- home
- Advanced Search
- Energy Research
- 2025-2025
- DE
- Fraunhofer Society
- Energy Research
- 2025-2025
- DE
- Fraunhofer Society
description Publicationkeyboard_double_arrow_right Article 2025 Czech RepublicPublisher:Elsevier BV Kadri Runnel; Leho Tedersoo; Franz-Sebastian Krah; Meike Piepenbring; J.F. Scheepens; Henner Hollert; Sarah Johann; Nele Meyer; Claus Bässler;pmid: 39532622
Fungi are crucial for terrestrial ecosystems, yet the role of fungal diversity in ecosystem functions remains unclear. We synthesize fungal biodiversity and ecosystem function (BEF) relationships, focusing on plant biomass production, carbon storage, decomposition, and pathogen or parasite resistance. The observed BEF relationships for these ecosystem functions vary in strength and direction, complicating generalizations. Strong positive relationships are generally observed when multiple ecosystem functions are addressed simultaneously. Often, fungal community composition outperforms species richness in predicting ecosystem functions. For more comprehensive fungal BEF research, we recommend studying natural communities, considering the simultaneous functions of a broader array of fungal guilds across spatiotemporal scales, and integrating community assembly concepts into BEF research. For this, we propose a conceptual framework and testable hypotheses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2024.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2024.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:TIB Open Publishing Authors: Leonhard Böck; Torsten Rößler;The mechanical stability of interconnections in solar modules is crucial for their long-term performance. Electrically conductive adhesives (ECAs) offer a promising solution for the interconnection of perovskite-silicon tandem (PVST) solar cells due to their low-temperature processibility. In this study, the influence of low curing temperatures on the mechanical and electrical properties of ECAs was investigated to assess their suitability for PVST technology. Four commercially available ECAs were characterized, focusing on curing temperatures of 100 °C, 140 °C, and 180 °C. Mechanical characterization through tensile tests and dynamic mechanical analysis (DMA) revealed varying Young’s modulus (E) (stiffness) and glass transition temperatures (TG) among the ECAs. Electrical characterization showed that lower curing temperatures generally led to lower volume resistivity, particularly for ECA C. However, joint resistance values exhibited high standard deviations. Void analysis indicated that void formation had a negligible effect on the mechanical properties of ECAs. Furthermore, the influence of curing degree on mechanical and electrical properties was investigated, highlighting the importance of complete curing for achieving desired properties. Overall, this study provides valuable insights into optimizing the interconnection process for PVST solar cells, essential for enhancing the long-term stability and performance of solar modules
SiliconPV Conference... arrow_drop_down SiliconPV Conference ProceedingsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.52825/siliconpv.v2i.1407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert SiliconPV Conference... arrow_drop_down SiliconPV Conference ProceedingsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.52825/siliconpv.v2i.1407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 27 Feb 2025 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Gettering of impurities i..., UKRI | Charged oxide inversion l..., UKRI | Charged oxide inversion l...UKRI| Gettering of impurities in silicon: delivering quantitative understanding to improve photovoltaics ,UKRI| Charged oxide inversion layer (COIL) solar cells ,UKRI| Charged oxide inversion layer (COIL) solar cellsShi, Y; Payne, DNR; Fell, A; Leon, C; Niewelt, T; Khorani, E; Wilshaw, PR; Murphy, JD; Okamoto, K; Bonilla, RS;Recombination at the metal-silicon interface is a major barrier to reaching the theoretical power conversion efficiency limits. We present a PL method for evaluating the metal contact recombination current (J0,c) of rear TOPCon metallisation.
EES Solar arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4el00016a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert EES Solar arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4el00016a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 23 Jan 2025Publisher:Wiley T. Schweigstill; N. Mielich; A. Vogt; M. Schulz‐Ruhtenberg; F. Clement; J. D. Huyeng; A. Lorenz;ABSTRACTFor high‐efficiency solar cells, such as Si‐III‐V tandem solar cells, implementing narrow contact fingers is essential for achieving optimal conversion efficiencies. By achieving narrower contact fingers without compromising electrical performance, more sunlight reaches the active areas of the cell, thus reducing front‐side shading and enhancing overall energy conversion efficiency. In this work, we demonstrate a proof of principle for a novel low‐temperature metallization process using glass stencils to print ultra‐fine line contacts. The narrowest contacts achieved have a width of = 8.4 ± 1.3 with an aspect ratio of = 0.19 ± 0.05. Through optimization described in this work, contact fingers with = 9.7 ± 0.6 μm and a substantially greater aspect ratio of = 0.45 ± 0.1 could be achieved. To realize these ultra‐fine line fingers, glass stencils with tailored aperture channels were realized using a two‐step laser induced deep etching (LIDE) process that enables complex three‐dimensional aperture channel geometries.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:EDP Sciences Esther Fokuhl; Paul Gebhardt; Erdmut Schnabel; Alexander Kleinhans; Cornelius Armbruster; Thomas Mikolajick; Viktor Wesselak; Daniel Philipp;Light and elevated Temperature Induced Degradation (LeTID) is likely causing strong yield losses in a significant number of photovoltaic (PV) power plants which were commissioned in the late 2010s. In this work, a procedure for an in-field recovery using overnight current injection to trigger temporary recovery of LeTID is presented. The general feasibility of such a procedure is first demonstrated by climatic chamber experiments on strongly degraded mc-Si PERC PV modules. Within the screened test conditions, a temporary recovery procedure with high currents and low module temperatures is most promising for an economic application in PV power plants. An outdoor experiment with current injection during nights and MPP tracking during days confirmed the possibility to recover LeTID in PV power plants. By injecting a pulsed current, the heating of the modules caused by the current injection was strongly reduced compared to the heating at constant current injection. Recommendations for the application of a procedure in PV power plants are given based on the required energy expenditure and cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2024044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2024044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Elisa Kaiser; Maike Wiesenfarth; Marc Steiner; Gerald Siefer; Peter Nitz; Peter Schöttl; Stefan W. Glunz; Henning Helmers;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2025.3547046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2025.3547046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 22 Aug 2024Publisher:Bristol University Press Funded by:EC | FULFILLEC| FULFILLAuthors: Bagheri, Mahsa; Tröger, Josephine; Freudenberg, Charlotte;As a major contributor to overall carbon emissions and energy consumption, the housing sector has great potential to reduce energy consumption, whether by reducing the number of appliances, heating temperature or floor space. Consumption patterns encompass how people choose and consume products that satisfy their needs and wants. However, wants, and to some extent needs, are influenced by various factors and existing material and non-material (infra)structures, especially in the housing sector. Focusing on the floor area, this article aims to identify potentials towards lower consumption lifestyles by applying the Avoid-Shift-Improve framework in the residential sector. Through a conceptual review, the article explores what shapes current patterns of space use and outlines potential future pathways. Starting from the macro level, the article examines existing and emerging (societal) trends with (potential) impacts on housing consumption. It then looks at the structural development of households affected by the studied trends. At the micro level, the article provides an overview of the potential impact of individual behaviour on space use patterns within different categories of housing behaviour. The article identifies the potential for social and technical change in the housing sector and concludes that promoting non-materialistic narratives (avoid), offering alternative and innovative solutions to satisfy people’s spatial needs (shift) and designing flexible buildings (improve) appear to be effective ways for fostering behavioural change towards more efficient use of space.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1332/27528499y2024d000000025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1332/27528499y2024d000000025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2025Embargo end date: 26 Feb 2025Publisher:Fraunhofer-Gesellschaft da Silva Vieira, Ricardo; Lyytimäki, Jari; Virkkunen, Henri; Tool, Brigita; Köhler, Jonathan;This report explores the development of a framework and indicators for monitoring transitions in European food systems, highlighting systemic changes essential for sustainability. Using a scoping study approach, it evaluates 18 selected indicator frameworks to identify key elements, relationships, and sustainability considerations. The study emphasises the need for comprehensive frameworks that encompass environmental, social, and economic dimensions while addressing gaps such as feedback loops, cross-system interactions, and governance structures. Concrete proposals for indicators are provided, complemented by expert-driven recommendations to fill data gaps. The report also offers broader lessons for improving sustainability transition monitoring, including integration with policy and actor relations. Insights aim to support the advancement of food systems monitoring and inform future European environmental reporting. Framework Partnership Agreement Concerning the European Topic Centre on Sustainability Trends (2022-2026) OCP/EEA/CAS/21/007-ETC ST
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24406/publica-4324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24406/publica-4324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:EDP Sciences Funded by:EC | Solar Cofund 2EC| Solar Cofund 2Andreas Lorenz; Jörg Schube; Veronika Nikitina; Sebastian Mack; Sebastian Schweigert; Jonas Buddgard; Jonas Albrecht; Maximilian Pospischil; Achim Kraft; Andreas Wolf; Martin Hermle; Florian Clement;Within this work, we present key results of the transnational European research project “Bussard”. The aim of this project is the development and evaluation of various innovative approaches for highly efficient cell concepts such as tunnel oxide passivating contact (TOPCon) solar cells considering the whole process chain including front-end, back-end and module processing. We present atomic layer deposition (ALD) as a high-throughput alternative for the deposition of Al2O3 passivation layers on the front side of TOPCon solar cells enabling a substantial reduction of the emitter saturation current density down to j0e = 13 fA/cm2. In the field of metallization, we evaluate and demonstrate three innovative approaches for the fine-line metallization of TOPCon solar cells. In this study we focus on multi-nozzle parallel dispensing, a technology that was developed as an alternative to standard screen-printing metallization and is used for the metallization of TOPCon solar cells for the first time. By optimizing the fabrication process at Fraunhofer ISE, we realize TOPCon solar cells (156.75 mm × 156.75 mm) with a champion conversion efficiency of up to ηmax = 24.2% (independently confirmed by Fraunhofer ISE CalLab PVCells). Finally, we present a comprehensive evaluation of the innovative Tape Solution interconnection concept for TOPCon cells and modules. We demonstrate the feasibility on small-scale and full-format modules and analyze the I–V results as well as cell-to-module (CTM) loss analysis using the simulation tool SmartCalc®. The results are compared to TOPCon modules interconnected via SmartWire Connection Technology (SWCT) and electrically conductive adhesive (ECA).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2024043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2024043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable 2025Publisher:Zenodo Speck, Christina; Pan, Zhiyu; Sedighi, Foroogh; Seiwerth, Corinna; Niebisch, Michael; Dognini, Alberto; Weinhardt, Christof;This deliverable documents the early engagement of industry stakeholders to ensure the NFDI4Energy platform aligns with industry needs, encourages adoption, and facilitates data sharing. Leveraging the industry network established in D3.1.1.1, a workshop held in November 2023 in Karlsruhe brought together seven partners to explore their interests and priorities for the platform. Conducted within a design science research framework, the workshop provided valuable insights that form an initial set of requirements. These preliminary findings will serve as a foundation for refining and expanding the platform's requirements in subsequent phases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14645840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14645840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025 Czech RepublicPublisher:Elsevier BV Kadri Runnel; Leho Tedersoo; Franz-Sebastian Krah; Meike Piepenbring; J.F. Scheepens; Henner Hollert; Sarah Johann; Nele Meyer; Claus Bässler;pmid: 39532622
Fungi are crucial for terrestrial ecosystems, yet the role of fungal diversity in ecosystem functions remains unclear. We synthesize fungal biodiversity and ecosystem function (BEF) relationships, focusing on plant biomass production, carbon storage, decomposition, and pathogen or parasite resistance. The observed BEF relationships for these ecosystem functions vary in strength and direction, complicating generalizations. Strong positive relationships are generally observed when multiple ecosystem functions are addressed simultaneously. Often, fungal community composition outperforms species richness in predicting ecosystem functions. For more comprehensive fungal BEF research, we recommend studying natural communities, considering the simultaneous functions of a broader array of fungal guilds across spatiotemporal scales, and integrating community assembly concepts into BEF research. For this, we propose a conceptual framework and testable hypotheses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2024.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2024.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:TIB Open Publishing Authors: Leonhard Böck; Torsten Rößler;The mechanical stability of interconnections in solar modules is crucial for their long-term performance. Electrically conductive adhesives (ECAs) offer a promising solution for the interconnection of perovskite-silicon tandem (PVST) solar cells due to their low-temperature processibility. In this study, the influence of low curing temperatures on the mechanical and electrical properties of ECAs was investigated to assess their suitability for PVST technology. Four commercially available ECAs were characterized, focusing on curing temperatures of 100 °C, 140 °C, and 180 °C. Mechanical characterization through tensile tests and dynamic mechanical analysis (DMA) revealed varying Young’s modulus (E) (stiffness) and glass transition temperatures (TG) among the ECAs. Electrical characterization showed that lower curing temperatures generally led to lower volume resistivity, particularly for ECA C. However, joint resistance values exhibited high standard deviations. Void analysis indicated that void formation had a negligible effect on the mechanical properties of ECAs. Furthermore, the influence of curing degree on mechanical and electrical properties was investigated, highlighting the importance of complete curing for achieving desired properties. Overall, this study provides valuable insights into optimizing the interconnection process for PVST solar cells, essential for enhancing the long-term stability and performance of solar modules
SiliconPV Conference... arrow_drop_down SiliconPV Conference ProceedingsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.52825/siliconpv.v2i.1407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert SiliconPV Conference... arrow_drop_down SiliconPV Conference ProceedingsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.52825/siliconpv.v2i.1407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 27 Feb 2025 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Gettering of impurities i..., UKRI | Charged oxide inversion l..., UKRI | Charged oxide inversion l...UKRI| Gettering of impurities in silicon: delivering quantitative understanding to improve photovoltaics ,UKRI| Charged oxide inversion layer (COIL) solar cells ,UKRI| Charged oxide inversion layer (COIL) solar cellsShi, Y; Payne, DNR; Fell, A; Leon, C; Niewelt, T; Khorani, E; Wilshaw, PR; Murphy, JD; Okamoto, K; Bonilla, RS;Recombination at the metal-silicon interface is a major barrier to reaching the theoretical power conversion efficiency limits. We present a PL method for evaluating the metal contact recombination current (J0,c) of rear TOPCon metallisation.
EES Solar arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4el00016a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert EES Solar arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4el00016a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 23 Jan 2025Publisher:Wiley T. Schweigstill; N. Mielich; A. Vogt; M. Schulz‐Ruhtenberg; F. Clement; J. D. Huyeng; A. Lorenz;ABSTRACTFor high‐efficiency solar cells, such as Si‐III‐V tandem solar cells, implementing narrow contact fingers is essential for achieving optimal conversion efficiencies. By achieving narrower contact fingers without compromising electrical performance, more sunlight reaches the active areas of the cell, thus reducing front‐side shading and enhancing overall energy conversion efficiency. In this work, we demonstrate a proof of principle for a novel low‐temperature metallization process using glass stencils to print ultra‐fine line contacts. The narrowest contacts achieved have a width of = 8.4 ± 1.3 with an aspect ratio of = 0.19 ± 0.05. Through optimization described in this work, contact fingers with = 9.7 ± 0.6 μm and a substantially greater aspect ratio of = 0.45 ± 0.1 could be achieved. To realize these ultra‐fine line fingers, glass stencils with tailored aperture channels were realized using a two‐step laser induced deep etching (LIDE) process that enables complex three‐dimensional aperture channel geometries.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:EDP Sciences Esther Fokuhl; Paul Gebhardt; Erdmut Schnabel; Alexander Kleinhans; Cornelius Armbruster; Thomas Mikolajick; Viktor Wesselak; Daniel Philipp;Light and elevated Temperature Induced Degradation (LeTID) is likely causing strong yield losses in a significant number of photovoltaic (PV) power plants which were commissioned in the late 2010s. In this work, a procedure for an in-field recovery using overnight current injection to trigger temporary recovery of LeTID is presented. The general feasibility of such a procedure is first demonstrated by climatic chamber experiments on strongly degraded mc-Si PERC PV modules. Within the screened test conditions, a temporary recovery procedure with high currents and low module temperatures is most promising for an economic application in PV power plants. An outdoor experiment with current injection during nights and MPP tracking during days confirmed the possibility to recover LeTID in PV power plants. By injecting a pulsed current, the heating of the modules caused by the current injection was strongly reduced compared to the heating at constant current injection. Recommendations for the application of a procedure in PV power plants are given based on the required energy expenditure and cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2024044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2024044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Elisa Kaiser; Maike Wiesenfarth; Marc Steiner; Gerald Siefer; Peter Nitz; Peter Schöttl; Stefan W. Glunz; Henning Helmers;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2025.3547046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2025.3547046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 22 Aug 2024Publisher:Bristol University Press Funded by:EC | FULFILLEC| FULFILLAuthors: Bagheri, Mahsa; Tröger, Josephine; Freudenberg, Charlotte;As a major contributor to overall carbon emissions and energy consumption, the housing sector has great potential to reduce energy consumption, whether by reducing the number of appliances, heating temperature or floor space. Consumption patterns encompass how people choose and consume products that satisfy their needs and wants. However, wants, and to some extent needs, are influenced by various factors and existing material and non-material (infra)structures, especially in the housing sector. Focusing on the floor area, this article aims to identify potentials towards lower consumption lifestyles by applying the Avoid-Shift-Improve framework in the residential sector. Through a conceptual review, the article explores what shapes current patterns of space use and outlines potential future pathways. Starting from the macro level, the article examines existing and emerging (societal) trends with (potential) impacts on housing consumption. It then looks at the structural development of households affected by the studied trends. At the micro level, the article provides an overview of the potential impact of individual behaviour on space use patterns within different categories of housing behaviour. The article identifies the potential for social and technical change in the housing sector and concludes that promoting non-materialistic narratives (avoid), offering alternative and innovative solutions to satisfy people’s spatial needs (shift) and designing flexible buildings (improve) appear to be effective ways for fostering behavioural change towards more efficient use of space.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1332/27528499y2024d000000025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1332/27528499y2024d000000025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2025Embargo end date: 26 Feb 2025Publisher:Fraunhofer-Gesellschaft da Silva Vieira, Ricardo; Lyytimäki, Jari; Virkkunen, Henri; Tool, Brigita; Köhler, Jonathan;This report explores the development of a framework and indicators for monitoring transitions in European food systems, highlighting systemic changes essential for sustainability. Using a scoping study approach, it evaluates 18 selected indicator frameworks to identify key elements, relationships, and sustainability considerations. The study emphasises the need for comprehensive frameworks that encompass environmental, social, and economic dimensions while addressing gaps such as feedback loops, cross-system interactions, and governance structures. Concrete proposals for indicators are provided, complemented by expert-driven recommendations to fill data gaps. The report also offers broader lessons for improving sustainability transition monitoring, including integration with policy and actor relations. Insights aim to support the advancement of food systems monitoring and inform future European environmental reporting. Framework Partnership Agreement Concerning the European Topic Centre on Sustainability Trends (2022-2026) OCP/EEA/CAS/21/007-ETC ST
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24406/publica-4324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24406/publica-4324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:EDP Sciences Funded by:EC | Solar Cofund 2EC| Solar Cofund 2Andreas Lorenz; Jörg Schube; Veronika Nikitina; Sebastian Mack; Sebastian Schweigert; Jonas Buddgard; Jonas Albrecht; Maximilian Pospischil; Achim Kraft; Andreas Wolf; Martin Hermle; Florian Clement;Within this work, we present key results of the transnational European research project “Bussard”. The aim of this project is the development and evaluation of various innovative approaches for highly efficient cell concepts such as tunnel oxide passivating contact (TOPCon) solar cells considering the whole process chain including front-end, back-end and module processing. We present atomic layer deposition (ALD) as a high-throughput alternative for the deposition of Al2O3 passivation layers on the front side of TOPCon solar cells enabling a substantial reduction of the emitter saturation current density down to j0e = 13 fA/cm2. In the field of metallization, we evaluate and demonstrate three innovative approaches for the fine-line metallization of TOPCon solar cells. In this study we focus on multi-nozzle parallel dispensing, a technology that was developed as an alternative to standard screen-printing metallization and is used for the metallization of TOPCon solar cells for the first time. By optimizing the fabrication process at Fraunhofer ISE, we realize TOPCon solar cells (156.75 mm × 156.75 mm) with a champion conversion efficiency of up to ηmax = 24.2% (independently confirmed by Fraunhofer ISE CalLab PVCells). Finally, we present a comprehensive evaluation of the innovative Tape Solution interconnection concept for TOPCon cells and modules. We demonstrate the feasibility on small-scale and full-format modules and analyze the I–V results as well as cell-to-module (CTM) loss analysis using the simulation tool SmartCalc®. The results are compared to TOPCon modules interconnected via SmartWire Connection Technology (SWCT) and electrically conductive adhesive (ECA).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2024043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2024043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable 2025Publisher:Zenodo Speck, Christina; Pan, Zhiyu; Sedighi, Foroogh; Seiwerth, Corinna; Niebisch, Michael; Dognini, Alberto; Weinhardt, Christof;This deliverable documents the early engagement of industry stakeholders to ensure the NFDI4Energy platform aligns with industry needs, encourages adoption, and facilitates data sharing. Leveraging the industry network established in D3.1.1.1, a workshop held in November 2023 in Karlsruhe brought together seven partners to explore their interests and priorities for the platform. Conducted within a design science research framework, the workshop provided valuable insights that form an initial set of requirements. These preliminary findings will serve as a foundation for refining and expanding the platform's requirements in subsequent phases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14645840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14645840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu