- home
- Advanced Search
- Energy Research
- 2021-2025
- Embargo
- DE
- Energy Research
- 2021-2025
- Embargo
- DE
description Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:AIP Publishing Authors:Yiwei Hu;
Yiwei Hu
Yiwei Hu in OpenAIREBenlei Wang;
Benlei Wang
Benlei Wang in OpenAIREZhanghua Wu;
Jianying Hu; +2 AuthorsZhanghua Wu
Zhanghua Wu in OpenAIREYiwei Hu;
Yiwei Hu
Yiwei Hu in OpenAIREBenlei Wang;
Benlei Wang
Benlei Wang in OpenAIREZhanghua Wu;
Jianying Hu;Zhanghua Wu
Zhanghua Wu in OpenAIREErcang Luo;
Ercang Luo
Ercang Luo in OpenAIREJingyuan Xu;
Jingyuan Xu
Jingyuan Xu in OpenAIREThermoacoustic technology emerges as a sustainable and low-carbon method for energy conversion, leveraging environmentally friendly working mediums and independence from electricity. This study presents the development of a multimode heat-driven thermoacoustic system designed to utilize medium/low-grade heat sources for room-temperature cooling and heating. We constructed both a simulation model and an experimental prototype for a single-unit direct-coupled thermoacoustic system, exploring its performance in heating-only, cooling-only, and hybrid heating and cooling modes. Internal characteristic analysis including an examination of internal exergy loss and a distribution analysis of key parameters was first conducted in the hybrid cooling and heating mode. The results indicated a positive-focused traveling-wave-dominant acoustic field within the thermoacoustic core unit, enhancing energy conversion efficiency. The output system performance was subsequently tested under different working conditions in the heating-only and cooling-only modes. A maximum output heating power of 2.3 kW and a maximum COPh of 1.41 were observed in the heating-only mode. Meanwhile, a cooling power of 748 W and a COPc of 0.4 were obtained in the typical cooling condition at 7 °C when operating in cooling-only mode. These findings underscore the promising potential of thermoacoustic systems for efficiently utilizing medium/low-grade heat sources for cooling and/or heating applications in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0196770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0196770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:AIP Publishing Authors:Yiwei Hu;
Yiwei Hu
Yiwei Hu in OpenAIREBenlei Wang;
Benlei Wang
Benlei Wang in OpenAIREZhanghua Wu;
Jianying Hu; +2 AuthorsZhanghua Wu
Zhanghua Wu in OpenAIREYiwei Hu;
Yiwei Hu
Yiwei Hu in OpenAIREBenlei Wang;
Benlei Wang
Benlei Wang in OpenAIREZhanghua Wu;
Jianying Hu;Zhanghua Wu
Zhanghua Wu in OpenAIREErcang Luo;
Ercang Luo
Ercang Luo in OpenAIREJingyuan Xu;
Jingyuan Xu
Jingyuan Xu in OpenAIREThermoacoustic technology emerges as a sustainable and low-carbon method for energy conversion, leveraging environmentally friendly working mediums and independence from electricity. This study presents the development of a multimode heat-driven thermoacoustic system designed to utilize medium/low-grade heat sources for room-temperature cooling and heating. We constructed both a simulation model and an experimental prototype for a single-unit direct-coupled thermoacoustic system, exploring its performance in heating-only, cooling-only, and hybrid heating and cooling modes. Internal characteristic analysis including an examination of internal exergy loss and a distribution analysis of key parameters was first conducted in the hybrid cooling and heating mode. The results indicated a positive-focused traveling-wave-dominant acoustic field within the thermoacoustic core unit, enhancing energy conversion efficiency. The output system performance was subsequently tested under different working conditions in the heating-only and cooling-only modes. A maximum output heating power of 2.3 kW and a maximum COPh of 1.41 were observed in the heating-only mode. Meanwhile, a cooling power of 748 W and a COPc of 0.4 were obtained in the typical cooling condition at 7 °C when operating in cooling-only mode. These findings underscore the promising potential of thermoacoustic systems for efficiently utilizing medium/low-grade heat sources for cooling and/or heating applications in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0196770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0196770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Netherlands, Netherlands, Germany, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | EVOCLIMEC| EVOCLIMAuthors:Franziska Klein;
Franziska Klein
Franziska Klein in OpenAIREJeroen van den Bergh;
Joël Foramitti; Théo Konc;Jeroen van den Bergh
Jeroen van den Bergh in OpenAIREEnvironmental tax reform (ETR), a shift from labour to carbon taxes, has been mostly modelled using general equilibrium (GE) analysis. Since a low-carbon transition will require deep transformations, one will also have to address out-of-equilibrium dynamics and increased agent heterogeneity. Unlike GE models, agent-based models (ABMs) are well equipped to deal with this. We therefore replicate a recent GE model for ETR using an agent-based approach. This process, known as "agentization", allows assessing similarities as well as differences in policy impacts between the two modelling approaches, in turn providing a test of the robustness of the GE results. We find that the agent-based model is able to replicate many results of the general equilibrium analysis, while revealing strengths and weaknesses of both model types. We discuss concrete implementation steps and difficulties experienced in the GE-ABM translation process. We illustrate the potential of ABM by extending the model in several directions. We show that heterogeneous subsistence consumption can increase the space for combining a double dividend with an equity goal, and that overall macro-economic results can conceal important distributional impacts when green preferences and labour supply elasticities vary.
Research@WUR arrow_drop_down Environmental and Resource EconomicsArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefEnvironmental and Resource EconomicsArticle . 2024Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10640-024-00937-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Environmental and Resource EconomicsArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefEnvironmental and Resource EconomicsArticle . 2024Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10640-024-00937-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Netherlands, Netherlands, Germany, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | EVOCLIMEC| EVOCLIMAuthors:Franziska Klein;
Franziska Klein
Franziska Klein in OpenAIREJeroen van den Bergh;
Joël Foramitti; Théo Konc;Jeroen van den Bergh
Jeroen van den Bergh in OpenAIREEnvironmental tax reform (ETR), a shift from labour to carbon taxes, has been mostly modelled using general equilibrium (GE) analysis. Since a low-carbon transition will require deep transformations, one will also have to address out-of-equilibrium dynamics and increased agent heterogeneity. Unlike GE models, agent-based models (ABMs) are well equipped to deal with this. We therefore replicate a recent GE model for ETR using an agent-based approach. This process, known as "agentization", allows assessing similarities as well as differences in policy impacts between the two modelling approaches, in turn providing a test of the robustness of the GE results. We find that the agent-based model is able to replicate many results of the general equilibrium analysis, while revealing strengths and weaknesses of both model types. We discuss concrete implementation steps and difficulties experienced in the GE-ABM translation process. We illustrate the potential of ABM by extending the model in several directions. We show that heterogeneous subsistence consumption can increase the space for combining a double dividend with an equity goal, and that overall macro-economic results can conceal important distributional impacts when green preferences and labour supply elasticities vary.
Research@WUR arrow_drop_down Environmental and Resource EconomicsArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefEnvironmental and Resource EconomicsArticle . 2024Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10640-024-00937-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Environmental and Resource EconomicsArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefEnvironmental and Resource EconomicsArticle . 2024Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10640-024-00937-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors:Mohammad Javad Bardi;
Mohammad Javad Bardi
Mohammad Javad Bardi in OpenAIRESergi Vinardell;
Sergi Astals;Sergi Vinardell
Sergi Vinardell in OpenAIREKonrad Koch;
Konrad Koch
Konrad Koch in OpenAIREhandle: 2117/418291
The opportunities and challenges of applying micronutrients (MiNs) in full-scale anaerobic digestion (AD) plants has been reviewed. The review discusses the underlying mechanisms and the role of different micronutrients (Fe, Ni, Co, Mo, Zn, Cu, Se) in the enhancement of AD performance, as well as their environmental and economic implications in full-scale AD systems. Bioavailability is a key factor affecting the effectiveness of micronutrients application on the biochemical aspects of AD. Accordingly, the technical aspects of AD with a direct impact on bioavailability have been identified and critically addressed. Mono-supplementation is not the most favorable strategy to increase micronutrient bioavailability due to limited solubility, formation of insoluble compounds, interaction with other compounds, and specific microbial requirements. Nonetheless, co-supplementation can increase the bioavailability due to the simultaneous synergetic effects of co-micronutrients supplementation on the biochemical aspects of AD. However, the inconsistency of reported lab-scale results and the lack of protocols or guidelines for analyzing the bioavailability of micronutrients limit results interpretation and full-scale application. The environmental and economic implications of these micronutrients are other critical factors that need further research. The economic results showed that the mono-supplementation can be economically favorable when a methane enhancement of 20% is achieved. Co-supplementation of micronutrients is the most economically feasible option since this strategy allows reducing the total dosage of micronutrients when compared with mono-supplementation. The authors are grateful for the scholarship from the TUM SEED Center of the Technical University of Munich, which is part of the DAAD (German Academic Exchange Service) program “exceed” supported by DAAD as well as the German Federal Ministry for Economic Cooperation and Development (BMZ) and in cooperation with the hosting Chair of Urban Water System Engineering of TUM. Sergi Astals is thankful to the Spanish Ministry of Science, Innovation and Universities for his Ramon y Cajal. Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 16visibility views 16 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors:Mohammad Javad Bardi;
Mohammad Javad Bardi
Mohammad Javad Bardi in OpenAIRESergi Vinardell;
Sergi Astals;Sergi Vinardell
Sergi Vinardell in OpenAIREKonrad Koch;
Konrad Koch
Konrad Koch in OpenAIREhandle: 2117/418291
The opportunities and challenges of applying micronutrients (MiNs) in full-scale anaerobic digestion (AD) plants has been reviewed. The review discusses the underlying mechanisms and the role of different micronutrients (Fe, Ni, Co, Mo, Zn, Cu, Se) in the enhancement of AD performance, as well as their environmental and economic implications in full-scale AD systems. Bioavailability is a key factor affecting the effectiveness of micronutrients application on the biochemical aspects of AD. Accordingly, the technical aspects of AD with a direct impact on bioavailability have been identified and critically addressed. Mono-supplementation is not the most favorable strategy to increase micronutrient bioavailability due to limited solubility, formation of insoluble compounds, interaction with other compounds, and specific microbial requirements. Nonetheless, co-supplementation can increase the bioavailability due to the simultaneous synergetic effects of co-micronutrients supplementation on the biochemical aspects of AD. However, the inconsistency of reported lab-scale results and the lack of protocols or guidelines for analyzing the bioavailability of micronutrients limit results interpretation and full-scale application. The environmental and economic implications of these micronutrients are other critical factors that need further research. The economic results showed that the mono-supplementation can be economically favorable when a methane enhancement of 20% is achieved. Co-supplementation of micronutrients is the most economically feasible option since this strategy allows reducing the total dosage of micronutrients when compared with mono-supplementation. The authors are grateful for the scholarship from the TUM SEED Center of the Technical University of Munich, which is part of the DAAD (German Academic Exchange Service) program “exceed” supported by DAAD as well as the German Federal Ministry for Economic Cooperation and Development (BMZ) and in cooperation with the hosting Chair of Urban Water System Engineering of TUM. Sergi Astals is thankful to the Spanish Ministry of Science, Innovation and Universities for his Ramon y Cajal. Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 16visibility views 16 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Authors:Julian M. Allwood;
Julian M. Allwood
Julian M. Allwood in OpenAIREZenaida Sobral Mourão;
Jochen Linssen; D. Dennis Konadu; +9 AuthorsZenaida Sobral Mourão
Zenaida Sobral Mourão in OpenAIREJulian M. Allwood;
Julian M. Allwood
Julian M. Allwood in OpenAIREZenaida Sobral Mourão;
Jochen Linssen; D. Dennis Konadu;Zenaida Sobral Mourão
Zenaida Sobral Mourão in OpenAIREHeidi Heinrichs;
Martin Robinius; Stefan Vögele; Wilhelm Kuckshinrichs; Bastian Gillessen; S. Venghaus; S. Venghaus; Detlef Stolten; Detlef Stolten;Heidi Heinrichs
Heidi Heinrichs in OpenAIREAbstract While it is generally accepted that our fossil fuel-dominated energy systems must undergo a sustainable transition, researchers have often neglected the potential impacts of this on water and land systems. However, if unintended environmental impacts from this process are to be avoided, understanding its implications for land use and water demand is of crucial importance. Moreover, developed countries may induce environmental stress beyond their own borders, for instance through extensive imports of bioenergy. In this paper, Germany serves as an example of a developed country with ambitious energy transformation targets. Results show that in particular, the politically-driven aspiration for more organic farming in Germany results in a higher import quota of biomass, especially biofuels. These imports translate into land demand, which will exceed the area available in Germany for bioenergy by a factor of 3–6.5 by 2050. As this will likely bring about land stress in the respective exporting countries, this effect of the German energy transformation ought to be limited as much as possible. In contrast, domestic water demand for the German energy system is expected to decrease by over 80% through 2050 due to declining numbers of fossil-fuelled power plants. However, possible future irrigation needs for bioenergy may reduce or even counterbalance this decreasing effect. In addition, energy policy targets specific to the transport sector show a high sensitivity to biomass imports. In particular, the sector-specific target for greenhouse gas reductions will seemingly promote biomass imports, leading to the above-described challenges in the pursuit of sustainability.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Authors:Julian M. Allwood;
Julian M. Allwood
Julian M. Allwood in OpenAIREZenaida Sobral Mourão;
Jochen Linssen; D. Dennis Konadu; +9 AuthorsZenaida Sobral Mourão
Zenaida Sobral Mourão in OpenAIREJulian M. Allwood;
Julian M. Allwood
Julian M. Allwood in OpenAIREZenaida Sobral Mourão;
Jochen Linssen; D. Dennis Konadu;Zenaida Sobral Mourão
Zenaida Sobral Mourão in OpenAIREHeidi Heinrichs;
Martin Robinius; Stefan Vögele; Wilhelm Kuckshinrichs; Bastian Gillessen; S. Venghaus; S. Venghaus; Detlef Stolten; Detlef Stolten;Heidi Heinrichs
Heidi Heinrichs in OpenAIREAbstract While it is generally accepted that our fossil fuel-dominated energy systems must undergo a sustainable transition, researchers have often neglected the potential impacts of this on water and land systems. However, if unintended environmental impacts from this process are to be avoided, understanding its implications for land use and water demand is of crucial importance. Moreover, developed countries may induce environmental stress beyond their own borders, for instance through extensive imports of bioenergy. In this paper, Germany serves as an example of a developed country with ambitious energy transformation targets. Results show that in particular, the politically-driven aspiration for more organic farming in Germany results in a higher import quota of biomass, especially biofuels. These imports translate into land demand, which will exceed the area available in Germany for bioenergy by a factor of 3–6.5 by 2050. As this will likely bring about land stress in the respective exporting countries, this effect of the German energy transformation ought to be limited as much as possible. In contrast, domestic water demand for the German energy system is expected to decrease by over 80% through 2050 due to declining numbers of fossil-fuelled power plants. However, possible future irrigation needs for bioenergy may reduce or even counterbalance this decreasing effect. In addition, energy policy targets specific to the transport sector show a high sensitivity to biomass imports. In particular, the sector-specific target for greenhouse gas reductions will seemingly promote biomass imports, leading to the above-described challenges in the pursuit of sustainability.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Authors:Leal, W;
Frizzo, K;
Frizzo, K
Frizzo, K in OpenAIREEustachio, JHPP;
Eustachio, JHPP
Eustachio, JHPP in OpenAIRETsani, S;
+1 AuthorsTsani, S
Tsani, S in OpenAIRELeal, W;
Frizzo, K;
Frizzo, K
Frizzo, K in OpenAIREEustachio, JHPP;
Eustachio, JHPP
Eustachio, JHPP in OpenAIRETsani, S;
Tsani, S
Tsani, S in OpenAIREÖzuyar, PG;
Özuyar, PG
Özuyar, PG in OpenAIREdoi: 10.1002/sd.2796
AbstractThis study describes the relationships between climate change and the concept of a circular economy, outlining the need for synergies within a company's context. It reports on a bibliometric analysis of the relations between climate change and circular economy, and it provides evidence and assessments based on a sample of 11 large companies in the chemical industry. The results show that there is a concern in the academic literature to discuss circular economy efforts to combat climate change, reduce carbon emissions, strengthen the supply chain, assess the life cycle of products, their environmental impact, and waste management, and identify barriers to implementing the circular economy. In addition, there is a close association between the CE concept and tackling climate change in how organisations report their practices to the stakeholders, in considering concepts of recycling, reusing, adopting renewable energy, seeking resource efficiency, and rethinking strategies. The study concludes by providing some suggestions that may assist companies in intensifying their efforts to reduce their carbon footprint, combining them with more circular business models. Efforts from interested stakeholders must focus on defining CE in a more detailed manner, as well as its implementation at the different stages of production and consumption, especially in operations for which no uniform approach or common practice can be established. In this context, implications for positive social and environmental impacts by promoting a faster and more proactive climate transition in the chemical sector are presented. The novelty of this paper relies on the fact that it advances knowledge on matters related to the circular economy under a climate change context, identifying current trends and suggesting some measures which may optimise current business practices of the chemical sector.
e-space at Mancheste... arrow_drop_down e-space at Manchester Metropolitan UniversityArticle . 2024Data sources: e-space at Manchester Metropolitan UniversitySustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert e-space at Mancheste... arrow_drop_down e-space at Manchester Metropolitan UniversityArticle . 2024Data sources: e-space at Manchester Metropolitan UniversitySustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Authors:Leal, W;
Frizzo, K;
Frizzo, K
Frizzo, K in OpenAIREEustachio, JHPP;
Eustachio, JHPP
Eustachio, JHPP in OpenAIRETsani, S;
+1 AuthorsTsani, S
Tsani, S in OpenAIRELeal, W;
Frizzo, K;
Frizzo, K
Frizzo, K in OpenAIREEustachio, JHPP;
Eustachio, JHPP
Eustachio, JHPP in OpenAIRETsani, S;
Tsani, S
Tsani, S in OpenAIREÖzuyar, PG;
Özuyar, PG
Özuyar, PG in OpenAIREdoi: 10.1002/sd.2796
AbstractThis study describes the relationships between climate change and the concept of a circular economy, outlining the need for synergies within a company's context. It reports on a bibliometric analysis of the relations between climate change and circular economy, and it provides evidence and assessments based on a sample of 11 large companies in the chemical industry. The results show that there is a concern in the academic literature to discuss circular economy efforts to combat climate change, reduce carbon emissions, strengthen the supply chain, assess the life cycle of products, their environmental impact, and waste management, and identify barriers to implementing the circular economy. In addition, there is a close association between the CE concept and tackling climate change in how organisations report their practices to the stakeholders, in considering concepts of recycling, reusing, adopting renewable energy, seeking resource efficiency, and rethinking strategies. The study concludes by providing some suggestions that may assist companies in intensifying their efforts to reduce their carbon footprint, combining them with more circular business models. Efforts from interested stakeholders must focus on defining CE in a more detailed manner, as well as its implementation at the different stages of production and consumption, especially in operations for which no uniform approach or common practice can be established. In this context, implications for positive social and environmental impacts by promoting a faster and more proactive climate transition in the chemical sector are presented. The novelty of this paper relies on the fact that it advances knowledge on matters related to the circular economy under a climate change context, identifying current trends and suggesting some measures which may optimise current business practices of the chemical sector.
e-space at Mancheste... arrow_drop_down e-space at Manchester Metropolitan UniversityArticle . 2024Data sources: e-space at Manchester Metropolitan UniversitySustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert e-space at Mancheste... arrow_drop_down e-space at Manchester Metropolitan UniversityArticle . 2024Data sources: e-space at Manchester Metropolitan UniversitySustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | Measuring and Evaluating ...UKRI| Measuring and Evaluating Time- and Energy-use Relationships (METER)Authors:Marvin Gleue;
Jens Unterberg;Marvin Gleue
Marvin Gleue in OpenAIREAndreas Löschel;
Andreas Löschel
Andreas Löschel in OpenAIREPhilipp Grünewald;
Philipp Grünewald
Philipp Grünewald in OpenAIREAbstract The rapid uptake of renewable energy sources requires new forms of flexibility in electricity systems, including a more responsive demand-side. The social acceptability, scale and economic value of flexible demand remain subjects of conjecture. In this paper we inform this debate with a multi-methods approach using three instruments: surveys, observations and modelling. This multi-method approach brings out similarities and differences between Germany and Great Britain in relation to demand-side flexibility. Participants in both countries express a high willingness to participate in time variant tariffs, but their implementation may need to be context specific. In Germany national peak demand occurs at midday, when PV generation results in lower emission factors. Conversely, British peak demand is in the early evening when emission factors are at their highest. The differences in responses allow us to explore important technical and cultural differences affecting the need for flexibility. Germany gains most from flexibility during the daytime in summer, while flexibility in Great Britain contributes most during winter evenings. We observe high degrees of acceptability of time-variant electricity tariffs (55%) and willingness to shift demand is high, resulting in peak demand reductions of up to 14.5%. However, the resulting cost and carbon savings of these efforts is less than 2% in both countries. We conclude that short term carbon or cost savings may be less powerful motivators for load shifting measures than long term system decarbonisation.
Oxford University Re... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.102290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.102290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | Measuring and Evaluating ...UKRI| Measuring and Evaluating Time- and Energy-use Relationships (METER)Authors:Marvin Gleue;
Jens Unterberg;Marvin Gleue
Marvin Gleue in OpenAIREAndreas Löschel;
Andreas Löschel
Andreas Löschel in OpenAIREPhilipp Grünewald;
Philipp Grünewald
Philipp Grünewald in OpenAIREAbstract The rapid uptake of renewable energy sources requires new forms of flexibility in electricity systems, including a more responsive demand-side. The social acceptability, scale and economic value of flexible demand remain subjects of conjecture. In this paper we inform this debate with a multi-methods approach using three instruments: surveys, observations and modelling. This multi-method approach brings out similarities and differences between Germany and Great Britain in relation to demand-side flexibility. Participants in both countries express a high willingness to participate in time variant tariffs, but their implementation may need to be context specific. In Germany national peak demand occurs at midday, when PV generation results in lower emission factors. Conversely, British peak demand is in the early evening when emission factors are at their highest. The differences in responses allow us to explore important technical and cultural differences affecting the need for flexibility. Germany gains most from flexibility during the daytime in summer, while flexibility in Great Britain contributes most during winter evenings. We observe high degrees of acceptability of time-variant electricity tariffs (55%) and willingness to shift demand is high, resulting in peak demand reductions of up to 14.5%. However, the resulting cost and carbon savings of these efforts is less than 2% in both countries. We conclude that short term carbon or cost savings may be less powerful motivators for load shifting measures than long term system decarbonisation.
Oxford University Re... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.102290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.102290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Authors: Broska, Lisa Hanna;Abstract Behavior change towards sustainable lifestyles such as adoption of renewable energy technologies is a significant element in the fight against anthropogenic climate change. Increasingly, private households can be observed to take up different renewable energy technologies; however, the introduction of these technologies is not accompanied by a broader adoption of pro-environmental behaviors, as recent studies have shown. At the same time, group settings and social capital seem to promote the uptake of wide-ranging sustainability measures. Six case studies were conducted among different sustainable community projects in Germany to shed light on why and how broad sustainability transformation in such settings comes about. Findings suggest that successful implementation of wide-ranging sustainable measures and changes in behaviors in community settings result from motivations that originate from an interplay of social needs, social capital, social norms, and environmental concern. Strong environmental attitudes, not among all, but a critical mass of members and key individuals are necessary. The desire for community and other motives, along with social influence and social norms push individuals with low environmental concern to participate in sustainable endeavors.
Juelich Shared Elect... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.102165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.102165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Authors: Broska, Lisa Hanna;Abstract Behavior change towards sustainable lifestyles such as adoption of renewable energy technologies is a significant element in the fight against anthropogenic climate change. Increasingly, private households can be observed to take up different renewable energy technologies; however, the introduction of these technologies is not accompanied by a broader adoption of pro-environmental behaviors, as recent studies have shown. At the same time, group settings and social capital seem to promote the uptake of wide-ranging sustainability measures. Six case studies were conducted among different sustainable community projects in Germany to shed light on why and how broad sustainability transformation in such settings comes about. Findings suggest that successful implementation of wide-ranging sustainable measures and changes in behaviors in community settings result from motivations that originate from an interplay of social needs, social capital, social norms, and environmental concern. Strong environmental attitudes, not among all, but a critical mass of members and key individuals are necessary. The desire for community and other motives, along with social influence and social norms push individuals with low environmental concern to participate in sustainable endeavors.
Juelich Shared Elect... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.102165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.102165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ArgentinaPublisher:Wiley Authors:Priscila Vensaus;
Priscila Vensaus
Priscila Vensaus in OpenAIRERolando M. Caraballo;
Emiliano Tritto;Rolando M. Caraballo
Rolando M. Caraballo in OpenAIRECynthia C. Fernández;
+5 AuthorsCynthia C. Fernández
Cynthia C. Fernández in OpenAIREPriscila Vensaus;
Priscila Vensaus
Priscila Vensaus in OpenAIRERolando M. Caraballo;
Emiliano Tritto;Rolando M. Caraballo
Rolando M. Caraballo in OpenAIRECynthia C. Fernández;
Cynthia C. Fernández
Cynthia C. Fernández in OpenAIREPaula C. Angelomé;
Paula C. Angelomé
Paula C. Angelomé in OpenAIREM. Cecilia Fuertes;
M. Cecilia Fuertes
M. Cecilia Fuertes in OpenAIREFederico J. Williams;
Federico J. Williams
Federico J. Williams in OpenAIREGalo J. A. A. Soler‐Illia;
Galo J. A. A. Soler‐Illia
Galo J. A. A. Soler‐Illia in OpenAIRELuis M. Baraldo;
Luis M. Baraldo
Luis M. Baraldo in OpenAIREhandle: 11336/220480
AbstractThe preparation of nanomaterials for energy applications such as intercalation batteries and materials that can act as substrates for water oxidation is a subject of major interest nowadays. In this work, we report the deposition of Prussian blue (PB) and its cobalt analogue (CoPBA) on mesoporous titania thin films (MTTF) using the successive ionic layer adsorption reaction (SILAR) technique under soft conditions. A bifunctional ligand, 1,10‐phenanthroline‐5,6‐dione (pd), was used to functionalize the titania surface and promote the growth of PB and CoPBA. The resulting PB@MTTF and CoPBA@MTTF nanocomposites were characterized using several techniques and it was determined that PB and CoPBA grow in a controlled and sequential manner, maintaining the mesoporous architecture. Both PB@MTTF and CoPBA@MTTF demonstrated very good electroactive properties, while CoPBA@MTTF exhibited water oxidation capabilities. The flexibility of this PBA@MTTF platform allows the incorporation of any labile transition metal ion or fragment into the structure of the coordination polymer embedded into a mesoporous matrix, opening the door for (photo)electrochemical devices and catalysts.
LAReferencia - Red F... arrow_drop_down Chemische BerichteArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ejic.202300576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Chemische BerichteArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ejic.202300576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ArgentinaPublisher:Wiley Authors:Priscila Vensaus;
Priscila Vensaus
Priscila Vensaus in OpenAIRERolando M. Caraballo;
Emiliano Tritto;Rolando M. Caraballo
Rolando M. Caraballo in OpenAIRECynthia C. Fernández;
+5 AuthorsCynthia C. Fernández
Cynthia C. Fernández in OpenAIREPriscila Vensaus;
Priscila Vensaus
Priscila Vensaus in OpenAIRERolando M. Caraballo;
Emiliano Tritto;Rolando M. Caraballo
Rolando M. Caraballo in OpenAIRECynthia C. Fernández;
Cynthia C. Fernández
Cynthia C. Fernández in OpenAIREPaula C. Angelomé;
Paula C. Angelomé
Paula C. Angelomé in OpenAIREM. Cecilia Fuertes;
M. Cecilia Fuertes
M. Cecilia Fuertes in OpenAIREFederico J. Williams;
Federico J. Williams
Federico J. Williams in OpenAIREGalo J. A. A. Soler‐Illia;
Galo J. A. A. Soler‐Illia
Galo J. A. A. Soler‐Illia in OpenAIRELuis M. Baraldo;
Luis M. Baraldo
Luis M. Baraldo in OpenAIREhandle: 11336/220480
AbstractThe preparation of nanomaterials for energy applications such as intercalation batteries and materials that can act as substrates for water oxidation is a subject of major interest nowadays. In this work, we report the deposition of Prussian blue (PB) and its cobalt analogue (CoPBA) on mesoporous titania thin films (MTTF) using the successive ionic layer adsorption reaction (SILAR) technique under soft conditions. A bifunctional ligand, 1,10‐phenanthroline‐5,6‐dione (pd), was used to functionalize the titania surface and promote the growth of PB and CoPBA. The resulting PB@MTTF and CoPBA@MTTF nanocomposites were characterized using several techniques and it was determined that PB and CoPBA grow in a controlled and sequential manner, maintaining the mesoporous architecture. Both PB@MTTF and CoPBA@MTTF demonstrated very good electroactive properties, while CoPBA@MTTF exhibited water oxidation capabilities. The flexibility of this PBA@MTTF platform allows the incorporation of any labile transition metal ion or fragment into the structure of the coordination polymer embedded into a mesoporous matrix, opening the door for (photo)electrochemical devices and catalysts.
LAReferencia - Red F... arrow_drop_down Chemische BerichteArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ejic.202300576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Chemische BerichteArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ejic.202300576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Authors: Lisa Hanna Broska; Lisa Hanna Broska;Stefan Vögele;
Sebastian Otte; +1 AuthorsStefan Vögele
Stefan Vögele in OpenAIRELisa Hanna Broska; Lisa Hanna Broska;Stefan Vögele;
Sebastian Otte;Stefan Vögele
Stefan Vögele in OpenAIREDirk T. G. Rübbelke;
Dirk T. G. Rübbelke
Dirk T. G. Rübbelke in OpenAIREAbstract The transport sector is one of the major drivers of global climate change, with a large share related to the personal use of cars. Paradoxically, as efforts are undertaken to reduce this share, a trend to buy large, heavy cars with comparatively high fuel consumption is occurring nearly worldwide. In this article, we analyze the possible influence of social norms in car-buying decisions and in particular in the trend towards sport utility vehicles (SUVs). We develop a model applying a multi-criteria decision analysis approach and quantify the influence of social norms on car-buying decisions. Four main data sources are used: Surveys on German car buyers and their preferences conducted by VuMA Touchpoints and ARAL, longitudinal data by the Sinus-Institute on different social groups in German society, as well as ADAC assessments on characteristics of different car types. Our results indicate that social norms play a significant role in driving the demand for heavyweight passenger cars across most social groups, while the desire for social esteem leads some groups in particular to purchase SUVs and off-road vehicles. By taking society’s heterogeneity into account, we show that social norms are group-specific and not universal in society. Nevertheless, car choice is to a certain extent always influenced by social norms and ranges among different social groups between 24% and 42% in our model calculations. The novel approach taken in this research can be applied beyond the mobility sector to other environmentally significant consumer behaviors.
Juelich Shared Elect... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Authors: Lisa Hanna Broska; Lisa Hanna Broska;Stefan Vögele;
Sebastian Otte; +1 AuthorsStefan Vögele
Stefan Vögele in OpenAIRELisa Hanna Broska; Lisa Hanna Broska;Stefan Vögele;
Sebastian Otte;Stefan Vögele
Stefan Vögele in OpenAIREDirk T. G. Rübbelke;
Dirk T. G. Rübbelke
Dirk T. G. Rübbelke in OpenAIREAbstract The transport sector is one of the major drivers of global climate change, with a large share related to the personal use of cars. Paradoxically, as efforts are undertaken to reduce this share, a trend to buy large, heavy cars with comparatively high fuel consumption is occurring nearly worldwide. In this article, we analyze the possible influence of social norms in car-buying decisions and in particular in the trend towards sport utility vehicles (SUVs). We develop a model applying a multi-criteria decision analysis approach and quantify the influence of social norms on car-buying decisions. Four main data sources are used: Surveys on German car buyers and their preferences conducted by VuMA Touchpoints and ARAL, longitudinal data by the Sinus-Institute on different social groups in German society, as well as ADAC assessments on characteristics of different car types. Our results indicate that social norms play a significant role in driving the demand for heavyweight passenger cars across most social groups, while the desire for social esteem leads some groups in particular to purchase SUVs and off-road vehicles. By taking society’s heterogeneity into account, we show that social norms are group-specific and not universal in society. Nevertheless, car choice is to a certain extent always influenced by social norms and ranges among different social groups between 24% and 42% in our model calculations. The novel approach taken in this research can be applied beyond the mobility sector to other environmentally significant consumer behaviors.
Juelich Shared Elect... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Nathalie Sick; Nathalie Sick; Egbert Figgemeier; Egbert Figgemeier;Oliver Krätzig;
Oliver Krätzig;Oliver Krätzig
Oliver Krätzig in OpenAIREGebrekidan Gebresilassie Eshetu;
Gebrekidan Gebresilassie Eshetu
Gebrekidan Gebresilassie Eshetu in OpenAIREAbstract For a successful transition from internal combustion engines to electric vehicles and from conventional power plants to renewable energy supply, battery technology plays a vital role. Accordingly, battery research and development (R&D) efforts have been increased considerably over the past decades, particularly regarding materials and cell chemistries to further improve the electrochemical performance of lithium ion batteries. The impetus behind such massive R&D has been the replacement of metallic lithium anodes, a notorious for potentially catastrophic shorting by lithium metal dendrites. However, despite the promise of a step improvement in energy density outperforming established LIB technology, the commercial introduction of cells with alternative anode materials in the mass market is slow. Against this backdrop, the aim of the present study is to provide an overview of current developments in the academic and industrial research arena, summarising the historical development of scientific literature and patent landscape beyond established anode materials. The study identifies and critically reviews tin, silicon, silicon oxide, aluminium and titanium-based anode materials as promising pathways to develop high-energy density next-generation LIBs.
Juelich Shared Elect... arrow_drop_down Journal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.103231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Journal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.103231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Nathalie Sick; Nathalie Sick; Egbert Figgemeier; Egbert Figgemeier;Oliver Krätzig;
Oliver Krätzig;Oliver Krätzig
Oliver Krätzig in OpenAIREGebrekidan Gebresilassie Eshetu;
Gebrekidan Gebresilassie Eshetu
Gebrekidan Gebresilassie Eshetu in OpenAIREAbstract For a successful transition from internal combustion engines to electric vehicles and from conventional power plants to renewable energy supply, battery technology plays a vital role. Accordingly, battery research and development (R&D) efforts have been increased considerably over the past decades, particularly regarding materials and cell chemistries to further improve the electrochemical performance of lithium ion batteries. The impetus behind such massive R&D has been the replacement of metallic lithium anodes, a notorious for potentially catastrophic shorting by lithium metal dendrites. However, despite the promise of a step improvement in energy density outperforming established LIB technology, the commercial introduction of cells with alternative anode materials in the mass market is slow. Against this backdrop, the aim of the present study is to provide an overview of current developments in the academic and industrial research arena, summarising the historical development of scientific literature and patent landscape beyond established anode materials. The study identifies and critically reviews tin, silicon, silicon oxide, aluminium and titanium-based anode materials as promising pathways to develop high-energy density next-generation LIBs.
Juelich Shared Elect... arrow_drop_down Journal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.103231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Journal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.103231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu