield CERESarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cranfield CERES
    Conference object . 2009
    Data sources: Cranfield CERES
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield CERESarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cranfield CERES
      Conference object . 2009
      Data sources: Cranfield CERES
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hartmann, Gabriele Maria;

    Der prognostizierte Klimawandel wird auch den Wasserkreislauf beeinflussen. Das Ausmaß dieser Änderung frühzeitig zu bestimmen ist eine wichtige Aufgabe, da sie Grundlage notwendiger Entscheidungen ist. Dieses Ausmaß hängt allerdings stark von der Datenlage und den Methoden ab, mit denen an diese Aufgabe herangegangen wird. Selbst wenn die derzeit verwendeten Methoden stimmige Ergebnisse für den gegenwärtigen Klimazustand liefern, kann nicht davon ausgegangen werden, dass die mit diesen Methoden berechneten Ergebnisse auch für ein geändertes Klima Gültigkeit haben werden. Die Unsicherheiten der Vorhersagen sind teils meteorologischer, teils hydrologischer Herkunft. Während die Unsicherheiten der GCMs bereits bekannt und in der Diskussion sind, wurden die in diesem Kontext existierenden Probleme der hydrologischen Modelle bisher nur selten untersucht. Insbesondere die Unsicherheit in der Prozessbeschreibung innerhalb der hydrologischen Modelle muss genauer geprüft werden. In dieser Dissertation wurden verschiedene Beschreibungen des Evapotranspirationsprozesses (ET) untersucht, denn dieser Prozess wird durch den Klimawandel stark beeinflusst werden. Neun verschiedene ET-Modelle wurden ausgewählt und getestet. Anhand einer einfachen theoretischen Untersuchung zeigte sich, dass die ET-Modelle bereits auf eine geringfügige Änderung von nur einer Eingangsvariablen sehr unterschiedlich reagieren. Fraglich ist nun, wie sich die durch diese Modelle berechnete ET verändert, wenn die gesamten durch den Klimawandel hervorgerufenen Änderungen der Eingangsgrößen berücksichtigt werden. Dazu wurde ein auf dem HBV-Konzept basierendes räumlich verteiltes hydrologisches Modell aufgestellt und mit den aus den verschiedenen ET-Modellen resultierenden Ergebnissen als Input nacheinander gespeist. Die Modellierung wurde auf das Einzugsgebiet des Oberen Neckars (ca. 4000 km2) angewandt. Das Einzugsgebiet wurde in 13 Teileinzugsgebiete mit deutlichen Unterschieden eingeteilt. Die verschiedenen ET-Modelle wurden getestet, indem das hydrologische Modell auf klimatisch verschiedene Jahre geeicht und dann auf klimatisch entgegengesetzte Jahre ausgewertet wurde. Dazu wurden verschiedene Zeitreihen mit jeweils 10 klimatisch ähnlichen Jahren (10 kalte, 10 warme, 10 nasse und 10 trockene Jahre aus der Zeitreihe 1961-1990) zusammengestellt. Das hydrologische Modell wurde auf jeweils eine dieser Zeitreihen geeicht und anschließend folgendermaßen validiert. Im ersten Schritt wurde das Modell für dieselbe Zeitreihe ausgewertet, die auch für die Eichung verwendet worden war. Danach erfolgte die Auswertung auf die klimatisch entgegengesetzte Zeitreihe, beispielsweise wurde das Modell, dass auf die kalten Jahre geeicht worden war, nun hinsichtlich der erzielten Ergebnisse für die warmen Jahre untersucht. Eine geringe Abweichung der beiden Ergebnisse bedeutet eine gute Übertragbarkeit des Modells. Indem das Modell auch auf die kontinuierliche Zeitreihe 1991–2000 angewandt wurde, wurde die Übertragbarkeit zusätzlich getestet. Die Kalibrierung eines hydrologischen Modells, das den Einfluss eines Klimawandels bestimmen soll, stellt eine besondere Herausforderung dar - nicht nur bei der Auswahl von geeigneten Perioden für die Kalibrierung und die Validierung, sondern auch bei der Aufstellung einer geeigneten Zielfunktion. Eine gängige Zielfunktion ist die Nash-Sutcliffe-Effizienz. Die Güte des Modells wird dabei durch den Vergleich berechneter Werte mit beobachteten Werten ermittelt. Dieser Vergleich wird meist anhand von Tageswerten durchgeführt, was zu unerkannten systematischen Fehlern führen kann. In dem hier gewählten Ansatz wird ein auf Simulated-Annealing basierender Optimierungsalgorithmus vorgestellt, der zur Kalibrierung nicht nur Tageswerte, sondern zusätzlich auch Jahres- und Extremwerte in unterschiedlichen Kombinationen verwendet. Welche Kalibrierung sich am besten zur Bestimmung der Auswirkungen von Klimaänderungen eignet, wurde durch einen umfangreichen Vergleich der Ergebnisse festgestellt. Auch dabei wurden wieder unterschiedliche Zeitskalen verwendet: die Ergebnisse wurden nicht nur auf Tagesbasis ausgewertet, sondern auch zu Wochen, Monaten, Jahreszeiten, Halbjahren und ganzen Jahren aggregiert. Die Ergebnisse zeigen, dass einige der ET-Modelle, die unter den gegenwärtigen Klimabedingungen realistische Werte berechnen, dies bei geänderten Klimabedingungen nicht mehr vermögen. Weiterhin hat sich gezeigt, dass eine nur auf Tageswerten basierende Kalibrierung zu unzureichenden Ergebnissen bei der Übertragung der Modelle zwischen klimatisch unterschiedlich ausgeprägten Zeitreihen führt. Der Einsatz einer Zielfunktion, die sowohl Tageswerte als auch Jahresaggregationen der Tageswerte berücksichtigt, hat sich hingegen bewährt. Climate change (CC) will impact water resources. Assessing the extent of these impacts in due time is an important task, as it forms the basis for decision making. Unfortunately, the extent of this forecasted impact depends very much on data and tools used for this task. Although such methods might work well with present climatic conditions, it has to be doubted whether their results can still be relied upon in a changed climate. The uncertainties in the forecasts are partly of meteorological and partly of hydrological origin. Whereas the uncertainties of GCMs are well known and often discussed, the problems of hydrological models in this context are seldom investigated. In particular the uncertainty in process representation within the hydrological models must be revised. This dissertation focuses on the representation of the evapotranspiration (ET) process, because this process will be strongly influenced by CC. For this purpose, the suitability of nine different ET models was investigated. In a theoretical investigation, the sensitivity of the ET models to only a small change in temperature was found to be very different. Thus the question had to be raised as to how the resulting ET from these models will change with the entire predicted CC. Therefore a spatially distributed hydrological model based on the HBV concept was set up and the results of the different ET models were used consecutively as input to the hydrological model. The modelling was applied on the Upper Neckar catchment, a mesoscale river in southwestern Germany with a basin size of about 4,000 km2. This catchment was divided into 13 subcatchments with different subcatchment characteristics. The suitability of the different ET approaches was checked by calibrating the hydrological model on different climatic periods and then applying the model on other climatic periods. Thus, different 10-year periods with different climatic conditions were compiled: 10 cold, 10 warm, 10 wet and 10 dry years from the time series 1961–1990 were collected. The first step was to adapt the model to the same period it was calibrated to. Then the model was applied to other 10 years, i.e. the model calibrated on for example, the cold years was used on the warm years. The transferability was also checked by applying the models on the period 1991–2000. For the investigation of the impact of CC, the calibration of the model must meet special requirements. Apart from the selection of proper periods for calibration and validation, this also concerns the establishment of a suitable objective function. Such a function is the Nash Sutcliffe efficiency. Usually it is calculated comparing observed and modelled daily values. In this study it is shown that problems in the transfer from one climatic condition to the other cannot be detected on the base of daily values. Therefore parameter sets were optimized by an automatic calibration procedure based on Simulated Annealing, which considered the model performance on different time scales simultaneously (days up to years). As the results show, some of the ET models, which work well under stationary conditions, are not able to reproduce changes in a realistic manner. The results also show that calibrating a hydrological model that is supposed to handle short as well as long term signals becomes an important task; the objective function especially has to be chosen very carefully.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hochschulschriftense...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.18419/op...
    Doctoral thesis . 2007
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hochschulschriftense...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.18419/op...
      Doctoral thesis . 2007
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Doekemeijer, Bart; Bossanyi, Ervin; Kanev, Stoyan; Bot, E.T.G.; +16 Authors

    A key topic of the European CL‐Windcon project, and specifically WP1 of the project, is the accurate modelling of wind turbine and wind farm dynamics at a varying range of fidelities. Hence, this document describes the different numerical models employed throughout the project and presents their arrangement and fidelity classification based on the different capabilities, limitations and complexity of their underlying physics. The description of the four categories selected: steady‐state models, control‐oriented dynamical models, medium‐fidelity simulation models, and high‐fidelity simulation models is included and discussed in the document.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2018
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2018
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2018
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5281/zenodo...
    Article . 2018
    License: CC BY
    Data sources: Sygma
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2018
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2018
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2018
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.5281/zenodo...
      Article . 2018
      License: CC BY
      Data sources: Sygma
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 4
  • 5
  • 6
  • 7
  • 8
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
17,035 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gallo, M.; D'ACIERNO, LUCA; MONTELLA, BRUNO;

    The road network design problem is widely studied in the literature, both in urban and rural areas; most papers deal with the solution algorithms and with the mathematical formulation of the problem. The road network design problem is NP-hard and is very difficult to solve in acceptable computing times for real-scale networks. In urban areas, the objective of the design is usually the minimisation in total travel time on the network, while in rural areas it is usually a sum of total travel time and total (i.e. construction and maintenance) road costs. Very few papers consider other terms in the objective function and/or propose a multicriteria approach. In our best knowledge, no papers consider as objective of the design to minimise the fuel consumption, even if it is an actual objective of road network planning and design. In this paper, we compare the results obtained by solving some road network design problems adopting the classic objective functions and adopting as objective the minimisation in fuel consumptions on the network. In order to obtain this result, in the paper a fuel consumption function is proposed, based on CORINAIR models and depending on the vehicle fleet of the study area; this function is used both for estimating the reduction in fuel consumption due to the design obtained with the classic objective functions and for designing the road network using as objective function the total consumption on the network. The results obtained with these approaches are compared in terms of fuel consumed and total travel time spent on the network. The minimisation in fuel consumption is very important since greenhouse gas emissions and air pollutants are directly related to the consumption. Initial tests highlighted that the results obtained with the two different approaches are more significant in rural areas, where higher average flow speeds may produce higher consumption, according to the CORINAIR models.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nicola Armaroli;

    The unprecedented improvement of the quality of life occurred in some regions of the world during the last century has been predominantly powered by fossil fuels, which still provide over 80% of our primary energy supply. This share has to be drastically reduced to curb the effects of a catastrophic climate change. The chief candidate to phase out the oil-gas-coal age is solar energy, which is available in several direct and indirect forms and is by far the most abundant, sustainable, and safe energy source we can rely on [1,2]. The transition to a solar-powered civilization will be a long and difficult process in which some key trends can be already envisaged: (1) growing share of electricity in energy end use [3]; (2) increase of efficiency in energy production [1,2]; (3) establishment of technologies for the manufacturing of solar fuels [4]; (4) recycling the equipment used for converting renewable energy flows that is often made of materials available in limited supply [5]. Solutions to the tremendous challenge of energy transition require the mobilization of huge human and economic resources in several scientific and technological fields, with chemistry playing a prominent role. In this broader context, some research results from our laboratories in the fields of materials for solar energy conversion and efficient lighting technologies will be illustrated [6,7]. [1] N. Armaroli and V. Balzani, Energy for a Sustainable World - From the Oil Age to a Sun Powered Future, Wiley-VCH, Weinheim, Germany, 2011. [2] N. Armaroli, V. Balzani and N. Serpone, Powering Planet Earth - Energy Solutions for the Future, Wiley-VCH, Weinheim, Germany, 2013. [3] N. Armaroli and V. Balzani Energ. Environ. Sci., 2011, 4, 3193-3222. [4] J. Barber Chem. Soc. Rev., 2009, 38, 185-196. [5] B. K. Reck and T. E. Graedel Science, 2012, 337, 690-695. [6] R. D. Costa, E. Orti, H. J. Bolink, F. Monti, G. Accorsi and N. Armaroli Angew. Chem. Int. Ed., 2012, 51, 8178-8211. [7] K. Yoosaf, J. Iehl, I. Nierengarten, M. Hmadeh, A.-M. Albrecht-Gary, J.-F. Nierengarten and N. Armaroli Chem.-Eur. J., 2014, 20, 223-231.?

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Conference object . 2014
    Data sources: IRIS Cnr
    CNR ExploRA
    Conference object . 2014
    Data sources: CNR ExploRA
    CNR ExploRA
    Conference object . 2014
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Conference object . 2014
      Data sources: IRIS Cnr
      CNR ExploRA
      Conference object . 2014
      Data sources: CNR ExploRA
      CNR ExploRA
      Conference object . 2014
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Francesco Gullì;

    Emissions trading is a “cap and trade” regulation aimed at reducing the cost of meeting environmental targets. This paper studies how this regulation interacts with energy and competition policies. Two vertically related and imperfectly competitive markets are investigated: 1) the electricity market (output market); 2) the market for natural gas (input market). The effect of energy policy is simulated by assuming that the supporting scheme is able to improve the competitiveness of the low carbon technologies which are able, at the same time, to increase security of supply. The effect of the competition policy is accounted for by assuming that firms try to meet a profit target rather than to maximize profits, because of the regulatory pressure exerted by the competition and sector-specific authorities. By using the dominant firm model (in both markets) and the auction approach (in the output market), the paper highlights a trade-off between these policies. Without regulatory pressure, the result is ambiguous. Together, environmental and energy policies can lead to an increase in market power and its effects, but this in turn not necessarily amplifies their performances. However the worst case, the absolute increase in pollution in the short-run, is excluded. With regulatory pressure, the environmental and energy policies may imply a decrease in market power and this in turn can lessen their performance. In addition, this time the absolute increase in pollution in the short-run is not only possible but even likely. However this unfavourable effect would happen only if the pollution price is sufficiently low, that is if the environmental policy is rather modest. From the policy implications point of view, the analysis suggests what follows. If the models used to estimate performances and costs of environmental and energy policies ignore the full role of imperfect competition (the impact on prices combined with the strategic use of power capacity), this may induce incorrect estimations of the cost of the public action or may lead to incorrect policy calibrations, depending on how the policy targets are set. Finally, although the results are based on a series of simple assumptions about the operation and the structure of energy markets, they seem to be enough robust. Nevertheless the paper suggests caution in extending to other market structures the outcome of the dominant firm model.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cadmus, EUI Research...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cadmus, EUI Research...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: RUGGERI, MATTEO;

    Oggigiorno i dibattiti riguardanti il significato di sostenibilità, la sua misurazione attraverso indicatori e le metodologie nei quali quest’ultimi dovrebbero essere utilizzati rimangono spesso inconcludenti. Questo elaborato si propone come un prototipo per superare questi limiti. L’approccio, applicato per la coltura frumento duro, è un esempio di come è possibile consolidare i paradigmi teorici della sostenibilità e trasformarli in utili raccomandazioni per attività agricole più sostenibili. Attraverso l’implementazione di un Decision Support System (DSS) chiamato granoduro.net® e la stesura di un decalogo per una coltivazione del grano duro più competitiva (10 regole agronomiche), il divario tra i principi teorici e pratici della sostenibilità viene ridotto. Grazie alla disponibilità di Barilla S.p.A., sono stati pianificati per diversi anni, a partire dal 2011, studi di campo e il progetto è stato considerato dagli operatori del settore un esempio di come i principi teorici della sostenibilità possono essere messi in pratica con facilità. Le differenti fasi della validazione (un iniziale studio teorico, il confronto tra situazioni reali e teoriche ottimali e due anni di utilizzo sul campo di granoduro.net® e del decalogo) hanno permesso di dimostrare agli agricoltori che gli impatti antropici possono essere monitorati e ridotti e che quindi la sostenibilità è fruibile e calcolabile. Inoltre, il decalogo e granoduro.net® hanno dimostrato di essere due esempi di come è possibile migliorare la qualità delle decisioni strategiche (scelta della rotazione, lavorazione del terreno, scelta delle varietà, tecnica di fertilizzazione e uso di seme certificato) e tattiche (in risposta agli eventi generati da attacchi biotici, infestanti e necessità nutrizionali) intraprese dagli imprenditori agricoli. ; Current debates concerning the meaning of sustainability, its measurement by means of indicators, and the framework in which these should be applied, often remain inconclusive. This work is a prototype aimed to ...

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pardini C.; Anselmo L.;

    As of mid-2017, there were ~7500 metric tons of mass in orbit around the Earth, of which about 95% concentrated in almost 6700 intact spacecraft and orbital stages. Among them, nearly 80% were abandoned and more than 90% could not be maneuvered. The intact objects abandoned in LEO above ~650 km, i.e. with a typical residual lifetime of more than 25 years, represent the main potential mass reservoir for the generation of new detrimental orbital debris in case of mutual collisions with the existing debris environment. A practicable strategy to assess the latent long-term environmental impact of an orbiting object is to devise a ranking scheme based on simplified and reasonable inferences. Several ranking schemes have been proposed by different authors during the last decade. Various "criticality indexes" have been devised by us (at ISTI-CNR) in the last few years, and they have been applied to evaluate the environmental impact of many families of rocket bodies and selected spacecraft. A couple of the most complete indexes formulated by us are herein applied to assess the potential criticality of the most massive objects abandoned in LEO.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2018
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2018
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bregnard, Danaé; Leins, Alessio; Vieth-Hillebrand, Andrea; Regenspurg, Simona; +1 Authors

    This deliverable contains the raw data that constitutes the database of microbial diversity and organic compounds in geothermal fluids used for electricity production generated during the project.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.48440/gf...
    Project deliverable . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.48440/gf...
      Project deliverable . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: BIAGINI, ENRICO; M. FALCITELLI; TOGNOTTI, LEONARDO;

    The devolatilization of solid fuels is of crucial importance for all thermo­chemical processes and is the basic step in gasification and combustion models. Here a structural model is developed to provide an Advanced tool for Biomass and Coal Devolatilization (ABCD model), even in blend. The main features are founded on the original approach of the CPD (Chemical Percolation Devolatilization) model by Fletcher [1]. The ABCD model extends the approach also to biomass fuels. Further improvements of the ABCD model are: (i) a population balance between n­mers in liquid metaplast; (ii) elemental balance closure with the speciation of light gases, hetero­species and tar composition; (iii) introduction of secondary reactions of tar­cracking and crosslinking. The ABCD model results agree with a selection of experimental data (from homemade and literature works) on different biomasses. The results reported in this paper encouraged IFRF in continuing the experimental campaign for the validation of the model by extending the Solid Fuel DataBase SFDB. The inclusion of ABCD in comprehensive codes (e.g., Reactor Network Analysis, RNA [2]) and process models is valuable because it gives detailed distribution of pyrolysis products in a wide range of conditions with a low computational cost. Proceedings of the 18th European Biomass Conference and Exhibition, 3-7 May 2010, Lyon, France, pp. 923-930

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/18t...
    Conference object . 2010
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/18t...
      Conference object . 2010
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: DUQUE CICERI, NATALIA; GARETTI, MARCO; TERZI, SERGIO;

    Organised by: Cranfield University Starting from the framework of Product Lifecycle Management (PLM), sustainability should be provided by continuous sharing of information among the different product lifecycle phases. A PLM system provides lifecycle knowledge generated by PLM systems through product lifecycle activities. The paper aims at presenting how PLM systems represent a very important foundation for achieving a more sustainable paradigm for life, a more sustainable development, engineering, manufacturing, use and disposal of products. Mori Seiki – The Machine Tool Company

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield CERESarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cranfield CERES
    Conference object . 2009
    Data sources: Cranfield CERES
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield CERESarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cranfield CERES
      Conference object . 2009
      Data sources: Cranfield CERES
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hartmann, Gabriele Maria;

    Der prognostizierte Klimawandel wird auch den Wasserkreislauf beeinflussen. Das Ausmaß dieser Änderung frühzeitig zu bestimmen ist eine wichtige Aufgabe, da sie Grundlage notwendiger Entscheidungen ist. Dieses Ausmaß hängt allerdings stark von der Datenlage und den Methoden ab, mit denen an diese Aufgabe herangegangen wird. Selbst wenn die derzeit verwendeten Methoden stimmige Ergebnisse für den gegenwärtigen Klimazustand liefern, kann nicht davon ausgegangen werden, dass die mit diesen Methoden berechneten Ergebnisse auch für ein geändertes Klima Gültigkeit haben werden. Die Unsicherheiten der Vorhersagen sind teils meteorologischer, teils hydrologischer Herkunft. Während die Unsicherheiten der GCMs bereits bekannt und in der Diskussion sind, wurden die in diesem Kontext existierenden Probleme der hydrologischen Modelle bisher nur selten untersucht. Insbesondere die Unsicherheit in der Prozessbeschreibung innerhalb der hydrologischen Modelle muss genauer geprüft werden. In dieser Dissertation wurden verschiedene Beschreibungen des Evapotranspirationsprozesses (ET) untersucht, denn dieser Prozess wird durch den Klimawandel stark beeinflusst werden. Neun verschiedene ET-Modelle wurden ausgewählt und getestet. Anhand einer einfachen theoretischen Untersuchung zeigte sich, dass die ET-Modelle bereits auf eine geringfügige Änderung von nur einer Eingangsvariablen sehr unterschiedlich reagieren. Fraglich ist nun, wie sich die durch diese Modelle berechnete ET verändert, wenn die gesamten durch den Klimawandel hervorgerufenen Änderungen der Eingangsgrößen berücksichtigt werden. Dazu wurde ein auf dem HBV-Konzept basierendes räumlich verteiltes hydrologisches Modell aufgestellt und mit den aus den verschiedenen ET-Modellen resultierenden Ergebnissen als Input nacheinander gespeist. Die Modellierung wurde auf das Einzugsgebiet des Oberen Neckars (ca. 4000 km2) angewandt. Das Einzugsgebiet wurde in 13 Teileinzugsgebiete mit deutlichen Unterschieden eingeteilt. Die verschiedenen ET-Modelle wurden getestet, indem das hydrologische Modell auf klimatisch verschiedene Jahre geeicht und dann auf klimatisch entgegengesetzte Jahre ausgewertet wurde. Dazu wurden verschiedene Zeitreihen mit jeweils 10 klimatisch ähnlichen Jahren (10 kalte, 10 warme, 10 nasse und 10 trockene Jahre aus der Zeitreihe 1961-1990) zusammengestellt. Das hydrologische Modell wurde auf jeweils eine dieser Zeitreihen geeicht und anschließend folgendermaßen validiert. Im ersten Schritt wurde das Modell für dieselbe Zeitreihe ausgewertet, die auch für die Eichung verwendet worden war. Danach erfolgte die Auswertung auf die klimatisch entgegengesetzte Zeitreihe, beispielsweise wurde das Modell, dass auf die kalten Jahre geeicht worden war, nun hinsichtlich der erzielten Ergebnisse für die warmen Jahre untersucht. Eine geringe Abweichung der beiden Ergebnisse bedeutet eine gute Übertragbarkeit des Modells. Indem das Modell auch auf die kontinuierliche Zeitreihe 1991–2000 angewandt wurde, wurde die Übertragbarkeit zusätzlich getestet. Die Kalibrierung eines hydrologischen Modells, das den Einfluss eines Klimawandels bestimmen soll, stellt eine besondere Herausforderung dar - nicht nur bei der Auswahl von geeigneten Perioden für die Kalibrierung und die Validierung, sondern auch bei der Aufstellung einer geeigneten Zielfunktion. Eine gängige Zielfunktion ist die Nash-Sutcliffe-Effizienz. Die Güte des Modells wird dabei durch den Vergleich berechneter Werte mit beobachteten Werten ermittelt. Dieser Vergleich wird meist anhand von Tageswerten durchgeführt, was zu unerkannten systematischen Fehlern führen kann. In dem hier gewählten Ansatz wird ein auf Simulated-Annealing basierender Optimierungsalgorithmus vorgestellt, der zur Kalibrierung nicht nur Tageswerte, sondern zusätzlich auch Jahres- und Extremwerte in unterschiedlichen Kombinationen verwendet. Welche Kalibrierung sich am besten zur Bestimmung der Auswirkungen von Klimaänderungen eignet, wurde durch einen umfangreichen Vergleich der Ergebnisse festgestellt. Auch dabei wurden wieder unterschiedliche Zeitskalen verwendet: die Ergebnisse wurden nicht nur auf Tagesbasis ausgewertet, sondern auch zu Wochen, Monaten, Jahreszeiten, Halbjahren und ganzen Jahren aggregiert. Die Ergebnisse zeigen, dass einige der ET-Modelle, die unter den gegenwärtigen Klimabedingungen realistische Werte berechnen, dies bei geänderten Klimabedingungen nicht mehr vermögen. Weiterhin hat sich gezeigt, dass eine nur auf Tageswerten basierende Kalibrierung zu unzureichenden Ergebnissen bei der Übertragung der Modelle zwischen klimatisch unterschiedlich ausgeprägten Zeitreihen führt. Der Einsatz einer Zielfunktion, die sowohl Tageswerte als auch Jahresaggregationen der Tageswerte berücksichtigt, hat sich hingegen bewährt. Climate change (CC) will impact water resources. Assessing the extent of these impacts in due time is an important task, as it forms the basis for decision making. Unfortunately, the extent of this forecasted impact depends very much on data and tools used for this task. Although such methods might work well with present climatic conditions, it has to be doubted whether their results can still be relied upon in a changed climate. The uncertainties in the forecasts are partly of meteorological and partly of hydrological origin. Whereas the uncertainties of GCMs are well known and often discussed, the problems of hydrological models in this context are seldom investigated. In particular the uncertainty in process representation within the hydrological models must be revised. This dissertation focuses on the representation of the evapotranspiration (ET) process, because this process will be strongly influenced by CC. For this purpose, the suitability of nine different ET models was investigated. In a theoretical investigation, the sensitivity of the ET models to only a small change in temperature was found to be very different. Thus the question had to be raised as to how the resulting ET from these models will change with the entire predicted CC. Therefore a spatially distributed hydrological model based on the HBV concept was set up and the results of the different ET models were used consecutively as input to the hydrological model. The modelling was applied on the Upper Neckar catchment, a mesoscale river in southwestern Germany with a basin size of about 4,000 km2. This catchment was divided into 13 subcatchments with different subcatchment characteristics. The suitability of the different ET approaches was checked by calibrating the hydrological model on different climatic periods and then applying the model on other climatic periods. Thus, different 10-year periods with different climatic conditions were compiled: 10 cold, 10 warm, 10 wet and 10 dry years from the time series 1961–1990 were collected. The first step was to adapt the model to the same period it was calibrated to. Then the model was applied to other 10 years, i.e. the model calibrated on for example, the cold years was used on the warm years. The transferability was also checked by applying the models on the period 1991–2000. For the investigation of the impact of CC, the calibration of the model must meet special requirements. Apart from the selection of proper periods for calibration and validation, this also concerns the establishment of a suitable objective function. Such a function is the Nash Sutcliffe efficiency. Usually it is calculated comparing observed and modelled daily values. In this study it is shown that problems in the transfer from one climatic condition to the other cannot be detected on the base of daily values. Therefore parameter sets were optimized by an automatic calibration procedure based on Simulated Annealing, which considered the model performance on different time scales simultaneously (days up to years). As the results show, some of the ET models, which work well under stationary conditions, are not able to reproduce changes in a realistic manner. The results also show that calibrating a hydrological model that is supposed to handle short as well as long term signals becomes an important task; the objective function especially has to be chosen very carefully.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hochschulschriftense...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.18419/op...
    Doctoral thesis . 2007
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hochschulschriftense...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.18419/op...
      Doctoral thesis . 2007
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Doekemeijer, Bart; Bossanyi, Ervin; Kanev, Stoyan; Bot, E.T.G.; +16 Authors

    A key topic of the European CL‐Windcon project, and specifically WP1 of the project, is the accurate modelling of wind turbine and wind farm dynamics at a varying range of fidelities. Hence, this document describes the different numerical models employed throughout the project and presents their arrangement and fidelity classification based on the different capabilities, limitations and complexity of their underlying physics. The description of the four categories selected: steady‐state models, control‐oriented dynamical models, medium‐fidelity simulation models, and high‐fidelity simulation models is included and discussed in the document.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2018
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2018
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2018
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5281/zenodo...
    Article . 2018
    License: CC BY
    Data sources: Sygma
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2018
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2018
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2018
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.5281/zenodo...
      Article . 2018
      License: CC BY
      Data sources: Sygma
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 4
  • 5
  • 6
  • 7
  • 8
  • chevron_right
Powered by OpenAIRE graph