- home
- Advanced Search
- Energy Research
- 13. Climate action
- 15. Life on land
- DE
- University of North Texas
- Energy Research
- 13. Climate action
- 15. Life on land
- DE
- University of North Texas
description Publicationkeyboard_double_arrow_right Conference object , Journal , Article 2005 United StatesPublisher:SAE International Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.;doi: 10.4271/2005-01-2193
Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2005-01-2193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2005-01-2193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Journal , Article 2005 United StatesPublisher:SAE International Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.;doi: 10.4271/2005-01-2193
Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2005-01-2193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2005-01-2193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2015 United States, GermanyPublisher:U.S. Global Change Research Program Brown, Molly; Antle, John; Backlund, Peter; Carr, Edward; Easterling, Bill; Walsh, Margaret; Ammann, Caspar; Attavanich, Witsanu; Barrett, Chris; Bellemare, Marc; Dancheck, Violet; Funk, Chris; Grace, Kathryn; Ingram, John; Jiang, Hui; Maletta, Hector; Mata, Tawny; Murray, Anthony; Ngugi, Moffatt; Ojima, Dennis; O’Neill, Brian; Tebaldi, Claudia;doi: 10.7930/j0862dc7
Food security—the ability to obtain and use sufficient amounts of safe and nutritious food—is a fundamental human need. Climate change is very likely to affect global, regional, and local food security by disrupting food availability, decreasing access to food, and making food utilization more difficult. Food security exists “when all people at all times have physical, social, and economic access to sufficient, safe, and nutritious food to meet their dietary needs and food preferences for an active and healthy life” and affects people through both under- and overconsumption. Food security requires that food be simultaneously (1) available—that it exist in a particular place at a particular time, (2) that people can access that food through economic or other means, (3) that people can utilize the food that is available and accessible to them, and (4) that each of these components be stable over time. Constrictions within any of these components can result in food insecurity. Food is provisioned through a food system that manifests in diverse ways across the globe. The food system includes all activities related to producing, transporting, trading, storing, processing, packaging, wholesaling, retailing, consuming, and disposing of food. Whether an individual food system includes few, many, or all of these elements, each is susceptible to risks from a changing climate. Human activities, such as burning fossil fuels and deforestation, have increased global greenhouse gas concentrations; atmospheric carbon dioxide levels have risen from 280 parts per million (ppm) in the late 1700s to today’s level of about 400 ppm. Concentrations continue to rise, though future levels depend on choices and development pathways yet to be determined. Additionally, the future condition of the food system depends upon socioeconomic trajectories that are external to the food system itself. For these reasons, a range of possible emissions futures and socioeconomic pathways have been considered by this assessment. The Climate Change, Global Food Security, and U.S. Food System assessment represents a consensus of authors and includes contributors from 19 Federal, academic, nongovernmental, and intergovernmental organizations in four countries, identifying climate-change effects on global food security through 2100, and analyzing the United States’ likely connections with that world. The assessment finds that climate change is likely to diminish continued progress on global food security through production disruptions leading to local availability limitations and price increases, interrupted transport conduits, and diminished food safety, among other causes. The risks are greatest for the global poor and in tropical regions. In the near term, some high-latitude production export regions may benefit from changes in climate. As part of a highly integrated global food system, consumers and producers in the United States are likely to be affected by these changes. The type and price of food imports from other regions are likely to change, as are export demands placed upon U.S. producers and the transportation, processing, and storage systems that enable global trade. Demand for food and other types of assistance may increase, as may demand for advanced technologies to manage changing conditions. Adaptation across the food system has great potential to manage climate-change effects on food security, and the complexity of the food system offers multiple potential points of intervention for decision makers at every level, from households to nations and international governance structures. However, effective adaptation is subject to highly localized conditions and socioeconomic factors, and the technical feasibility of an adaptive intervention is not necessarily a guarantee of its application if it is unaffordable or does not provide benefits within a relatively short time frame, particularly for smaller operations around the world with limited capacity for long-term investments. The accurate identification of needs and vulnerabilities, and the effective targeting of adaptive practices and technologies across the full scope of the food system, are central to improving global food security in a changing climate.
University of North ... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2015License: PDMData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7930/j0862dc7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of North ... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2015License: PDMData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7930/j0862dc7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2015 United States, GermanyPublisher:U.S. Global Change Research Program Brown, Molly; Antle, John; Backlund, Peter; Carr, Edward; Easterling, Bill; Walsh, Margaret; Ammann, Caspar; Attavanich, Witsanu; Barrett, Chris; Bellemare, Marc; Dancheck, Violet; Funk, Chris; Grace, Kathryn; Ingram, John; Jiang, Hui; Maletta, Hector; Mata, Tawny; Murray, Anthony; Ngugi, Moffatt; Ojima, Dennis; O’Neill, Brian; Tebaldi, Claudia;doi: 10.7930/j0862dc7
Food security—the ability to obtain and use sufficient amounts of safe and nutritious food—is a fundamental human need. Climate change is very likely to affect global, regional, and local food security by disrupting food availability, decreasing access to food, and making food utilization more difficult. Food security exists “when all people at all times have physical, social, and economic access to sufficient, safe, and nutritious food to meet their dietary needs and food preferences for an active and healthy life” and affects people through both under- and overconsumption. Food security requires that food be simultaneously (1) available—that it exist in a particular place at a particular time, (2) that people can access that food through economic or other means, (3) that people can utilize the food that is available and accessible to them, and (4) that each of these components be stable over time. Constrictions within any of these components can result in food insecurity. Food is provisioned through a food system that manifests in diverse ways across the globe. The food system includes all activities related to producing, transporting, trading, storing, processing, packaging, wholesaling, retailing, consuming, and disposing of food. Whether an individual food system includes few, many, or all of these elements, each is susceptible to risks from a changing climate. Human activities, such as burning fossil fuels and deforestation, have increased global greenhouse gas concentrations; atmospheric carbon dioxide levels have risen from 280 parts per million (ppm) in the late 1700s to today’s level of about 400 ppm. Concentrations continue to rise, though future levels depend on choices and development pathways yet to be determined. Additionally, the future condition of the food system depends upon socioeconomic trajectories that are external to the food system itself. For these reasons, a range of possible emissions futures and socioeconomic pathways have been considered by this assessment. The Climate Change, Global Food Security, and U.S. Food System assessment represents a consensus of authors and includes contributors from 19 Federal, academic, nongovernmental, and intergovernmental organizations in four countries, identifying climate-change effects on global food security through 2100, and analyzing the United States’ likely connections with that world. The assessment finds that climate change is likely to diminish continued progress on global food security through production disruptions leading to local availability limitations and price increases, interrupted transport conduits, and diminished food safety, among other causes. The risks are greatest for the global poor and in tropical regions. In the near term, some high-latitude production export regions may benefit from changes in climate. As part of a highly integrated global food system, consumers and producers in the United States are likely to be affected by these changes. The type and price of food imports from other regions are likely to change, as are export demands placed upon U.S. producers and the transportation, processing, and storage systems that enable global trade. Demand for food and other types of assistance may increase, as may demand for advanced technologies to manage changing conditions. Adaptation across the food system has great potential to manage climate-change effects on food security, and the complexity of the food system offers multiple potential points of intervention for decision makers at every level, from households to nations and international governance structures. However, effective adaptation is subject to highly localized conditions and socioeconomic factors, and the technical feasibility of an adaptive intervention is not necessarily a guarantee of its application if it is unaffordable or does not provide benefits within a relatively short time frame, particularly for smaller operations around the world with limited capacity for long-term investments. The accurate identification of needs and vulnerabilities, and the effective targeting of adaptive practices and technologies across the full scope of the food system, are central to improving global food security in a changing climate.
University of North ... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2015License: PDMData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7930/j0862dc7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of North ... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2015License: PDMData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7930/j0862dc7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2008 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Gregson, Michael Warren; Brockmann, John E.; Loiseau; Olivier (Institut de Radioprotection et de Surete Nucleaire; +15 AuthorsGregson, Michael Warren; Brockmann, John E.; Loiseau; Olivier (Institut de Radioprotection et de Surete Nucleaire; France); Klennert, Lindsay A.; Nolte; Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin; Germany); Molecke, Martin Alan; Autrusson; Bruno A. (Institut de Radioprotection et de Surete Nucleaire; Koch; Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin; Pretzsch; Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit; Brucher; Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit; Steyskal, Michele D.;doi: 10.2172/934855
This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual shortmore » rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively supported and coordinated by both the U.S. and international program participants in Germany, France, and others, as part of the International Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC).« less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/934855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/934855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2008 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Gregson, Michael Warren; Brockmann, John E.; Loiseau; Olivier (Institut de Radioprotection et de Surete Nucleaire; +15 AuthorsGregson, Michael Warren; Brockmann, John E.; Loiseau; Olivier (Institut de Radioprotection et de Surete Nucleaire; France); Klennert, Lindsay A.; Nolte; Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin; Germany); Molecke, Martin Alan; Autrusson; Bruno A. (Institut de Radioprotection et de Surete Nucleaire; Koch; Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin; Pretzsch; Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit; Brucher; Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit; Steyskal, Michele D.;doi: 10.2172/934855
This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual shortmore » rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively supported and coordinated by both the U.S. and international program participants in Germany, France, and others, as part of the International Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC).« less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/934855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/934855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 04 Oct 2024 Netherlands, Netherlands, Netherlands, United Kingdom, Norway, United States, United Kingdom, South Africa, Czech Republic, Netherlands, Norway, Belgium, Germany, Spain, Denmark, Finland, United Kingdom, Netherlands, Czech Republic, South Africa, Switzerland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | SELINAEC| SELINAAuthors: Unai Pascual; Patricia Balvanera; Christopher B. Anderson; Rebecca Chaplin‐Kramer; +82 AuthorsUnai Pascual; Patricia Balvanera; Christopher B. Anderson; Rebecca Chaplin‐Kramer; Michael Christie; David González-Jiménez; Adrián Martín; Christopher M. Raymond; Mette Termansen; Arild Vatn; Simone Athayde; Brigitte Baptiste; David N. Barton; Sander Jacobs; Eszter Kelemen; Ritesh Kumar; Elena Lazos; Tuyeni H. Mwampamba; Barbara Nakangu; Patrick H. O'Farrell; Suneetha M. Subramanian; Meine van Noordwijk; SoEun Ahn; Sacha Amaruzaman; Ariane Amin; Paola Arias-Arévalo; Gabriela Arroyo-Robles; Mariana Cantú-Fernández; Antonio Arjona Castro; Victoria Contreras; Alta De Vos; Nicolas Dendoncker; Stefanie Engel; Uta Eser; Daniel P. Faith; Anna Filyushkina; Houda Ghazi; Erik Gómez-Baggethun; Rachelle K. Gould; Louise Guibrunet; Haripriya Gundimeda; Thomas P. Hahn; Zuzana V. Harmáčková; Marcello Hernández‐Blanco; Andra Ioana Horcea-Milcu; Mariaelena Huambachano; Natalia Lutti Hummel Wicher; Cem İskender Aydın; Mine Işlar; Ann‐Kathrin Koessler; Jasper O. Kenter; Marina Kosmus; Heera Lee; Beria Leimona; Sharachchandra Lélé; Dominic Lenzi; Bosco Lliso; Lelani Mannetti; Juliana Merçon; Ana Sofía Monroy-Sais; Nibedita Mukherjee; Barbara Muraca; Roldán Muradian; Ranjini Murali; Sara Nelson; Gabriel R. Nemogá; Jonas Ngouhouo-Poufoun; Aidin Niamir; Emmanuel O. Nuesiri; Tobias Ochieng Nyumba; Begüm Özkaynak; Ignacio Palomo; Ram Pandit; Agnieszka Pawłowska-Mainville; Luciana Porter‐Bolland; Martin F. Quaas; Julian Rode; Ricardo Rozzi; Sonya Sachdeva; Aibek Samakov; Marije Schaafsma; Nadia Sitas; Paula Ungar; Evonne Yiu; Yuki Yoshida; Egleé L. Zent;doi: 10.1038/s41586-023-06406-9 , 10.48350/185350 , 10.60692/66fpj-9s681 , 10.17170/kobra-2024082310713 , 10.60692/qetsh-pty56 , 10.15488/15351 , 10.5445/ir/1000162260
pmid: 37558877
pmc: PMC10447232
AbstractTwenty-five years since foundational publications on valuing ecosystem services for human well-being1,2, addressing the global biodiversity crisis3 still implies confronting barriers to incorporating nature’s diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever4. Notwithstanding agreements to incorporate nature’s values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)5 and the UN Sustainable Development Goals6, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature7. Arguably, a ‘values crisis’ underpins the intertwined crises of biodiversity loss and climate change8, pandemic emergence9 and socio-environmental injustices10. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature’s diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions7,11. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26941Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Scholar Works @ Georgia State UniversityArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsBrunel University Research ArchiveArticle . 2023License: CC BYData sources: Brunel University Research ArchiveUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06406-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 260 citations 260 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26941Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Scholar Works @ Georgia State UniversityArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsBrunel University Research ArchiveArticle . 2023License: CC BYData sources: Brunel University Research ArchiveUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06406-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 04 Oct 2024 Netherlands, Netherlands, Netherlands, United Kingdom, Norway, United States, United Kingdom, South Africa, Czech Republic, Netherlands, Norway, Belgium, Germany, Spain, Denmark, Finland, United Kingdom, Netherlands, Czech Republic, South Africa, Switzerland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | SELINAEC| SELINAAuthors: Unai Pascual; Patricia Balvanera; Christopher B. Anderson; Rebecca Chaplin‐Kramer; +82 AuthorsUnai Pascual; Patricia Balvanera; Christopher B. Anderson; Rebecca Chaplin‐Kramer; Michael Christie; David González-Jiménez; Adrián Martín; Christopher M. Raymond; Mette Termansen; Arild Vatn; Simone Athayde; Brigitte Baptiste; David N. Barton; Sander Jacobs; Eszter Kelemen; Ritesh Kumar; Elena Lazos; Tuyeni H. Mwampamba; Barbara Nakangu; Patrick H. O'Farrell; Suneetha M. Subramanian; Meine van Noordwijk; SoEun Ahn; Sacha Amaruzaman; Ariane Amin; Paola Arias-Arévalo; Gabriela Arroyo-Robles; Mariana Cantú-Fernández; Antonio Arjona Castro; Victoria Contreras; Alta De Vos; Nicolas Dendoncker; Stefanie Engel; Uta Eser; Daniel P. Faith; Anna Filyushkina; Houda Ghazi; Erik Gómez-Baggethun; Rachelle K. Gould; Louise Guibrunet; Haripriya Gundimeda; Thomas P. Hahn; Zuzana V. Harmáčková; Marcello Hernández‐Blanco; Andra Ioana Horcea-Milcu; Mariaelena Huambachano; Natalia Lutti Hummel Wicher; Cem İskender Aydın; Mine Işlar; Ann‐Kathrin Koessler; Jasper O. Kenter; Marina Kosmus; Heera Lee; Beria Leimona; Sharachchandra Lélé; Dominic Lenzi; Bosco Lliso; Lelani Mannetti; Juliana Merçon; Ana Sofía Monroy-Sais; Nibedita Mukherjee; Barbara Muraca; Roldán Muradian; Ranjini Murali; Sara Nelson; Gabriel R. Nemogá; Jonas Ngouhouo-Poufoun; Aidin Niamir; Emmanuel O. Nuesiri; Tobias Ochieng Nyumba; Begüm Özkaynak; Ignacio Palomo; Ram Pandit; Agnieszka Pawłowska-Mainville; Luciana Porter‐Bolland; Martin F. Quaas; Julian Rode; Ricardo Rozzi; Sonya Sachdeva; Aibek Samakov; Marije Schaafsma; Nadia Sitas; Paula Ungar; Evonne Yiu; Yuki Yoshida; Egleé L. Zent;doi: 10.1038/s41586-023-06406-9 , 10.48350/185350 , 10.60692/66fpj-9s681 , 10.17170/kobra-2024082310713 , 10.60692/qetsh-pty56 , 10.15488/15351 , 10.5445/ir/1000162260
pmid: 37558877
pmc: PMC10447232
AbstractTwenty-five years since foundational publications on valuing ecosystem services for human well-being1,2, addressing the global biodiversity crisis3 still implies confronting barriers to incorporating nature’s diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever4. Notwithstanding agreements to incorporate nature’s values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)5 and the UN Sustainable Development Goals6, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature7. Arguably, a ‘values crisis’ underpins the intertwined crises of biodiversity loss and climate change8, pandemic emergence9 and socio-environmental injustices10. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature’s diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions7,11. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26941Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Scholar Works @ Georgia State UniversityArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsBrunel University Research ArchiveArticle . 2023License: CC BYData sources: Brunel University Research ArchiveUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06406-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 260 citations 260 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26941Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Scholar Works @ Georgia State UniversityArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsBrunel University Research ArchiveArticle . 2023License: CC BYData sources: Brunel University Research ArchiveUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06406-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1992 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Wang, X. H.; Leonard, J. W.; Parekh, B. K.; Raichur, A. M.; Jiang, C. L.;doi: 10.2172/10102819
The objective of the project is to conduct extensive fundamental studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the influence of the impurity content, particularly coal/carbon content, on the electrochemical oxidation of pyrite surfaces was investigated. The studies demonstrate that the coal/carbon content in coal-pyrite has a determining effect on the surface reactivity of pyrite. The oxidation behavior of high carbon-content coal-pyrite is completely different from that of purer coal-pyrite and ore-pyrite. The effects of flotation gases on the flotation behavior of coal and the surface hydrophobicity of various coal-pyrite were investigated. It was found from the lab-scale column flotation studies that among the various gases studied (air, oxygen, argon, nitrogen and carbon dioxide), carbon dioxide produced the best results with a combustible recovery of 90% and ash-content of less than 9 percent. Finally, the surface energetic studies revealed that the surfaces of pyrites and coals produced by wet grinding is more heterogenous than that prepared by dry grinding.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10102819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10102819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1992 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Wang, X. H.; Leonard, J. W.; Parekh, B. K.; Raichur, A. M.; Jiang, C. L.;doi: 10.2172/10102819
The objective of the project is to conduct extensive fundamental studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the influence of the impurity content, particularly coal/carbon content, on the electrochemical oxidation of pyrite surfaces was investigated. The studies demonstrate that the coal/carbon content in coal-pyrite has a determining effect on the surface reactivity of pyrite. The oxidation behavior of high carbon-content coal-pyrite is completely different from that of purer coal-pyrite and ore-pyrite. The effects of flotation gases on the flotation behavior of coal and the surface hydrophobicity of various coal-pyrite were investigated. It was found from the lab-scale column flotation studies that among the various gases studied (air, oxygen, argon, nitrogen and carbon dioxide), carbon dioxide produced the best results with a combustible recovery of 90% and ash-content of less than 9 percent. Finally, the surface energetic studies revealed that the surfaces of pyrites and coals produced by wet grinding is more heterogenous than that prepared by dry grinding.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10102819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10102819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United StatesPublisher:Elsevier BV Authors: Salmeron, Miquel; Schlogl, Robert;Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy rangemore » from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of electrons with matter also prevents them from traveling long distances unscattered in gas environments. Above the millibar pressure range this distance is reduced to less that a millimeter, effectively preventing its use in the most relevant environments, usually between millibars and atmospheric pressures. There is therefore a large gap of several orders of magnitude where information about surfaces is scarce because these powerful electron spectroscopies cannot operate. One characteristic of surfaces in ambient pressure environments is that they are covered by dense layers of molecules, even when their binding energy is weak. Water for example is known to form layers several molecules thick at room temperature in humid environments. Metals readily form oxide films several layers thick in oxygen atmospheres. Dense layers of adsorbed molecules can also be produced in ultra high vacuum, often by the simple and expedient method of cooling the sample to cryogenic temperatures. A large amount of data has been obtained in the past in UHV by surface scientists using this method. While this has provided valuable information it begs the question of whether the structures formed in this manner represent equilibrium structures or metastable ones, kinetically trapped due to high activation energies that cannot be overcome at low temperature. From a thermodynamic point of view is interesting to consider the entropic contribution to the Gibbs free energy, which we can call 'the pressure factor', equal to kT.logP. This factor amounts to a sizeable 0.3 eV difference at room temperature between UHV (<10{sup -8} Pascal) and atmospheric pressures. Such change if free energy can definitely result in changes in surface structure and stability. Entire areas of the phase diagram are out of reach due to the pressure gap. Even when cooling is not necessary, many surface treatments and most chemical reactions necessitate the presence of gases at pressures ranging from millibar to bars. What is the structure and chemical nature of the species formed on the surface in equilibrium with such gases? As we shall illustrate in this review, APPES provides a much needed electron spectroscopy to analyze surface electronic structure and composition in equilibrium with gases.« less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.surfrep.2008.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 672 citations 672 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.surfrep.2008.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United StatesPublisher:Elsevier BV Authors: Salmeron, Miquel; Schlogl, Robert;Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy rangemore » from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of electrons with matter also prevents them from traveling long distances unscattered in gas environments. Above the millibar pressure range this distance is reduced to less that a millimeter, effectively preventing its use in the most relevant environments, usually between millibars and atmospheric pressures. There is therefore a large gap of several orders of magnitude where information about surfaces is scarce because these powerful electron spectroscopies cannot operate. One characteristic of surfaces in ambient pressure environments is that they are covered by dense layers of molecules, even when their binding energy is weak. Water for example is known to form layers several molecules thick at room temperature in humid environments. Metals readily form oxide films several layers thick in oxygen atmospheres. Dense layers of adsorbed molecules can also be produced in ultra high vacuum, often by the simple and expedient method of cooling the sample to cryogenic temperatures. A large amount of data has been obtained in the past in UHV by surface scientists using this method. While this has provided valuable information it begs the question of whether the structures formed in this manner represent equilibrium structures or metastable ones, kinetically trapped due to high activation energies that cannot be overcome at low temperature. From a thermodynamic point of view is interesting to consider the entropic contribution to the Gibbs free energy, which we can call 'the pressure factor', equal to kT.logP. This factor amounts to a sizeable 0.3 eV difference at room temperature between UHV (<10{sup -8} Pascal) and atmospheric pressures. Such change if free energy can definitely result in changes in surface structure and stability. Entire areas of the phase diagram are out of reach due to the pressure gap. Even when cooling is not necessary, many surface treatments and most chemical reactions necessitate the presence of gases at pressures ranging from millibar to bars. What is the structure and chemical nature of the species formed on the surface in equilibrium with such gases? As we shall illustrate in this review, APPES provides a much needed electron spectroscopy to analyze surface electronic structure and composition in equilibrium with gases.« less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.surfrep.2008.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 672 citations 672 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.surfrep.2008.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type , Preprint 2011 Germany, United StatesPublisher:Office of Scientific and Technical Information (OSTI) Paget, Mia; Seacrest, Tom; Widergren, Steve; Balducci, Patrick; Orrell, Alice; Bloyd, Cary;doi: 10.2172/1013938
This report addresses the Asia-Pacific Economic Cooperation (APEC) organization’s desire to minimize the learning time required to understand the implications of smart-grid concepts so APEC members can advance their thinking in a timely manner and advance strategies regarding smart approaches that can help meet their environmental-sustainability and energy-efficiency policy goals. As significant investments are needed to grow and maintain the electricity infrastructure, consideration needs to be given to how information and communications technologies can be applied to electricity infrastructure decisions that not only meet traditional needs for basic service and reliability, but also provide the flexibility for a changing the mix of generation sources with sensitivity to environmental and societal impacts.
Research Papers in E... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1013938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1013938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type , Preprint 2011 Germany, United StatesPublisher:Office of Scientific and Technical Information (OSTI) Paget, Mia; Seacrest, Tom; Widergren, Steve; Balducci, Patrick; Orrell, Alice; Bloyd, Cary;doi: 10.2172/1013938
This report addresses the Asia-Pacific Economic Cooperation (APEC) organization’s desire to minimize the learning time required to understand the implications of smart-grid concepts so APEC members can advance their thinking in a timely manner and advance strategies regarding smart approaches that can help meet their environmental-sustainability and energy-efficiency policy goals. As significant investments are needed to grow and maintain the electricity infrastructure, consideration needs to be given to how information and communications technologies can be applied to electricity infrastructure decisions that not only meet traditional needs for basic service and reliability, but also provide the flexibility for a changing the mix of generation sources with sensitivity to environmental and societal impacts.
Research Papers in E... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1013938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1013938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2010 United States, Costa Rica, Costa RicaPublisher:Public Library of Science (PLoS) Funded by:NSF | CAREER: Exploring Mutuali..., NSF | Genome Sequencing of Mutu..., NSF | `MO: Exploring the Symbio...NSF| CAREER: Exploring Mutualism Stability in a Community Context ,NSF| Genome Sequencing of Mutualistic Bacteria Associated With Fungus-growing Ants ,NSF| `MO: Exploring the Symbiotic Association Between Tropical Social Insects and ActinomycetesAuthors: Timothy T. Harkins; Timothy J. Donohue; Timothy J. Donohue; Susannah G. Tringe; +24 AuthorsTimothy T. Harkins; Timothy J. Donohue; Timothy J. Donohue; Susannah G. Tringe; Clifton E. Foster; Clifton E. Foster; Jarrod J. Scott; Jarrod J. Scott; Jarrod J. Scott; Cameron R. Currie; Cameron R. Currie; Cameron R. Currie; Frank O. Aylward; Frank O. Aylward; Steven C. Slater; Lewyn Li; Adrián A. Pinto-Tomás; Paul J. Weimer; Lynne Goodwin; Lynne Goodwin; Markus Pauly; Markus Pauly; Pascal Bouffard; Sandra M. Adams; Sandra M. Adams; Kerrie Barry; Garret Suen; Jolene Osterberger;Les herbivores peuvent avoir un accès indirect au carbone récalcitrant présent dans les parois des cellules végétales grâce à des associations symbiotiques avec des microbes lignocellulolytiques. Un exemple paradigmatique est la fourmi coupeuse de feuilles (Tribu : Attini), qui utilise des feuilles fraîches pour cultiver un champignon pour se nourrir dans des jardins spécialisés. En utilisant une combinaison d'analyses de la composition du sucre, de la métagénomique et du séquençage du génome entier, nous révélons que le microbiome du champignon de jardin des fourmis coupeuses de feuilles est composé d'une communauté diversifiée de bactéries ayant une capacité élevée de dégradation de la biomasse végétale. La comparaison du profil enzymatique prédit de dégradation des glucides de ce microbiome avec d'autres métagénomes montre une similitude plus étroite avec le rumen bovin, indiquant une convergence évolutive du potentiel de dégradation de la biomasse végétale entre deux animaux herbivores importants. La caractérisation génomique et physiologique de deux bactéries dominantes dans le microbiome fongique du jardin fournit des preuves de leur capacité à dégrader la cellulose. Compte tenu de l'intérêt récent pour les biocarburants cellulosiques, comprendre comment la dégradation rapide et à grande échelle de la biomasse végétale se produit chez un insecte herbivore très évolué est particulièrement important pour la bioénergie. Los herbívoros pueden obtener acceso indirecto al carbono recalcitrante presente en las paredes celulares de las plantas a través de asociaciones simbióticas con microbios lignocelulolíticos. Un ejemplo paradigmático es la hormiga cortadora de hojas (Tribu: Attini), que utiliza hojas frescas para cultivar un hongo como alimento en jardines especializados. Usando una combinación de análisis de composición de azúcar, metagenómica y secuenciación del genoma completo, revelamos que el microbioma del jardín de hongos de las hormigas cortadoras de hojas está compuesto por una comunidad diversa de bacterias con alta capacidad de degradación de la biomasa vegetal. La comparación del perfil enzimático de degradación de carbohidratos predicho de este microbioma con otros metagenomas muestra la mayor similitud con el rumen bovino, lo que indica una convergencia evolutiva del potencial de degradación de la biomasa vegetal entre dos animales herbívoros importantes. La caracterización genómica y fisiológica de dos bacterias dominantes en el microbioma del jardín de hongos proporciona evidencia de su capacidad para degradar la celulosa. Dado el reciente interés en los biocombustibles celulósicos, la comprensión de cómo se produce la degradación rápida y a gran escala de la biomasa vegetal en un insecto herbívoro altamente evolucionado es de particular relevancia para la bioenergía. Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy. يمكن للحيوانات العاشبة الوصول بشكل غير مباشر إلى الكربون المتمرد الموجود في جدران الخلايا النباتية من خلال الارتباطات التكافلية مع الميكروبات المحللة للخلايا. ومن الأمثلة النموذجية على ذلك نملة قطع الأوراق (القبيلة: أتيني)، التي تستخدم أوراقًا طازجة لزراعة فطر للطعام في الحدائق المتخصصة. باستخدام مزيج من تحليلات تركيبة السكر، وعلم الوراثة، وتسلسل الجينوم الكامل، نكشف أن ميكروبيوم حديقة الفطريات من النمل القاطع للأوراق يتكون من مجموعة متنوعة من البكتيريا ذات القدرة العالية على تحلل الكتلة الحيوية للنبات. تُظهر مقارنة ملف تعريف إنزيم تحلل الكربوهيدرات المتوقع لهذا الميكروبيوم مع الميتاجينومات الأخرى أقرب تشابه مع الكرش البقري، مما يشير إلى التقارب التطوري لإمكانات تحلل الكتلة الحيوية النباتية بين اثنين من الحيوانات العاشبة المهمة. يوفر التوصيف الجيني والفسيولوجي لبكتيريا مهيمنة في ميكروبيوم حديقة الفطريات دليلاً على قدرتها على تحلل السليلوز. بالنظر إلى الاهتمام الأخير بالوقود الحيوي السليولوزي، فإن فهم كيفية حدوث تدهور الكتلة الحيوية النباتية على نطاق واسع وسريع في الحيوانات العاشبة الحشرية المتطورة للغاية له أهمية خاصة بالنسبة للطاقة الحيوية.
PLoS Genetics arrow_drop_down Universidad de Costa Rica: Repositorio KérwáArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pgen.1001129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 208 citations 208 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert PLoS Genetics arrow_drop_down Universidad de Costa Rica: Repositorio KérwáArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pgen.1001129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2010 United States, Costa Rica, Costa RicaPublisher:Public Library of Science (PLoS) Funded by:NSF | CAREER: Exploring Mutuali..., NSF | Genome Sequencing of Mutu..., NSF | `MO: Exploring the Symbio...NSF| CAREER: Exploring Mutualism Stability in a Community Context ,NSF| Genome Sequencing of Mutualistic Bacteria Associated With Fungus-growing Ants ,NSF| `MO: Exploring the Symbiotic Association Between Tropical Social Insects and ActinomycetesAuthors: Timothy T. Harkins; Timothy J. Donohue; Timothy J. Donohue; Susannah G. Tringe; +24 AuthorsTimothy T. Harkins; Timothy J. Donohue; Timothy J. Donohue; Susannah G. Tringe; Clifton E. Foster; Clifton E. Foster; Jarrod J. Scott; Jarrod J. Scott; Jarrod J. Scott; Cameron R. Currie; Cameron R. Currie; Cameron R. Currie; Frank O. Aylward; Frank O. Aylward; Steven C. Slater; Lewyn Li; Adrián A. Pinto-Tomás; Paul J. Weimer; Lynne Goodwin; Lynne Goodwin; Markus Pauly; Markus Pauly; Pascal Bouffard; Sandra M. Adams; Sandra M. Adams; Kerrie Barry; Garret Suen; Jolene Osterberger;Les herbivores peuvent avoir un accès indirect au carbone récalcitrant présent dans les parois des cellules végétales grâce à des associations symbiotiques avec des microbes lignocellulolytiques. Un exemple paradigmatique est la fourmi coupeuse de feuilles (Tribu : Attini), qui utilise des feuilles fraîches pour cultiver un champignon pour se nourrir dans des jardins spécialisés. En utilisant une combinaison d'analyses de la composition du sucre, de la métagénomique et du séquençage du génome entier, nous révélons que le microbiome du champignon de jardin des fourmis coupeuses de feuilles est composé d'une communauté diversifiée de bactéries ayant une capacité élevée de dégradation de la biomasse végétale. La comparaison du profil enzymatique prédit de dégradation des glucides de ce microbiome avec d'autres métagénomes montre une similitude plus étroite avec le rumen bovin, indiquant une convergence évolutive du potentiel de dégradation de la biomasse végétale entre deux animaux herbivores importants. La caractérisation génomique et physiologique de deux bactéries dominantes dans le microbiome fongique du jardin fournit des preuves de leur capacité à dégrader la cellulose. Compte tenu de l'intérêt récent pour les biocarburants cellulosiques, comprendre comment la dégradation rapide et à grande échelle de la biomasse végétale se produit chez un insecte herbivore très évolué est particulièrement important pour la bioénergie. Los herbívoros pueden obtener acceso indirecto al carbono recalcitrante presente en las paredes celulares de las plantas a través de asociaciones simbióticas con microbios lignocelulolíticos. Un ejemplo paradigmático es la hormiga cortadora de hojas (Tribu: Attini), que utiliza hojas frescas para cultivar un hongo como alimento en jardines especializados. Usando una combinación de análisis de composición de azúcar, metagenómica y secuenciación del genoma completo, revelamos que el microbioma del jardín de hongos de las hormigas cortadoras de hojas está compuesto por una comunidad diversa de bacterias con alta capacidad de degradación de la biomasa vegetal. La comparación del perfil enzimático de degradación de carbohidratos predicho de este microbioma con otros metagenomas muestra la mayor similitud con el rumen bovino, lo que indica una convergencia evolutiva del potencial de degradación de la biomasa vegetal entre dos animales herbívoros importantes. La caracterización genómica y fisiológica de dos bacterias dominantes en el microbioma del jardín de hongos proporciona evidencia de su capacidad para degradar la celulosa. Dado el reciente interés en los biocombustibles celulósicos, la comprensión de cómo se produce la degradación rápida y a gran escala de la biomasa vegetal en un insecto herbívoro altamente evolucionado es de particular relevancia para la bioenergía. Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy. يمكن للحيوانات العاشبة الوصول بشكل غير مباشر إلى الكربون المتمرد الموجود في جدران الخلايا النباتية من خلال الارتباطات التكافلية مع الميكروبات المحللة للخلايا. ومن الأمثلة النموذجية على ذلك نملة قطع الأوراق (القبيلة: أتيني)، التي تستخدم أوراقًا طازجة لزراعة فطر للطعام في الحدائق المتخصصة. باستخدام مزيج من تحليلات تركيبة السكر، وعلم الوراثة، وتسلسل الجينوم الكامل، نكشف أن ميكروبيوم حديقة الفطريات من النمل القاطع للأوراق يتكون من مجموعة متنوعة من البكتيريا ذات القدرة العالية على تحلل الكتلة الحيوية للنبات. تُظهر مقارنة ملف تعريف إنزيم تحلل الكربوهيدرات المتوقع لهذا الميكروبيوم مع الميتاجينومات الأخرى أقرب تشابه مع الكرش البقري، مما يشير إلى التقارب التطوري لإمكانات تحلل الكتلة الحيوية النباتية بين اثنين من الحيوانات العاشبة المهمة. يوفر التوصيف الجيني والفسيولوجي لبكتيريا مهيمنة في ميكروبيوم حديقة الفطريات دليلاً على قدرتها على تحلل السليلوز. بالنظر إلى الاهتمام الأخير بالوقود الحيوي السليولوزي، فإن فهم كيفية حدوث تدهور الكتلة الحيوية النباتية على نطاق واسع وسريع في الحيوانات العاشبة الحشرية المتطورة للغاية له أهمية خاصة بالنسبة للطاقة الحيوية.
PLoS Genetics arrow_drop_down Universidad de Costa Rica: Repositorio KérwáArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pgen.1001129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 208 citations 208 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert PLoS Genetics arrow_drop_down Universidad de Costa Rica: Repositorio KérwáArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pgen.1001129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 United States, Germany, United StatesPublisher:Elsevier BV Authors: Friedmann, S J; Dooley, J; Held, H; Edenhofer, O;The costs for carbon dioxide (CO2) capture and storage (CCS) in geologic formations is estimated to be $6–75/t CO2 .I n the absence of a mandate to reduce greenhouse gas emissions or some other significant incentive for CCS deployment, this cost effectively limits CCS technology deployment to small niche markets and stymies the potential for further technological development through learning by doing until these disincentives for the free venting of CO2 are in place. By far, the largest current fraction of these costs is capture (including compression and dehydration), commonly estimated at $25–60/t CO2 for power plant applications, followed by CO2 transport and storage, estimated at $0–15/t CO2. Of the storage costs, only a small fraction of the cost will go to accurate geological characterization. These one time costs are probably on the order of $0.1/t CO2 or less as these costs are spread out over the many millions of tons likely to be injected into a field over many decades. Geologic assessments include information central to capacity prediction, risk estimation for the target intervals and development facilities engineering. Since assessment costs are roughly two orders of magnitude smaller than capture costs, and assessment products carry other tangible societal benefits, such as improved accuracy in fossil fuel and ground water reserves estimates, government or joint private–public funding of major assessment initiatives should underpin early policy choices regarding CO2 storage deployment and should serve as a point of entry for policy makers and regulators. Early assessment is also likely to improve the knowledge base upon which the first commercial CCS deployments will rest. 2005 Elsevier Ltd. All rights reserved.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2005.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2005.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 United States, Germany, United StatesPublisher:Elsevier BV Authors: Friedmann, S J; Dooley, J; Held, H; Edenhofer, O;The costs for carbon dioxide (CO2) capture and storage (CCS) in geologic formations is estimated to be $6–75/t CO2 .I n the absence of a mandate to reduce greenhouse gas emissions or some other significant incentive for CCS deployment, this cost effectively limits CCS technology deployment to small niche markets and stymies the potential for further technological development through learning by doing until these disincentives for the free venting of CO2 are in place. By far, the largest current fraction of these costs is capture (including compression and dehydration), commonly estimated at $25–60/t CO2 for power plant applications, followed by CO2 transport and storage, estimated at $0–15/t CO2. Of the storage costs, only a small fraction of the cost will go to accurate geological characterization. These one time costs are probably on the order of $0.1/t CO2 or less as these costs are spread out over the many millions of tons likely to be injected into a field over many decades. Geologic assessments include information central to capacity prediction, risk estimation for the target intervals and development facilities engineering. Since assessment costs are roughly two orders of magnitude smaller than capture costs, and assessment products carry other tangible societal benefits, such as improved accuracy in fossil fuel and ground water reserves estimates, government or joint private–public funding of major assessment initiatives should underpin early policy choices regarding CO2 storage deployment and should serve as a point of entry for policy makers and regulators. Early assessment is also likely to improve the knowledge base upon which the first commercial CCS deployments will rest. 2005 Elsevier Ltd. All rights reserved.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2005.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2005.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Part of book or chapter of book , Article 2010 Spain, Spain, United StatesPublisher:IEEE Momber, Ilan; Gómez San Román, Tomás; Venkataramanan, Giri; Stadler, Michael; Beer, Sebastian; Lai, Judy; Marnay, Chris; Battaglia, Vincent;handle: 11531/5594
Capítulos en libros It is generally believed that plug-in electric vehicles (PEVs) offer environmental and energy security advantages compared to conventional vehicles. Policies are stimulating electric transportation deployment, and PEV adoption may grow significantly. New technology and business models are being developed to organize the PEV interface and their interaction with the wider grid. This paper analyzes the PEVs integration into a building s Energy Management System (EMS), differentiating between vehicle to macrogrid (V2M) and vehicle to microgrid (V2m) applications. This relationship is modeled by the Distributed Energy Resources Customer Adoption Model (DER-CAM), which finds optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results derive battery value to the building and the possibility of a contractual affiliation sharing the benefit. Under simple annual fixed payments and energy exchange agreements, vehicles are primarily used to avoid peak demand charges supplying cheaper off-peak electricity to the building during workdays. info:eu-repo/semantics/publishedVersion
https://digital.libr... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAPart of book or chapter of book . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pes.2010.5589485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://digital.libr... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAPart of book or chapter of book . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pes.2010.5589485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Part of book or chapter of book , Article 2010 Spain, Spain, United StatesPublisher:IEEE Momber, Ilan; Gómez San Román, Tomás; Venkataramanan, Giri; Stadler, Michael; Beer, Sebastian; Lai, Judy; Marnay, Chris; Battaglia, Vincent;handle: 11531/5594
Capítulos en libros It is generally believed that plug-in electric vehicles (PEVs) offer environmental and energy security advantages compared to conventional vehicles. Policies are stimulating electric transportation deployment, and PEV adoption may grow significantly. New technology and business models are being developed to organize the PEV interface and their interaction with the wider grid. This paper analyzes the PEVs integration into a building s Energy Management System (EMS), differentiating between vehicle to macrogrid (V2M) and vehicle to microgrid (V2m) applications. This relationship is modeled by the Distributed Energy Resources Customer Adoption Model (DER-CAM), which finds optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results derive battery value to the building and the possibility of a contractual affiliation sharing the benefit. Under simple annual fixed payments and energy exchange agreements, vehicles are primarily used to avoid peak demand charges supplying cheaper off-peak electricity to the building during workdays. info:eu-repo/semantics/publishedVersion
https://digital.libr... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAPart of book or chapter of book . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pes.2010.5589485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://digital.libr... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAPart of book or chapter of book . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pes.2010.5589485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Journal , Article 2005 United StatesPublisher:SAE International Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.;doi: 10.4271/2005-01-2193
Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2005-01-2193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2005-01-2193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Journal , Article 2005 United StatesPublisher:SAE International Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.;doi: 10.4271/2005-01-2193
Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2005-01-2193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2005-01-2193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2015 United States, GermanyPublisher:U.S. Global Change Research Program Brown, Molly; Antle, John; Backlund, Peter; Carr, Edward; Easterling, Bill; Walsh, Margaret; Ammann, Caspar; Attavanich, Witsanu; Barrett, Chris; Bellemare, Marc; Dancheck, Violet; Funk, Chris; Grace, Kathryn; Ingram, John; Jiang, Hui; Maletta, Hector; Mata, Tawny; Murray, Anthony; Ngugi, Moffatt; Ojima, Dennis; O’Neill, Brian; Tebaldi, Claudia;doi: 10.7930/j0862dc7
Food security—the ability to obtain and use sufficient amounts of safe and nutritious food—is a fundamental human need. Climate change is very likely to affect global, regional, and local food security by disrupting food availability, decreasing access to food, and making food utilization more difficult. Food security exists “when all people at all times have physical, social, and economic access to sufficient, safe, and nutritious food to meet their dietary needs and food preferences for an active and healthy life” and affects people through both under- and overconsumption. Food security requires that food be simultaneously (1) available—that it exist in a particular place at a particular time, (2) that people can access that food through economic or other means, (3) that people can utilize the food that is available and accessible to them, and (4) that each of these components be stable over time. Constrictions within any of these components can result in food insecurity. Food is provisioned through a food system that manifests in diverse ways across the globe. The food system includes all activities related to producing, transporting, trading, storing, processing, packaging, wholesaling, retailing, consuming, and disposing of food. Whether an individual food system includes few, many, or all of these elements, each is susceptible to risks from a changing climate. Human activities, such as burning fossil fuels and deforestation, have increased global greenhouse gas concentrations; atmospheric carbon dioxide levels have risen from 280 parts per million (ppm) in the late 1700s to today’s level of about 400 ppm. Concentrations continue to rise, though future levels depend on choices and development pathways yet to be determined. Additionally, the future condition of the food system depends upon socioeconomic trajectories that are external to the food system itself. For these reasons, a range of possible emissions futures and socioeconomic pathways have been considered by this assessment. The Climate Change, Global Food Security, and U.S. Food System assessment represents a consensus of authors and includes contributors from 19 Federal, academic, nongovernmental, and intergovernmental organizations in four countries, identifying climate-change effects on global food security through 2100, and analyzing the United States’ likely connections with that world. The assessment finds that climate change is likely to diminish continued progress on global food security through production disruptions leading to local availability limitations and price increases, interrupted transport conduits, and diminished food safety, among other causes. The risks are greatest for the global poor and in tropical regions. In the near term, some high-latitude production export regions may benefit from changes in climate. As part of a highly integrated global food system, consumers and producers in the United States are likely to be affected by these changes. The type and price of food imports from other regions are likely to change, as are export demands placed upon U.S. producers and the transportation, processing, and storage systems that enable global trade. Demand for food and other types of assistance may increase, as may demand for advanced technologies to manage changing conditions. Adaptation across the food system has great potential to manage climate-change effects on food security, and the complexity of the food system offers multiple potential points of intervention for decision makers at every level, from households to nations and international governance structures. However, effective adaptation is subject to highly localized conditions and socioeconomic factors, and the technical feasibility of an adaptive intervention is not necessarily a guarantee of its application if it is unaffordable or does not provide benefits within a relatively short time frame, particularly for smaller operations around the world with limited capacity for long-term investments. The accurate identification of needs and vulnerabilities, and the effective targeting of adaptive practices and technologies across the full scope of the food system, are central to improving global food security in a changing climate.
University of North ... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2015License: PDMData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7930/j0862dc7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of North ... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2015License: PDMData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7930/j0862dc7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2015 United States, GermanyPublisher:U.S. Global Change Research Program Brown, Molly; Antle, John; Backlund, Peter; Carr, Edward; Easterling, Bill; Walsh, Margaret; Ammann, Caspar; Attavanich, Witsanu; Barrett, Chris; Bellemare, Marc; Dancheck, Violet; Funk, Chris; Grace, Kathryn; Ingram, John; Jiang, Hui; Maletta, Hector; Mata, Tawny; Murray, Anthony; Ngugi, Moffatt; Ojima, Dennis; O’Neill, Brian; Tebaldi, Claudia;doi: 10.7930/j0862dc7
Food security—the ability to obtain and use sufficient amounts of safe and nutritious food—is a fundamental human need. Climate change is very likely to affect global, regional, and local food security by disrupting food availability, decreasing access to food, and making food utilization more difficult. Food security exists “when all people at all times have physical, social, and economic access to sufficient, safe, and nutritious food to meet their dietary needs and food preferences for an active and healthy life” and affects people through both under- and overconsumption. Food security requires that food be simultaneously (1) available—that it exist in a particular place at a particular time, (2) that people can access that food through economic or other means, (3) that people can utilize the food that is available and accessible to them, and (4) that each of these components be stable over time. Constrictions within any of these components can result in food insecurity. Food is provisioned through a food system that manifests in diverse ways across the globe. The food system includes all activities related to producing, transporting, trading, storing, processing, packaging, wholesaling, retailing, consuming, and disposing of food. Whether an individual food system includes few, many, or all of these elements, each is susceptible to risks from a changing climate. Human activities, such as burning fossil fuels and deforestation, have increased global greenhouse gas concentrations; atmospheric carbon dioxide levels have risen from 280 parts per million (ppm) in the late 1700s to today’s level of about 400 ppm. Concentrations continue to rise, though future levels depend on choices and development pathways yet to be determined. Additionally, the future condition of the food system depends upon socioeconomic trajectories that are external to the food system itself. For these reasons, a range of possible emissions futures and socioeconomic pathways have been considered by this assessment. The Climate Change, Global Food Security, and U.S. Food System assessment represents a consensus of authors and includes contributors from 19 Federal, academic, nongovernmental, and intergovernmental organizations in four countries, identifying climate-change effects on global food security through 2100, and analyzing the United States’ likely connections with that world. The assessment finds that climate change is likely to diminish continued progress on global food security through production disruptions leading to local availability limitations and price increases, interrupted transport conduits, and diminished food safety, among other causes. The risks are greatest for the global poor and in tropical regions. In the near term, some high-latitude production export regions may benefit from changes in climate. As part of a highly integrated global food system, consumers and producers in the United States are likely to be affected by these changes. The type and price of food imports from other regions are likely to change, as are export demands placed upon U.S. producers and the transportation, processing, and storage systems that enable global trade. Demand for food and other types of assistance may increase, as may demand for advanced technologies to manage changing conditions. Adaptation across the food system has great potential to manage climate-change effects on food security, and the complexity of the food system offers multiple potential points of intervention for decision makers at every level, from households to nations and international governance structures. However, effective adaptation is subject to highly localized conditions and socioeconomic factors, and the technical feasibility of an adaptive intervention is not necessarily a guarantee of its application if it is unaffordable or does not provide benefits within a relatively short time frame, particularly for smaller operations around the world with limited capacity for long-term investments. The accurate identification of needs and vulnerabilities, and the effective targeting of adaptive practices and technologies across the full scope of the food system, are central to improving global food security in a changing climate.
University of North ... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2015License: PDMData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7930/j0862dc7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of North ... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2015License: PDMData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7930/j0862dc7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2008 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Gregson, Michael Warren; Brockmann, John E.; Loiseau; Olivier (Institut de Radioprotection et de Surete Nucleaire; +15 AuthorsGregson, Michael Warren; Brockmann, John E.; Loiseau; Olivier (Institut de Radioprotection et de Surete Nucleaire; France); Klennert, Lindsay A.; Nolte; Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin; Germany); Molecke, Martin Alan; Autrusson; Bruno A. (Institut de Radioprotection et de Surete Nucleaire; Koch; Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin; Pretzsch; Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit; Brucher; Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit; Steyskal, Michele D.;doi: 10.2172/934855
This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual shortmore » rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively supported and coordinated by both the U.S. and international program participants in Germany, France, and others, as part of the International Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC).« less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/934855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/934855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2008 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Gregson, Michael Warren; Brockmann, John E.; Loiseau; Olivier (Institut de Radioprotection et de Surete Nucleaire; +15 AuthorsGregson, Michael Warren; Brockmann, John E.; Loiseau; Olivier (Institut de Radioprotection et de Surete Nucleaire; France); Klennert, Lindsay A.; Nolte; Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin; Germany); Molecke, Martin Alan; Autrusson; Bruno A. (Institut de Radioprotection et de Surete Nucleaire; Koch; Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin; Pretzsch; Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit; Brucher; Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit; Steyskal, Michele D.;doi: 10.2172/934855
This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual shortmore » rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively supported and coordinated by both the U.S. and international program participants in Germany, France, and others, as part of the International Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC).« less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/934855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/934855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 04 Oct 2024 Netherlands, Netherlands, Netherlands, United Kingdom, Norway, United States, United Kingdom, South Africa, Czech Republic, Netherlands, Norway, Belgium, Germany, Spain, Denmark, Finland, United Kingdom, Netherlands, Czech Republic, South Africa, Switzerland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | SELINAEC| SELINAAuthors: Unai Pascual; Patricia Balvanera; Christopher B. Anderson; Rebecca Chaplin‐Kramer; +82 AuthorsUnai Pascual; Patricia Balvanera; Christopher B. Anderson; Rebecca Chaplin‐Kramer; Michael Christie; David González-Jiménez; Adrián Martín; Christopher M. Raymond; Mette Termansen; Arild Vatn; Simone Athayde; Brigitte Baptiste; David N. Barton; Sander Jacobs; Eszter Kelemen; Ritesh Kumar; Elena Lazos; Tuyeni H. Mwampamba; Barbara Nakangu; Patrick H. O'Farrell; Suneetha M. Subramanian; Meine van Noordwijk; SoEun Ahn; Sacha Amaruzaman; Ariane Amin; Paola Arias-Arévalo; Gabriela Arroyo-Robles; Mariana Cantú-Fernández; Antonio Arjona Castro; Victoria Contreras; Alta De Vos; Nicolas Dendoncker; Stefanie Engel; Uta Eser; Daniel P. Faith; Anna Filyushkina; Houda Ghazi; Erik Gómez-Baggethun; Rachelle K. Gould; Louise Guibrunet; Haripriya Gundimeda; Thomas P. Hahn; Zuzana V. Harmáčková; Marcello Hernández‐Blanco; Andra Ioana Horcea-Milcu; Mariaelena Huambachano; Natalia Lutti Hummel Wicher; Cem İskender Aydın; Mine Işlar; Ann‐Kathrin Koessler; Jasper O. Kenter; Marina Kosmus; Heera Lee; Beria Leimona; Sharachchandra Lélé; Dominic Lenzi; Bosco Lliso; Lelani Mannetti; Juliana Merçon; Ana Sofía Monroy-Sais; Nibedita Mukherjee; Barbara Muraca; Roldán Muradian; Ranjini Murali; Sara Nelson; Gabriel R. Nemogá; Jonas Ngouhouo-Poufoun; Aidin Niamir; Emmanuel O. Nuesiri; Tobias Ochieng Nyumba; Begüm Özkaynak; Ignacio Palomo; Ram Pandit; Agnieszka Pawłowska-Mainville; Luciana Porter‐Bolland; Martin F. Quaas; Julian Rode; Ricardo Rozzi; Sonya Sachdeva; Aibek Samakov; Marije Schaafsma; Nadia Sitas; Paula Ungar; Evonne Yiu; Yuki Yoshida; Egleé L. Zent;doi: 10.1038/s41586-023-06406-9 , 10.48350/185350 , 10.60692/66fpj-9s681 , 10.17170/kobra-2024082310713 , 10.60692/qetsh-pty56 , 10.15488/15351 , 10.5445/ir/1000162260
pmid: 37558877
pmc: PMC10447232
AbstractTwenty-five years since foundational publications on valuing ecosystem services for human well-being1,2, addressing the global biodiversity crisis3 still implies confronting barriers to incorporating nature’s diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever4. Notwithstanding agreements to incorporate nature’s values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)5 and the UN Sustainable Development Goals6, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature7. Arguably, a ‘values crisis’ underpins the intertwined crises of biodiversity loss and climate change8, pandemic emergence9 and socio-environmental injustices10. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature’s diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions7,11. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26941Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Scholar Works @ Georgia State UniversityArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsBrunel University Research ArchiveArticle . 2023License: CC BYData sources: Brunel University Research ArchiveUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06406-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 260 citations 260 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26941Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Scholar Works @ Georgia State UniversityArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsBrunel University Research ArchiveArticle . 2023License: CC BYData sources: Brunel University Research ArchiveUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06406-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 04 Oct 2024 Netherlands, Netherlands, Netherlands, United Kingdom, Norway, United States, United Kingdom, South Africa, Czech Republic, Netherlands, Norway, Belgium, Germany, Spain, Denmark, Finland, United Kingdom, Netherlands, Czech Republic, South Africa, Switzerland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | SELINAEC| SELINAAuthors: Unai Pascual; Patricia Balvanera; Christopher B. Anderson; Rebecca Chaplin‐Kramer; +82 AuthorsUnai Pascual; Patricia Balvanera; Christopher B. Anderson; Rebecca Chaplin‐Kramer; Michael Christie; David González-Jiménez; Adrián Martín; Christopher M. Raymond; Mette Termansen; Arild Vatn; Simone Athayde; Brigitte Baptiste; David N. Barton; Sander Jacobs; Eszter Kelemen; Ritesh Kumar; Elena Lazos; Tuyeni H. Mwampamba; Barbara Nakangu; Patrick H. O'Farrell; Suneetha M. Subramanian; Meine van Noordwijk; SoEun Ahn; Sacha Amaruzaman; Ariane Amin; Paola Arias-Arévalo; Gabriela Arroyo-Robles; Mariana Cantú-Fernández; Antonio Arjona Castro; Victoria Contreras; Alta De Vos; Nicolas Dendoncker; Stefanie Engel; Uta Eser; Daniel P. Faith; Anna Filyushkina; Houda Ghazi; Erik Gómez-Baggethun; Rachelle K. Gould; Louise Guibrunet; Haripriya Gundimeda; Thomas P. Hahn; Zuzana V. Harmáčková; Marcello Hernández‐Blanco; Andra Ioana Horcea-Milcu; Mariaelena Huambachano; Natalia Lutti Hummel Wicher; Cem İskender Aydın; Mine Işlar; Ann‐Kathrin Koessler; Jasper O. Kenter; Marina Kosmus; Heera Lee; Beria Leimona; Sharachchandra Lélé; Dominic Lenzi; Bosco Lliso; Lelani Mannetti; Juliana Merçon; Ana Sofía Monroy-Sais; Nibedita Mukherjee; Barbara Muraca; Roldán Muradian; Ranjini Murali; Sara Nelson; Gabriel R. Nemogá; Jonas Ngouhouo-Poufoun; Aidin Niamir; Emmanuel O. Nuesiri; Tobias Ochieng Nyumba; Begüm Özkaynak; Ignacio Palomo; Ram Pandit; Agnieszka Pawłowska-Mainville; Luciana Porter‐Bolland; Martin F. Quaas; Julian Rode; Ricardo Rozzi; Sonya Sachdeva; Aibek Samakov; Marije Schaafsma; Nadia Sitas; Paula Ungar; Evonne Yiu; Yuki Yoshida; Egleé L. Zent;doi: 10.1038/s41586-023-06406-9 , 10.48350/185350 , 10.60692/66fpj-9s681 , 10.17170/kobra-2024082310713 , 10.60692/qetsh-pty56 , 10.15488/15351 , 10.5445/ir/1000162260
pmid: 37558877
pmc: PMC10447232
AbstractTwenty-five years since foundational publications on valuing ecosystem services for human well-being1,2, addressing the global biodiversity crisis3 still implies confronting barriers to incorporating nature’s diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever4. Notwithstanding agreements to incorporate nature’s values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)5 and the UN Sustainable Development Goals6, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature7. Arguably, a ‘values crisis’ underpins the intertwined crises of biodiversity loss and climate change8, pandemic emergence9 and socio-environmental injustices10. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature’s diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions7,11. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26941Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Scholar Works @ Georgia State UniversityArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsBrunel University Research ArchiveArticle . 2023License: CC BYData sources: Brunel University Research ArchiveUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06406-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 260 citations 260 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26941Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Scholar Works @ Georgia State UniversityArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsBrunel University Research ArchiveArticle . 2023License: CC BYData sources: Brunel University Research ArchiveUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06406-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1992 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Wang, X. H.; Leonard, J. W.; Parekh, B. K.; Raichur, A. M.; Jiang, C. L.;doi: 10.2172/10102819
The objective of the project is to conduct extensive fundamental studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the influence of the impurity content, particularly coal/carbon content, on the electrochemical oxidation of pyrite surfaces was investigated. The studies demonstrate that the coal/carbon content in coal-pyrite has a determining effect on the surface reactivity of pyrite. The oxidation behavior of high carbon-content coal-pyrite is completely different from that of purer coal-pyrite and ore-pyrite. The effects of flotation gases on the flotation behavior of coal and the surface hydrophobicity of various coal-pyrite were investigated. It was found from the lab-scale column flotation studies that among the various gases studied (air, oxygen, argon, nitrogen and carbon dioxide), carbon dioxide produced the best results with a combustible recovery of 90% and ash-content of less than 9 percent. Finally, the surface energetic studies revealed that the surfaces of pyrites and coals produced by wet grinding is more heterogenous than that prepared by dry grinding.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10102819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10102819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1992 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Wang, X. H.; Leonard, J. W.; Parekh, B. K.; Raichur, A. M.; Jiang, C. L.;doi: 10.2172/10102819
The objective of the project is to conduct extensive fundamental studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the influence of the impurity content, particularly coal/carbon content, on the electrochemical oxidation of pyrite surfaces was investigated. The studies demonstrate that the coal/carbon content in coal-pyrite has a determining effect on the surface reactivity of pyrite. The oxidation behavior of high carbon-content coal-pyrite is completely different from that of purer coal-pyrite and ore-pyrite. The effects of flotation gases on the flotation behavior of coal and the surface hydrophobicity of various coal-pyrite were investigated. It was found from the lab-scale column flotation studies that among the various gases studied (air, oxygen, argon, nitrogen and carbon dioxide), carbon dioxide produced the best results with a combustible recovery of 90% and ash-content of less than 9 percent. Finally, the surface energetic studies revealed that the surfaces of pyrites and coals produced by wet grinding is more heterogenous than that prepared by dry grinding.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10102819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10102819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United StatesPublisher:Elsevier BV Authors: Salmeron, Miquel; Schlogl, Robert;Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy rangemore » from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of electrons with matter also prevents them from traveling long distances unscattered in gas environments. Above the millibar pressure range this distance is reduced to less that a millimeter, effectively preventing its use in the most relevant environments, usually between millibars and atmospheric pressures. There is therefore a large gap of several orders of magnitude where information about surfaces is scarce because these powerful electron spectroscopies cannot operate. One characteristic of surfaces in ambient pressure environments is that they are covered by dense layers of molecules, even when their binding energy is weak. Water for example is known to form layers several molecules thick at room temperature in humid environments. Metals readily form oxide films several layers thick in oxygen atmospheres. Dense layers of adsorbed molecules can also be produced in ultra high vacuum, often by the simple and expedient method of cooling the sample to cryogenic temperatures. A large amount of data has been obtained in the past in UHV by surface scientists using this method. While this has provided valuable information it begs the question of whether the structures formed in this manner represent equilibrium structures or metastable ones, kinetically trapped due to high activation energies that cannot be overcome at low temperature. From a thermodynamic point of view is interesting to consider the entropic contribution to the Gibbs free energy, which we can call 'the pressure factor', equal to kT.logP. This factor amounts to a sizeable 0.3 eV difference at room temperature between UHV (<10{sup -8} Pascal) and atmospheric pressures. Such change if free energy can definitely result in changes in surface structure and stability. Entire areas of the phase diagram are out of reach due to the pressure gap. Even when cooling is not necessary, many surface treatments and most chemical reactions necessitate the presence of gases at pressures ranging from millibar to bars. What is the structure and chemical nature of the species formed on the surface in equilibrium with such gases? As we shall illustrate in this review, APPES provides a much needed electron spectroscopy to analyze surface electronic structure and composition in equilibrium with gases.« less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.surfrep.2008.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 672 citations 672 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.surfrep.2008.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United StatesPublisher:Elsevier BV Authors: Salmeron, Miquel; Schlogl, Robert;Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy rangemore » from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of electrons with matter also prevents them from traveling long distances unscattered in gas environments. Above the millibar pressure range this distance is reduced to less that a millimeter, effectively preventing its use in the most relevant environments, usually between millibars and atmospheric pressures. There is therefore a large gap of several orders of magnitude where information about surfaces is scarce because these powerful electron spectroscopies cannot operate. One characteristic of surfaces in ambient pressure environments is that they are covered by dense layers of molecules, even when their binding energy is weak. Water for example is known to form layers several molecules thick at room temperature in humid environments. Metals readily form oxide films several layers thick in oxygen atmospheres. Dense layers of adsorbed molecules can also be produced in ultra high vacuum, often by the simple and expedient method of cooling the sample to cryogenic temperatures. A large amount of data has been obtained in the past in UHV by surface scientists using this method. While this has provided valuable information it begs the question of whether the structures formed in this manner represent equilibrium structures or metastable ones, kinetically trapped due to high activation energies that cannot be overcome at low temperature. From a thermodynamic point of view is interesting to consider the entropic contribution to the Gibbs free energy, which we can call 'the pressure factor', equal to kT.logP. This factor amounts to a sizeable 0.3 eV difference at room temperature between UHV (<10{sup -8} Pascal) and atmospheric pressures. Such change if free energy can definitely result in changes in surface structure and stability. Entire areas of the phase diagram are out of reach due to the pressure gap. Even when cooling is not necessary, many surface treatments and most chemical reactions necessitate the presence of gases at pressures ranging from millibar to bars. What is the structure and chemical nature of the species formed on the surface in equilibrium with such gases? As we shall illustrate in this review, APPES provides a much needed electron spectroscopy to analyze surface electronic structure and composition in equilibrium with gases.« less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.surfrep.2008.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 672 citations 672 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.surfrep.2008.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type , Preprint 2011 Germany, United StatesPublisher:Office of Scientific and Technical Information (OSTI) Paget, Mia; Seacrest, Tom; Widergren, Steve; Balducci, Patrick; Orrell, Alice; Bloyd, Cary;doi: 10.2172/1013938
This report addresses the Asia-Pacific Economic Cooperation (APEC) organization’s desire to minimize the learning time required to understand the implications of smart-grid concepts so APEC members can advance their thinking in a timely manner and advance strategies regarding smart approaches that can help meet their environmental-sustainability and energy-efficiency policy goals. As significant investments are needed to grow and maintain the electricity infrastructure, consideration needs to be given to how information and communications technologies can be applied to electricity infrastructure decisions that not only meet traditional needs for basic service and reliability, but also provide the flexibility for a changing the mix of generation sources with sensitivity to environmental and societal impacts.
Research Papers in E... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1013938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1013938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type , Preprint 2011 Germany, United StatesPublisher:Office of Scientific and Technical Information (OSTI) Paget, Mia; Seacrest, Tom; Widergren, Steve; Balducci, Patrick; Orrell, Alice; Bloyd, Cary;doi: 10.2172/1013938
This report addresses the Asia-Pacific Economic Cooperation (APEC) organization’s desire to minimize the learning time required to understand the implications of smart-grid concepts so APEC members can advance their thinking in a timely manner and advance strategies regarding smart approaches that can help meet their environmental-sustainability and energy-efficiency policy goals. As significant investments are needed to grow and maintain the electricity infrastructure, consideration needs to be given to how information and communications technologies can be applied to electricity infrastructure decisions that not only meet traditional needs for basic service and reliability, but also provide the flexibility for a changing the mix of generation sources with sensitivity to environmental and societal impacts.
Research Papers in E... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1013938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1013938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2010 United States, Costa Rica, Costa RicaPublisher:Public Library of Science (PLoS) Funded by:NSF | CAREER: Exploring Mutuali..., NSF | Genome Sequencing of Mutu..., NSF | `MO: Exploring the Symbio...NSF| CAREER: Exploring Mutualism Stability in a Community Context ,NSF| Genome Sequencing of Mutualistic Bacteria Associated With Fungus-growing Ants ,NSF| `MO: Exploring the Symbiotic Association Between Tropical Social Insects and ActinomycetesAuthors: Timothy T. Harkins; Timothy J. Donohue; Timothy J. Donohue; Susannah G. Tringe; +24 AuthorsTimothy T. Harkins; Timothy J. Donohue; Timothy J. Donohue; Susannah G. Tringe; Clifton E. Foster; Clifton E. Foster; Jarrod J. Scott; Jarrod J. Scott; Jarrod J. Scott; Cameron R. Currie; Cameron R. Currie; Cameron R. Currie; Frank O. Aylward; Frank O. Aylward; Steven C. Slater; Lewyn Li; Adrián A. Pinto-Tomás; Paul J. Weimer; Lynne Goodwin; Lynne Goodwin; Markus Pauly; Markus Pauly; Pascal Bouffard; Sandra M. Adams; Sandra M. Adams; Kerrie Barry; Garret Suen; Jolene Osterberger;Les herbivores peuvent avoir un accès indirect au carbone récalcitrant présent dans les parois des cellules végétales grâce à des associations symbiotiques avec des microbes lignocellulolytiques. Un exemple paradigmatique est la fourmi coupeuse de feuilles (Tribu : Attini), qui utilise des feuilles fraîches pour cultiver un champignon pour se nourrir dans des jardins spécialisés. En utilisant une combinaison d'analyses de la composition du sucre, de la métagénomique et du séquençage du génome entier, nous révélons que le microbiome du champignon de jardin des fourmis coupeuses de feuilles est composé d'une communauté diversifiée de bactéries ayant une capacité élevée de dégradation de la biomasse végétale. La comparaison du profil enzymatique prédit de dégradation des glucides de ce microbiome avec d'autres métagénomes montre une similitude plus étroite avec le rumen bovin, indiquant une convergence évolutive du potentiel de dégradation de la biomasse végétale entre deux animaux herbivores importants. La caractérisation génomique et physiologique de deux bactéries dominantes dans le microbiome fongique du jardin fournit des preuves de leur capacité à dégrader la cellulose. Compte tenu de l'intérêt récent pour les biocarburants cellulosiques, comprendre comment la dégradation rapide et à grande échelle de la biomasse végétale se produit chez un insecte herbivore très évolué est particulièrement important pour la bioénergie. Los herbívoros pueden obtener acceso indirecto al carbono recalcitrante presente en las paredes celulares de las plantas a través de asociaciones simbióticas con microbios lignocelulolíticos. Un ejemplo paradigmático es la hormiga cortadora de hojas (Tribu: Attini), que utiliza hojas frescas para cultivar un hongo como alimento en jardines especializados. Usando una combinación de análisis de composición de azúcar, metagenómica y secuenciación del genoma completo, revelamos que el microbioma del jardín de hongos de las hormigas cortadoras de hojas está compuesto por una comunidad diversa de bacterias con alta capacidad de degradación de la biomasa vegetal. La comparación del perfil enzimático de degradación de carbohidratos predicho de este microbioma con otros metagenomas muestra la mayor similitud con el rumen bovino, lo que indica una convergencia evolutiva del potencial de degradación de la biomasa vegetal entre dos animales herbívoros importantes. La caracterización genómica y fisiológica de dos bacterias dominantes en el microbioma del jardín de hongos proporciona evidencia de su capacidad para degradar la celulosa. Dado el reciente interés en los biocombustibles celulósicos, la comprensión de cómo se produce la degradación rápida y a gran escala de la biomasa vegetal en un insecto herbívoro altamente evolucionado es de particular relevancia para la bioenergía. Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy. يمكن للحيوانات العاشبة الوصول بشكل غير مباشر إلى الكربون المتمرد الموجود في جدران الخلايا النباتية من خلال الارتباطات التكافلية مع الميكروبات المحللة للخلايا. ومن الأمثلة النموذجية على ذلك نملة قطع الأوراق (القبيلة: أتيني)، التي تستخدم أوراقًا طازجة لزراعة فطر للطعام في الحدائق المتخصصة. باستخدام مزيج من تحليلات تركيبة السكر، وعلم الوراثة، وتسلسل الجينوم الكامل، نكشف أن ميكروبيوم حديقة الفطريات من النمل القاطع للأوراق يتكون من مجموعة متنوعة من البكتيريا ذات القدرة العالية على تحلل الكتلة الحيوية للنبات. تُظهر مقارنة ملف تعريف إنزيم تحلل الكربوهيدرات المتوقع لهذا الميكروبيوم مع الميتاجينومات الأخرى أقرب تشابه مع الكرش البقري، مما يشير إلى التقارب التطوري لإمكانات تحلل الكتلة الحيوية النباتية بين اثنين من الحيوانات العاشبة المهمة. يوفر التوصيف الجيني والفسيولوجي لبكتيريا مهيمنة في ميكروبيوم حديقة الفطريات دليلاً على قدرتها على تحلل السليلوز. بالنظر إلى الاهتمام الأخير بالوقود الحيوي السليولوزي، فإن فهم كيفية حدوث تدهور الكتلة الحيوية النباتية على نطاق واسع وسريع في الحيوانات العاشبة الحشرية المتطورة للغاية له أهمية خاصة بالنسبة للطاقة الحيوية.
PLoS Genetics arrow_drop_down Universidad de Costa Rica: Repositorio KérwáArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pgen.1001129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 208 citations 208 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert PLoS Genetics arrow_drop_down Universidad de Costa Rica: Repositorio KérwáArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pgen.1001129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2010 United States, Costa Rica, Costa RicaPublisher:Public Library of Science (PLoS) Funded by:NSF | CAREER: Exploring Mutuali..., NSF | Genome Sequencing of Mutu..., NSF | `MO: Exploring the Symbio...NSF| CAREER: Exploring Mutualism Stability in a Community Context ,NSF| Genome Sequencing of Mutualistic Bacteria Associated With Fungus-growing Ants ,NSF| `MO: Exploring the Symbiotic Association Between Tropical Social Insects and ActinomycetesAuthors: Timothy T. Harkins; Timothy J. Donohue; Timothy J. Donohue; Susannah G. Tringe; +24 AuthorsTimothy T. Harkins; Timothy J. Donohue; Timothy J. Donohue; Susannah G. Tringe; Clifton E. Foster; Clifton E. Foster; Jarrod J. Scott; Jarrod J. Scott; Jarrod J. Scott; Cameron R. Currie; Cameron R. Currie; Cameron R. Currie; Frank O. Aylward; Frank O. Aylward; Steven C. Slater; Lewyn Li; Adrián A. Pinto-Tomás; Paul J. Weimer; Lynne Goodwin; Lynne Goodwin; Markus Pauly; Markus Pauly; Pascal Bouffard; Sandra M. Adams; Sandra M. Adams; Kerrie Barry; Garret Suen; Jolene Osterberger;Les herbivores peuvent avoir un accès indirect au carbone récalcitrant présent dans les parois des cellules végétales grâce à des associations symbiotiques avec des microbes lignocellulolytiques. Un exemple paradigmatique est la fourmi coupeuse de feuilles (Tribu : Attini), qui utilise des feuilles fraîches pour cultiver un champignon pour se nourrir dans des jardins spécialisés. En utilisant une combinaison d'analyses de la composition du sucre, de la métagénomique et du séquençage du génome entier, nous révélons que le microbiome du champignon de jardin des fourmis coupeuses de feuilles est composé d'une communauté diversifiée de bactéries ayant une capacité élevée de dégradation de la biomasse végétale. La comparaison du profil enzymatique prédit de dégradation des glucides de ce microbiome avec d'autres métagénomes montre une similitude plus étroite avec le rumen bovin, indiquant une convergence évolutive du potentiel de dégradation de la biomasse végétale entre deux animaux herbivores importants. La caractérisation génomique et physiologique de deux bactéries dominantes dans le microbiome fongique du jardin fournit des preuves de leur capacité à dégrader la cellulose. Compte tenu de l'intérêt récent pour les biocarburants cellulosiques, comprendre comment la dégradation rapide et à grande échelle de la biomasse végétale se produit chez un insecte herbivore très évolué est particulièrement important pour la bioénergie. Los herbívoros pueden obtener acceso indirecto al carbono recalcitrante presente en las paredes celulares de las plantas a través de asociaciones simbióticas con microbios lignocelulolíticos. Un ejemplo paradigmático es la hormiga cortadora de hojas (Tribu: Attini), que utiliza hojas frescas para cultivar un hongo como alimento en jardines especializados. Usando una combinación de análisis de composición de azúcar, metagenómica y secuenciación del genoma completo, revelamos que el microbioma del jardín de hongos de las hormigas cortadoras de hojas está compuesto por una comunidad diversa de bacterias con alta capacidad de degradación de la biomasa vegetal. La comparación del perfil enzimático de degradación de carbohidratos predicho de este microbioma con otros metagenomas muestra la mayor similitud con el rumen bovino, lo que indica una convergencia evolutiva del potencial de degradación de la biomasa vegetal entre dos animales herbívoros importantes. La caracterización genómica y fisiológica de dos bacterias dominantes en el microbioma del jardín de hongos proporciona evidencia de su capacidad para degradar la celulosa. Dado el reciente interés en los biocombustibles celulósicos, la comprensión de cómo se produce la degradación rápida y a gran escala de la biomasa vegetal en un insecto herbívoro altamente evolucionado es de particular relevancia para la bioenergía. Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy. يمكن للحيوانات العاشبة الوصول بشكل غير مباشر إلى الكربون المتمرد الموجود في جدران الخلايا النباتية من خلال الارتباطات التكافلية مع الميكروبات المحللة للخلايا. ومن الأمثلة النموذجية على ذلك نملة قطع الأوراق (القبيلة: أتيني)، التي تستخدم أوراقًا طازجة لزراعة فطر للطعام في الحدائق المتخصصة. باستخدام مزيج من تحليلات تركيبة السكر، وعلم الوراثة، وتسلسل الجينوم الكامل، نكشف أن ميكروبيوم حديقة الفطريات من النمل القاطع للأوراق يتكون من مجموعة متنوعة من البكتيريا ذات القدرة العالية على تحلل الكتلة الحيوية للنبات. تُظهر مقارنة ملف تعريف إنزيم تحلل الكربوهيدرات المتوقع لهذا الميكروبيوم مع الميتاجينومات الأخرى أقرب تشابه مع الكرش البقري، مما يشير إلى التقارب التطوري لإمكانات تحلل الكتلة الحيوية النباتية بين اثنين من الحيوانات العاشبة المهمة. يوفر التوصيف الجيني والفسيولوجي لبكتيريا مهيمنة في ميكروبيوم حديقة الفطريات دليلاً على قدرتها على تحلل السليلوز. بالنظر إلى الاهتمام الأخير بالوقود الحيوي السليولوزي، فإن فهم كيفية حدوث تدهور الكتلة الحيوية النباتية على نطاق واسع وسريع في الحيوانات العاشبة الحشرية المتطورة للغاية له أهمية خاصة بالنسبة للطاقة الحيوية.
PLoS Genetics arrow_drop_down Universidad de Costa Rica: Repositorio KérwáArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pgen.1001129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 208 citations 208 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert PLoS Genetics arrow_drop_down Universidad de Costa Rica: Repositorio KérwáArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pgen.1001129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 United States, Germany, United StatesPublisher:Elsevier BV Authors: Friedmann, S J; Dooley, J; Held, H; Edenhofer, O;The costs for carbon dioxide (CO2) capture and storage (CCS) in geologic formations is estimated to be $6–75/t CO2 .I n the absence of a mandate to reduce greenhouse gas emissions or some other significant incentive for CCS deployment, this cost effectively limits CCS technology deployment to small niche markets and stymies the potential for further technological development through learning by doing until these disincentives for the free venting of CO2 are in place. By far, the largest current fraction of these costs is capture (including compression and dehydration), commonly estimated at $25–60/t CO2 for power plant applications, followed by CO2 transport and storage, estimated at $0–15/t CO2. Of the storage costs, only a small fraction of the cost will go to accurate geological characterization. These one time costs are probably on the order of $0.1/t CO2 or less as these costs are spread out over the many millions of tons likely to be injected into a field over many decades. Geologic assessments include information central to capacity prediction, risk estimation for the target intervals and development facilities engineering. Since assessment costs are roughly two orders of magnitude smaller than capture costs, and assessment products carry other tangible societal benefits, such as improved accuracy in fossil fuel and ground water reserves estimates, government or joint private–public funding of major assessment initiatives should underpin early policy choices regarding CO2 storage deployment and should serve as a point of entry for policy makers and regulators. Early assessment is also likely to improve the knowledge base upon which the first commercial CCS deployments will rest. 2005 Elsevier Ltd. All rights reserved.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2005.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2005.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 United States, Germany, United StatesPublisher:Elsevier BV Authors: Friedmann, S J; Dooley, J; Held, H; Edenhofer, O;The costs for carbon dioxide (CO2) capture and storage (CCS) in geologic formations is estimated to be $6–75/t CO2 .I n the absence of a mandate to reduce greenhouse gas emissions or some other significant incentive for CCS deployment, this cost effectively limits CCS technology deployment to small niche markets and stymies the potential for further technological development through learning by doing until these disincentives for the free venting of CO2 are in place. By far, the largest current fraction of these costs is capture (including compression and dehydration), commonly estimated at $25–60/t CO2 for power plant applications, followed by CO2 transport and storage, estimated at $0–15/t CO2. Of the storage costs, only a small fraction of the cost will go to accurate geological characterization. These one time costs are probably on the order of $0.1/t CO2 or less as these costs are spread out over the many millions of tons likely to be injected into a field over many decades. Geologic assessments include information central to capacity prediction, risk estimation for the target intervals and development facilities engineering. Since assessment costs are roughly two orders of magnitude smaller than capture costs, and assessment products carry other tangible societal benefits, such as improved accuracy in fossil fuel and ground water reserves estimates, government or joint private–public funding of major assessment initiatives should underpin early policy choices regarding CO2 storage deployment and should serve as a point of entry for policy makers and regulators. Early assessment is also likely to improve the knowledge base upon which the first commercial CCS deployments will rest. 2005 Elsevier Ltd. All rights reserved.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2005.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2005.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Part of book or chapter of book , Article 2010 Spain, Spain, United StatesPublisher:IEEE Momber, Ilan; Gómez San Román, Tomás; Venkataramanan, Giri; Stadler, Michael; Beer, Sebastian; Lai, Judy; Marnay, Chris; Battaglia, Vincent;handle: 11531/5594
Capítulos en libros It is generally believed that plug-in electric vehicles (PEVs) offer environmental and energy security advantages compared to conventional vehicles. Policies are stimulating electric transportation deployment, and PEV adoption may grow significantly. New technology and business models are being developed to organize the PEV interface and their interaction with the wider grid. This paper analyzes the PEVs integration into a building s Energy Management System (EMS), differentiating between vehicle to macrogrid (V2M) and vehicle to microgrid (V2m) applications. This relationship is modeled by the Distributed Energy Resources Customer Adoption Model (DER-CAM), which finds optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results derive battery value to the building and the possibility of a contractual affiliation sharing the benefit. Under simple annual fixed payments and energy exchange agreements, vehicles are primarily used to avoid peak demand charges supplying cheaper off-peak electricity to the building during workdays. info:eu-repo/semantics/publishedVersion
https://digital.libr... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAPart of book or chapter of book . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pes.2010.5589485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://digital.libr... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAPart of book or chapter of book . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pes.2010.5589485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Part of book or chapter of book , Article 2010 Spain, Spain, United StatesPublisher:IEEE Momber, Ilan; Gómez San Román, Tomás; Venkataramanan, Giri; Stadler, Michael; Beer, Sebastian; Lai, Judy; Marnay, Chris; Battaglia, Vincent;handle: 11531/5594
Capítulos en libros It is generally believed that plug-in electric vehicles (PEVs) offer environmental and energy security advantages compared to conventional vehicles. Policies are stimulating electric transportation deployment, and PEV adoption may grow significantly. New technology and business models are being developed to organize the PEV interface and their interaction with the wider grid. This paper analyzes the PEVs integration into a building s Energy Management System (EMS), differentiating between vehicle to macrogrid (V2M) and vehicle to microgrid (V2m) applications. This relationship is modeled by the Distributed Energy Resources Customer Adoption Model (DER-CAM), which finds optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results derive battery value to the building and the possibility of a contractual affiliation sharing the benefit. Under simple annual fixed payments and energy exchange agreements, vehicles are primarily used to avoid peak demand charges supplying cheaper off-peak electricity to the building during workdays. info:eu-repo/semantics/publishedVersion
https://digital.libr... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAPart of book or chapter of book . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pes.2010.5589485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://digital.libr... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAPart of book or chapter of book . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pes.2010.5589485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu