- home
- Advanced Search
- Energy Research
- DE
- PL
- Energy Research
- DE
- PL
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: M.K. Abohamer; J. Awrejcewicz; T.S. Amer;This paper studies the vibrational motion of a dynamical system connected to an electromagnetic device, which is one of the energy harvesting (EH) devices that transform the vibrational motion into electric energy. This system has three degrees-of-freedom (DOF) and consists of two linked parts attached together; one is a nonlinear Duffing oscillator, and the other is a nonlinear damping spring pendulum. The regulating equations of motion (EOM) are achieved utilizing Lagrange’s equations and solved analytically applying the approach of multiple scales (AMS) till the third order of approximation. The accuracy of the attained solutions has been examined by comparing them with the numerical ones of the EOM. The time histories of the solutions and the nonlinear stability analysis of the modulation equations are represented graphically in various plots. The Poincaré maps and phase portraits diagrams displayed the stable behavior of the studied dynamical system. In addition, the different ranges of the stabilities are examined and discussed. In the electromagnetic device, the output power and current time series are depicted as a function of different values of the damping coefficients, excitation amplitudes, and load resistance. It is noted that the output current and power are dropped when the damping coefficient is raised. On the other hand, the increment of the excitation has a positive effect on the electrical generation and produces increment of the output power and current. Furthermore, the output power grows when the total resistance increases to accommodate the applied load. The EH device generates high output current and power at low-frequency values. The significance of this work is limited to the numerous uses of its outcomes in everyday life, such as powering medical devices, serving as a power supply for sensors, and serving as a backup energy source for some electronic devices.
Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2022.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2022.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2012Embargo end date: 01 Jan 2012 Italy, France, Spain, Italy, France, Italy, France, Italy, Netherlands, United Kingdom, Spain, Italy, Italy, Italy, Spain, United Kingdom, Italy, Switzerland, Spain, France, United Kingdom, United Kingdom, United Kingdom, France, France, Italy, Spain, Netherlands, France, France, France, Italy, Netherlands, FrancePublisher:Springer Science and Business Media LLC Publicly fundedFunded by:SNSF | Search for New Physics in..., SNSF | High Precision CP Violati..., SNSF | Particle Physics in the L...SNSF| Search for New Physics in Electroweak Penguin Transitions at LHCb ,SNSF| High Precision CP Violation Physics at LHCb ,SNSF| Particle Physics in the LHC EraAlexey Novoselov; J. Magnin; V. N. La Thi; Naylya Sagidova; Antonio Falabella; Albert Bursche; M. Matveev; Evelina Gersabeck; V. Tisserand; Maximilian Schlupp; C. Potterat; Cristina Lazzeroni; U. Kerzel; Marie Helene Schune; B. Schmidt; C. J. Parkinson; B. Sciascia; F. Xing; G. N. Patrick; Massimiliano Ferro-Luzzi; R. Vazquez Gomez; P. M. Bjørnstad; O. Francisco; J. Dickens; B. Pietrzyk; Jessica Prisciandaro; J. Buytaert; Nazim Hussain; Marcin Kucharczyk; Marcin Kucharczyk; Marcin Kucharczyk; T. E. Latham; I. R. Kenyon; H. Ruiz; D. Souza; F. Eisele; Th. S. Bauer; E. van Herwijnen; A. Bates; N. A. Smith; R. Silva Coutinho; Marc-Olivier Bettler; Alessia Satta; J. Anderson; Leonid Kravchuk; C. D'Ambrosio; D. Savrina; J. Panman; Manuel Schiller; Z. Mathe; Alexey Zhelezov; E. Grauges; Timothy Gershon; Timothy Gershon; S. C. Haines; David Ward; A. Puig Navarro; D. Wiedner; T. Huse; K. Hennessy; P. Rodriguez Perez; Andrey Vorobyev; Po-Hsun Chen; Po-Hsun Chen; Evgeny Gushchin; Jack Benton; Sebastian Bachmann; R. S. Huston; H. Dijkstra; A. D. Nguyen; Gregory Ciezarek; N. Chiapolini; A. Borgia; Adriano Lai; S. Eidelman; Ronan McNulty; Daniel Lacarrere; J. Rouvinet; Krzysztof Grzegorz Sobczak; Minh Tâm Tran; A. D. Webber; T. Lesiak; Y.Y. Li; Mikhail Zavertyaev; Ph. Charpentier; Ronan Wallace; Giulia Manca; Marcin Chrzaszcz; P. Diniz Batista; Dmitry Popov; C. Voß; V. V. Gligorov; Ivan Belyaev; Andrey Golutvin; Andrey Golutvin; Andrey Golutvin; W. Witzeling; Alessandro Petrolini; J. van Tilburg; Thomas Blake; A. Nomerotski; A. Nomerotski; R. Lefèvre; V.G. Shevchenko; Jing Wang; Robert Currie; S. Roiser; Rustem Dzhelyadin; Edwige Tournefier; Edwige Tournefier; K. De Bruyn; A. Gomes; Giacomo Graziani; A. Richards; Marc S. Williams; Patrick Owen; A. Palano; Piotr Morawski; J. P. Lees; P. Shatalov; T. Brambach; M. Seco; Nikolay Bondar; Marco Clemencic; K. Ciba; E. Lanciotti; Iurii Raniuk; P. Henrard; G. Raven; C. Langenbruch; V. Fave; Andrew Cook; G. D. Patel; Miriam Gandelman; S. Belogurov; Harry Cliff; Sandra Amato; David Websdale; F. Dupertuis; O. Kochebina; V. A. Kudryavtsev; Neville Harnew; E. Ben-Haim; Olaf Steinkamp; Oleg Yushchenko; Haonan Lu; Chung Nguyen-Mau; A. Camboni; Oliver Grünberg; Ilya Komarov; J. A. Hernando Morata; Roberta Santacesaria; Carla Göbel; Francesca Dordei; Daniel Charles Craik; J. J. Saborido Silva; D. A. Milanes; S. Schleich; A. Sparkes; Rolf Lindner; Vitaly Vorobyev; T. M. Karbach; A. Dosil Suárez; Hamish Gordon; M. Whitehead; Giampiero Mancinelli; L. A. Granado Cardoso; Biagio Saitta; Mehul Patel; A. N. Solomin; D. Gascon; D. Voong; X. Cid Vidal; Lain-Jong Li; Thierry Gys; R. Muresan; E. Teodorescu; Tjeerd Ketel; T. Pilař; Guy Wilkinson; Thomas Ruf; V. Obraztsov; Vincenzo Vagnoni; B. Gui; J. Mylroie-Smith; Oleg Maev; Oleg Maev; M. Calvi; A. Martens; Paolo Gandini; Pierluigi Campana; Raymond Mountain; A. Mac Raighne; Konstantin Belous; Mikhail Shapkin; A. A. Alves; D. Elsby; G. D. Lafferty; D. van Eijk; C. Hadjivasiliou;arXiv: http://arxiv.org/abs/1206.5160 , 1206.5160
The charged-particle production ratios $\bar{p}/p$, $K^-/K^+$, $��^-/��^+$, $(p + \bar{p})/(��^+ + ��^-)$, $(K^+ + K^-)/(��^+ + ��^-)$ and $(p + \bar{p})/(K^+ + K^-)$ are measured with the LHCb detector using $0.3 {\rm nb^{-1}}$ of $pp$ collisions delivered by the LHC at $\sqrt{s} = 0.9$ TeV and $1.8 {\rm nb^{-1}}$ at $\sqrt{s} = 7$ TeV. The measurements are performed as a function of transverse momentum $p_{\rm T}$ and pseudorapidity $��$. The production ratios are compared to the predictions of several Monte Carlo generator settings, none of which are able to describe adequately all observables. The ratio $\bar{p}/p$ is also considered as a function of rapidity loss, $��y \equiv y_{\rm beam} - y$, and is used to constrain models of baryon transport. Incorrect entries in Table 2 corrected. No consequences for rest of paper
CORE arrow_drop_down COREArticle . 2012License: CC BYFull-Text: https://eprints.gla.ac.uk/80224/1/80224.pdfData sources: COREWarwick Research Archives Portal RepositoryArticle . 2012License: CC BY NDData sources: CORE (RIOXX-UK Aggregator)EnlightenArticle . 2012License: CC BYFull-Text: http://eprints.gla.ac.uk/80224/1/80224.pdfData sources: CORE (RIOXX-UK Aggregator)European Physical Journal C: Particles and FieldsArticle . 2012 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2012European Physical Journal C: Particles and FieldsArticle . 2012License: CC BYData sources: Maastricht University | MUMC+ Research InformationSpiral - Imperial College Digital RepositoryArticle . 2012Data sources: Spiral - Imperial College Digital RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: Oxford University Research ArchiveINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverZurich Open Repository and ArchiveArticle . 2012 . Peer-reviewedData sources: Zurich Open Repository and ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2012Data sources: The University of Manchester - Institutional RepositoryDAU - Arxiu Digital de la URLArticle . 2021License: CC BYData sources: DAU - Arxiu Digital de la URLUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-012-2168-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 248visibility views 248 download downloads 237 Powered bymore_vert CORE arrow_drop_down COREArticle . 2012License: CC BYFull-Text: https://eprints.gla.ac.uk/80224/1/80224.pdfData sources: COREWarwick Research Archives Portal RepositoryArticle . 2012License: CC BY NDData sources: CORE (RIOXX-UK Aggregator)EnlightenArticle . 2012License: CC BYFull-Text: http://eprints.gla.ac.uk/80224/1/80224.pdfData sources: CORE (RIOXX-UK Aggregator)European Physical Journal C: Particles and FieldsArticle . 2012 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2012European Physical Journal C: Particles and FieldsArticle . 2012License: CC BYData sources: Maastricht University | MUMC+ Research InformationSpiral - Imperial College Digital RepositoryArticle . 2012Data sources: Spiral - Imperial College Digital RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: Oxford University Research ArchiveINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverZurich Open Repository and ArchiveArticle . 2012 . Peer-reviewedData sources: Zurich Open Repository and ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2012Data sources: The University of Manchester - Institutional RepositoryDAU - Arxiu Digital de la URLArticle . 2021License: CC BYData sources: DAU - Arxiu Digital de la URLUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-012-2168-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Meng, Qu; Yingyi, Zhang; Zexia, Gao; Zhixin, Zhang; Yali, Liu; Shiming, Wan; Xin, Wang; Haiyan, Yu; Huixian, Zhang; Yuhong, Liu; Ralf, Schneider; Axel, Meyer; Qiang, Lin;pmid: 37204606
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FinlandPublisher:SAGE Publications Barrows, Sam; Blomkvist, Magnus; Dimic, Nebojsa; Vulanovic; Milos;This study examines the impact of oil price uncertainty on mergers and acquisition (M&A) activity in the oil and gas sector. Analyzing this industry enables us to construct a natural forward-looking measure of oil price uncertainty, namely the implied crude oil volatility. Using a sample of U.S. firms in the oil and gas sector from 1994–2018 containing 4,323 announced transactions, we document that oil price uncertainty is negatively related to future M&A activity. Uncertainty is mainly a driver of horizontal and vertical M&A activity, where upstream firms are more affected by this uncertainty than downstream firms. Our results lend support to a real options explanation of investment under uncertainty where firms choose to defer investments as a response to increased uncertainty.
The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/01956574.44.4.sbar&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/01956574.44.4.sbar&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Krzysztof Kecik; Ewelina Stezycka;doi: 10.3390/app13137613
Energy harvesting is a useful technique for various kinds of self-powered electronic devices and systems as well as Internet of Things technology. This study presents a two-degrees-of-freedom (2DOF) electromagnetic energy harvester that can use environment vibration and provide energy for small electronic devices. The proposed harvester consists of a cylindrical tube with two moving magnets suspended by a magnetic spring mechanism and a stationary coil. In order to verify the theoretical model, a prototype electromagnetic harvester was constructed and tested. The influence of key parameters, including excitation acceleration, response to a harmonic frequency sweep, and electromechanical coupling on the generated characteristics of the harvester, was investigated. The experimental and theoretical results showed that the proposed electromagnetic energy harvester was able to increase the resonance bandwidth (60–1200 rad/s) and output power (0.2 W). However, due to strong nonlinearity, an unstable region occurred near the main first resonance, which resulted from the Neimark–Sacker bifurcation.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/13/7613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13137613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/13/7613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13137613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Peter Schuderer; C. Martin; Tobias Rackow; Jörg Franke; Toni Donhauser; Tallal Javied;AbstractCompanies are forced by rising energy costs to seize control of their energy consumption to maintain contestability. There-fore, transparency over the companies’ energy flux along the production process is required. Energy data management software is helpful, but cost-intensive. Hence, especially small and medium sized enterprises (SME) spare this investment. In this paper, the requirements for an energy controlling infrastructure in SME are elaborated, followed by a deduced software-architecture which supports the respective controlling structure. Further, the prototypical realization of the corresponding tool “Green-Cockpit” will be presented. The free of cost, open source and web-based tool is designed to help companies monitor, interpret, analyze, plan and report their energy consumption. The Green Cockpit tool outperforms other energy management software at management disciplines with its ability to not only analyze energy consumption, but plan and control it additionally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2015.01.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2015.01.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Isabelle Sioen; Gabriele Eiben; Lauren Lissner; Silvia Bel-Serrat; Karin Bammann; Karin Bammann; Inge Huybrechts; Inge Huybrechts; M. Rayson; M.I. Mesana; Theodora Mouratidou; K.R. Westerterp; Iris Pigeot; L. A. Moreno; S. De Henauw; S. De Henauw; Claudia Börnhorst; Vittorio Krogh; V. Pala; C. Ottavaere;pmid: 23622780
Little is known about the validity of repeated 24-h dietary recalls (24-HDR) as a measure of total energy intake (EI) in young children. This study aimed to evaluate the validity of proxy-reported EI by comparison with total energy expenditure (TEE) measured by the doubly labeled water (DLW) technique.The agreement between EI and TEE was investigated in 36 (47.2% boys) children aged 4-10 years from Belgium and Spain using subgroup analyses and Bland-Altman plots. Low-energy-reporters (LER), adequate-energy-reporters (AER) and high-energy-reporters (HER) were defined from the ratio of EI over TEE by application of age- and sex-specific cut-off values.There was good agreement between means of EI (1500 kcal/day) and TEE (1523 kcal/day) at group level though in single children, i.e. at the individual level, large differences were observed. Almost perfect agreement between EI and TEE was observed in thin/normal weight children (EI: 1511 kcal/day; TEE: 1513 kcal/day). Even in overweight/obese children the mean difference between EI and TEE was only -86 kcal/day. Among the participants, 28 (78%) were classified as AER, five (14%) as HER and three (8%) as LER.Two proxy-reported 24-HDRs were found to be a valid instrument to assess EI on group level but not on the individual level.
Clinical Nutrition arrow_drop_down Clinical NutritionArticle . 2014License: taverneData sources: Maastricht University | MUMC+ Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clnu.2013.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Clinical Nutrition arrow_drop_down Clinical NutritionArticle . 2014License: taverneData sources: Maastricht University | MUMC+ Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clnu.2013.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:FCT | Associate Laboratory of ...FCT| Associate Laboratory of Energy, Transports and AeronauticsAuthors: Mário Costa; Tomás Botelho; Małgorzata Wilk; Aneta Magdziarz;Abstract Grape pomace is a by-product of the wine making industry with great availability and energetic potential. Torrefaction is a pre-treatment that may enhance the biomass quality as a fuel, and consists in exposing the biomass to an inert atmosphere at a temperature between 200 °C and 300 °C. This study evaluates the combustion characteristics of raw and torrefied grape pomace in a thermogravimetric analyzer and in a drop tube furnace. Initially, the raw grape pomace was torrefied in an argon inert atmosphere at 260 °C. Subsequently, the combustion of the raw and torrefied grape pomace was examined in the thermogravimetric analyzer through non-isothermal runs at a heating rate of 10 °C/min from room temperature to 800 °C. Finally, the combustion of both biomass residues was evaluated in the drop tube furnace at 1100 °C. The data reported includes gas temperature, major gas species concentration and particle burnout measured along the axis of the drop tube furnace. The main conclusions of this study are (i) for the devolatilization stage, the thermogravimetric data yielded apparent activation energy values of 84.9 and 85.2 kJ mol−1, and for the char oxidation stage of 137.5 and 109.2 kJ mol−1 for the raw and torrefied grape pomace, respectively; (ii) the NOx concentrations along the drop tube furnace were always higher for the combustion of the torrefied grape pomace than for the combustion of the raw grape pomace because the former residue has a higher nitrogen content; and (iii) the burnout values along the drop tube furnace were always lower for the combustion of the torrefied grape pomace than for the combustion of the raw grape pomace because the former residue has a lower volatile content and a higher fixed carbon content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.09.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.09.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2012Publisher:American Institute of Aeronautics and Astronautics (AIAA) Funded by:EC | GREENESTEC| GREENESTAuthors: Sebastian Göke; Christian Paschereit;doi: 10.2514/6.2012-1272
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2012-1272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2012-1272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Springer Science and Business Media LLC Authors: Ingo Karschin; Alex G. Berg; Jutta Geldermann;Cogeneration of heat and electricity is an important pillar of energy and climate policy. To plan the production and distribution system of combined heat and power (CHP) systems for residential heating, suitable methods for decision support are needed. For a comprehensive feasibility analysis, the integration of the location and capacity planning of the power plants, the choice of customers, and the network planning of the heating network into one optimization model are necessary. Thus, we develop an optimization model for electricity generation and heat supply. This mixed integer linear program (MILP) is based on graph theory for network flow problems. We apply the network location model for the optimization of district heating systems in the City of Osorno in Chile, which exhibits the “checkerboard layout” typically found in many South American cities. The network location model can support the strategic planning of investments in renewable energy projects because it permits the analysis of changing energy prices, calculation of break-even prices for heat and electricity, and estimation of greenhouse gas emission savings.
Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: M.K. Abohamer; J. Awrejcewicz; T.S. Amer;This paper studies the vibrational motion of a dynamical system connected to an electromagnetic device, which is one of the energy harvesting (EH) devices that transform the vibrational motion into electric energy. This system has three degrees-of-freedom (DOF) and consists of two linked parts attached together; one is a nonlinear Duffing oscillator, and the other is a nonlinear damping spring pendulum. The regulating equations of motion (EOM) are achieved utilizing Lagrange’s equations and solved analytically applying the approach of multiple scales (AMS) till the third order of approximation. The accuracy of the attained solutions has been examined by comparing them with the numerical ones of the EOM. The time histories of the solutions and the nonlinear stability analysis of the modulation equations are represented graphically in various plots. The Poincaré maps and phase portraits diagrams displayed the stable behavior of the studied dynamical system. In addition, the different ranges of the stabilities are examined and discussed. In the electromagnetic device, the output power and current time series are depicted as a function of different values of the damping coefficients, excitation amplitudes, and load resistance. It is noted that the output current and power are dropped when the damping coefficient is raised. On the other hand, the increment of the excitation has a positive effect on the electrical generation and produces increment of the output power and current. Furthermore, the output power grows when the total resistance increases to accommodate the applied load. The EH device generates high output current and power at low-frequency values. The significance of this work is limited to the numerous uses of its outcomes in everyday life, such as powering medical devices, serving as a power supply for sensors, and serving as a backup energy source for some electronic devices.
Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2022.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2022.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2012Embargo end date: 01 Jan 2012 Italy, France, Spain, Italy, France, Italy, France, Italy, Netherlands, United Kingdom, Spain, Italy, Italy, Italy, Spain, United Kingdom, Italy, Switzerland, Spain, France, United Kingdom, United Kingdom, United Kingdom, France, France, Italy, Spain, Netherlands, France, France, France, Italy, Netherlands, FrancePublisher:Springer Science and Business Media LLC Publicly fundedFunded by:SNSF | Search for New Physics in..., SNSF | High Precision CP Violati..., SNSF | Particle Physics in the L...SNSF| Search for New Physics in Electroweak Penguin Transitions at LHCb ,SNSF| High Precision CP Violation Physics at LHCb ,SNSF| Particle Physics in the LHC EraAlexey Novoselov; J. Magnin; V. N. La Thi; Naylya Sagidova; Antonio Falabella; Albert Bursche; M. Matveev; Evelina Gersabeck; V. Tisserand; Maximilian Schlupp; C. Potterat; Cristina Lazzeroni; U. Kerzel; Marie Helene Schune; B. Schmidt; C. J. Parkinson; B. Sciascia; F. Xing; G. N. Patrick; Massimiliano Ferro-Luzzi; R. Vazquez Gomez; P. M. Bjørnstad; O. Francisco; J. Dickens; B. Pietrzyk; Jessica Prisciandaro; J. Buytaert; Nazim Hussain; Marcin Kucharczyk; Marcin Kucharczyk; Marcin Kucharczyk; T. E. Latham; I. R. Kenyon; H. Ruiz; D. Souza; F. Eisele; Th. S. Bauer; E. van Herwijnen; A. Bates; N. A. Smith; R. Silva Coutinho; Marc-Olivier Bettler; Alessia Satta; J. Anderson; Leonid Kravchuk; C. D'Ambrosio; D. Savrina; J. Panman; Manuel Schiller; Z. Mathe; Alexey Zhelezov; E. Grauges; Timothy Gershon; Timothy Gershon; S. C. Haines; David Ward; A. Puig Navarro; D. Wiedner; T. Huse; K. Hennessy; P. Rodriguez Perez; Andrey Vorobyev; Po-Hsun Chen; Po-Hsun Chen; Evgeny Gushchin; Jack Benton; Sebastian Bachmann; R. S. Huston; H. Dijkstra; A. D. Nguyen; Gregory Ciezarek; N. Chiapolini; A. Borgia; Adriano Lai; S. Eidelman; Ronan McNulty; Daniel Lacarrere; J. Rouvinet; Krzysztof Grzegorz Sobczak; Minh Tâm Tran; A. D. Webber; T. Lesiak; Y.Y. Li; Mikhail Zavertyaev; Ph. Charpentier; Ronan Wallace; Giulia Manca; Marcin Chrzaszcz; P. Diniz Batista; Dmitry Popov; C. Voß; V. V. Gligorov; Ivan Belyaev; Andrey Golutvin; Andrey Golutvin; Andrey Golutvin; W. Witzeling; Alessandro Petrolini; J. van Tilburg; Thomas Blake; A. Nomerotski; A. Nomerotski; R. Lefèvre; V.G. Shevchenko; Jing Wang; Robert Currie; S. Roiser; Rustem Dzhelyadin; Edwige Tournefier; Edwige Tournefier; K. De Bruyn; A. Gomes; Giacomo Graziani; A. Richards; Marc S. Williams; Patrick Owen; A. Palano; Piotr Morawski; J. P. Lees; P. Shatalov; T. Brambach; M. Seco; Nikolay Bondar; Marco Clemencic; K. Ciba; E. Lanciotti; Iurii Raniuk; P. Henrard; G. Raven; C. Langenbruch; V. Fave; Andrew Cook; G. D. Patel; Miriam Gandelman; S. Belogurov; Harry Cliff; Sandra Amato; David Websdale; F. Dupertuis; O. Kochebina; V. A. Kudryavtsev; Neville Harnew; E. Ben-Haim; Olaf Steinkamp; Oleg Yushchenko; Haonan Lu; Chung Nguyen-Mau; A. Camboni; Oliver Grünberg; Ilya Komarov; J. A. Hernando Morata; Roberta Santacesaria; Carla Göbel; Francesca Dordei; Daniel Charles Craik; J. J. Saborido Silva; D. A. Milanes; S. Schleich; A. Sparkes; Rolf Lindner; Vitaly Vorobyev; T. M. Karbach; A. Dosil Suárez; Hamish Gordon; M. Whitehead; Giampiero Mancinelli; L. A. Granado Cardoso; Biagio Saitta; Mehul Patel; A. N. Solomin; D. Gascon; D. Voong; X. Cid Vidal; Lain-Jong Li; Thierry Gys; R. Muresan; E. Teodorescu; Tjeerd Ketel; T. Pilař; Guy Wilkinson; Thomas Ruf; V. Obraztsov; Vincenzo Vagnoni; B. Gui; J. Mylroie-Smith; Oleg Maev; Oleg Maev; M. Calvi; A. Martens; Paolo Gandini; Pierluigi Campana; Raymond Mountain; A. Mac Raighne; Konstantin Belous; Mikhail Shapkin; A. A. Alves; D. Elsby; G. D. Lafferty; D. van Eijk; C. Hadjivasiliou;arXiv: http://arxiv.org/abs/1206.5160 , 1206.5160
The charged-particle production ratios $\bar{p}/p$, $K^-/K^+$, $��^-/��^+$, $(p + \bar{p})/(��^+ + ��^-)$, $(K^+ + K^-)/(��^+ + ��^-)$ and $(p + \bar{p})/(K^+ + K^-)$ are measured with the LHCb detector using $0.3 {\rm nb^{-1}}$ of $pp$ collisions delivered by the LHC at $\sqrt{s} = 0.9$ TeV and $1.8 {\rm nb^{-1}}$ at $\sqrt{s} = 7$ TeV. The measurements are performed as a function of transverse momentum $p_{\rm T}$ and pseudorapidity $��$. The production ratios are compared to the predictions of several Monte Carlo generator settings, none of which are able to describe adequately all observables. The ratio $\bar{p}/p$ is also considered as a function of rapidity loss, $��y \equiv y_{\rm beam} - y$, and is used to constrain models of baryon transport. Incorrect entries in Table 2 corrected. No consequences for rest of paper
CORE arrow_drop_down COREArticle . 2012License: CC BYFull-Text: https://eprints.gla.ac.uk/80224/1/80224.pdfData sources: COREWarwick Research Archives Portal RepositoryArticle . 2012License: CC BY NDData sources: CORE (RIOXX-UK Aggregator)EnlightenArticle . 2012License: CC BYFull-Text: http://eprints.gla.ac.uk/80224/1/80224.pdfData sources: CORE (RIOXX-UK Aggregator)European Physical Journal C: Particles and FieldsArticle . 2012 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2012European Physical Journal C: Particles and FieldsArticle . 2012License: CC BYData sources: Maastricht University | MUMC+ Research InformationSpiral - Imperial College Digital RepositoryArticle . 2012Data sources: Spiral - Imperial College Digital RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: Oxford University Research ArchiveINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverZurich Open Repository and ArchiveArticle . 2012 . Peer-reviewedData sources: Zurich Open Repository and ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2012Data sources: The University of Manchester - Institutional RepositoryDAU - Arxiu Digital de la URLArticle . 2021License: CC BYData sources: DAU - Arxiu Digital de la URLUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-012-2168-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 248visibility views 248 download downloads 237 Powered bymore_vert CORE arrow_drop_down COREArticle . 2012License: CC BYFull-Text: https://eprints.gla.ac.uk/80224/1/80224.pdfData sources: COREWarwick Research Archives Portal RepositoryArticle . 2012License: CC BY NDData sources: CORE (RIOXX-UK Aggregator)EnlightenArticle . 2012License: CC BYFull-Text: http://eprints.gla.ac.uk/80224/1/80224.pdfData sources: CORE (RIOXX-UK Aggregator)European Physical Journal C: Particles and FieldsArticle . 2012 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2012European Physical Journal C: Particles and FieldsArticle . 2012License: CC BYData sources: Maastricht University | MUMC+ Research InformationSpiral - Imperial College Digital RepositoryArticle . 2012Data sources: Spiral - Imperial College Digital RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: Oxford University Research ArchiveINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverZurich Open Repository and ArchiveArticle . 2012 . Peer-reviewedData sources: Zurich Open Repository and ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2012Data sources: The University of Manchester - Institutional RepositoryDAU - Arxiu Digital de la URLArticle . 2021License: CC BYData sources: DAU - Arxiu Digital de la URLUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-012-2168-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Meng, Qu; Yingyi, Zhang; Zexia, Gao; Zhixin, Zhang; Yali, Liu; Shiming, Wan; Xin, Wang; Haiyan, Yu; Huixian, Zhang; Yuhong, Liu; Ralf, Schneider; Axel, Meyer; Qiang, Lin;pmid: 37204606
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FinlandPublisher:SAGE Publications Barrows, Sam; Blomkvist, Magnus; Dimic, Nebojsa; Vulanovic; Milos;This study examines the impact of oil price uncertainty on mergers and acquisition (M&A) activity in the oil and gas sector. Analyzing this industry enables us to construct a natural forward-looking measure of oil price uncertainty, namely the implied crude oil volatility. Using a sample of U.S. firms in the oil and gas sector from 1994–2018 containing 4,323 announced transactions, we document that oil price uncertainty is negatively related to future M&A activity. Uncertainty is mainly a driver of horizontal and vertical M&A activity, where upstream firms are more affected by this uncertainty than downstream firms. Our results lend support to a real options explanation of investment under uncertainty where firms choose to defer investments as a response to increased uncertainty.
The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/01956574.44.4.sbar&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/01956574.44.4.sbar&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Krzysztof Kecik; Ewelina Stezycka;doi: 10.3390/app13137613
Energy harvesting is a useful technique for various kinds of self-powered electronic devices and systems as well as Internet of Things technology. This study presents a two-degrees-of-freedom (2DOF) electromagnetic energy harvester that can use environment vibration and provide energy for small electronic devices. The proposed harvester consists of a cylindrical tube with two moving magnets suspended by a magnetic spring mechanism and a stationary coil. In order to verify the theoretical model, a prototype electromagnetic harvester was constructed and tested. The influence of key parameters, including excitation acceleration, response to a harmonic frequency sweep, and electromechanical coupling on the generated characteristics of the harvester, was investigated. The experimental and theoretical results showed that the proposed electromagnetic energy harvester was able to increase the resonance bandwidth (60–1200 rad/s) and output power (0.2 W). However, due to strong nonlinearity, an unstable region occurred near the main first resonance, which resulted from the Neimark–Sacker bifurcation.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/13/7613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13137613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/13/7613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13137613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Peter Schuderer; C. Martin; Tobias Rackow; Jörg Franke; Toni Donhauser; Tallal Javied;AbstractCompanies are forced by rising energy costs to seize control of their energy consumption to maintain contestability. There-fore, transparency over the companies’ energy flux along the production process is required. Energy data management software is helpful, but cost-intensive. Hence, especially small and medium sized enterprises (SME) spare this investment. In this paper, the requirements for an energy controlling infrastructure in SME are elaborated, followed by a deduced software-architecture which supports the respective controlling structure. Further, the prototypical realization of the corresponding tool “Green-Cockpit” will be presented. The free of cost, open source and web-based tool is designed to help companies monitor, interpret, analyze, plan and report their energy consumption. The Green Cockpit tool outperforms other energy management software at management disciplines with its ability to not only analyze energy consumption, but plan and control it additionally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2015.01.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2015.01.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Isabelle Sioen; Gabriele Eiben; Lauren Lissner; Silvia Bel-Serrat; Karin Bammann; Karin Bammann; Inge Huybrechts; Inge Huybrechts; M. Rayson; M.I. Mesana; Theodora Mouratidou; K.R. Westerterp; Iris Pigeot; L. A. Moreno; S. De Henauw; S. De Henauw; Claudia Börnhorst; Vittorio Krogh; V. Pala; C. Ottavaere;pmid: 23622780
Little is known about the validity of repeated 24-h dietary recalls (24-HDR) as a measure of total energy intake (EI) in young children. This study aimed to evaluate the validity of proxy-reported EI by comparison with total energy expenditure (TEE) measured by the doubly labeled water (DLW) technique.The agreement between EI and TEE was investigated in 36 (47.2% boys) children aged 4-10 years from Belgium and Spain using subgroup analyses and Bland-Altman plots. Low-energy-reporters (LER), adequate-energy-reporters (AER) and high-energy-reporters (HER) were defined from the ratio of EI over TEE by application of age- and sex-specific cut-off values.There was good agreement between means of EI (1500 kcal/day) and TEE (1523 kcal/day) at group level though in single children, i.e. at the individual level, large differences were observed. Almost perfect agreement between EI and TEE was observed in thin/normal weight children (EI: 1511 kcal/day; TEE: 1513 kcal/day). Even in overweight/obese children the mean difference between EI and TEE was only -86 kcal/day. Among the participants, 28 (78%) were classified as AER, five (14%) as HER and three (8%) as LER.Two proxy-reported 24-HDRs were found to be a valid instrument to assess EI on group level but not on the individual level.
Clinical Nutrition arrow_drop_down Clinical NutritionArticle . 2014License: taverneData sources: Maastricht University | MUMC+ Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clnu.2013.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Clinical Nutrition arrow_drop_down Clinical NutritionArticle . 2014License: taverneData sources: Maastricht University | MUMC+ Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clnu.2013.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:FCT | Associate Laboratory of ...FCT| Associate Laboratory of Energy, Transports and AeronauticsAuthors: Mário Costa; Tomás Botelho; Małgorzata Wilk; Aneta Magdziarz;Abstract Grape pomace is a by-product of the wine making industry with great availability and energetic potential. Torrefaction is a pre-treatment that may enhance the biomass quality as a fuel, and consists in exposing the biomass to an inert atmosphere at a temperature between 200 °C and 300 °C. This study evaluates the combustion characteristics of raw and torrefied grape pomace in a thermogravimetric analyzer and in a drop tube furnace. Initially, the raw grape pomace was torrefied in an argon inert atmosphere at 260 °C. Subsequently, the combustion of the raw and torrefied grape pomace was examined in the thermogravimetric analyzer through non-isothermal runs at a heating rate of 10 °C/min from room temperature to 800 °C. Finally, the combustion of both biomass residues was evaluated in the drop tube furnace at 1100 °C. The data reported includes gas temperature, major gas species concentration and particle burnout measured along the axis of the drop tube furnace. The main conclusions of this study are (i) for the devolatilization stage, the thermogravimetric data yielded apparent activation energy values of 84.9 and 85.2 kJ mol−1, and for the char oxidation stage of 137.5 and 109.2 kJ mol−1 for the raw and torrefied grape pomace, respectively; (ii) the NOx concentrations along the drop tube furnace were always higher for the combustion of the torrefied grape pomace than for the combustion of the raw grape pomace because the former residue has a higher nitrogen content; and (iii) the burnout values along the drop tube furnace were always lower for the combustion of the torrefied grape pomace than for the combustion of the raw grape pomace because the former residue has a lower volatile content and a higher fixed carbon content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.09.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.09.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2012Publisher:American Institute of Aeronautics and Astronautics (AIAA) Funded by:EC | GREENESTEC| GREENESTAuthors: Sebastian Göke; Christian Paschereit;doi: 10.2514/6.2012-1272
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2012-1272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2012-1272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Springer Science and Business Media LLC Authors: Ingo Karschin; Alex G. Berg; Jutta Geldermann;Cogeneration of heat and electricity is an important pillar of energy and climate policy. To plan the production and distribution system of combined heat and power (CHP) systems for residential heating, suitable methods for decision support are needed. For a comprehensive feasibility analysis, the integration of the location and capacity planning of the power plants, the choice of customers, and the network planning of the heating network into one optimization model are necessary. Thus, we develop an optimization model for electricity generation and heat supply. This mixed integer linear program (MILP) is based on graph theory for network flow problems. We apply the network location model for the optimization of district heating systems in the City of Osorno in Chile, which exhibits the “checkerboard layout” typically found in many South American cities. The network location model can support the strategic planning of investments in renewable energy projects because it permits the analysis of changing energy prices, calculation of break-even prices for heat and electricity, and estimation of greenhouse gas emission savings.
Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu