- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- AU
- DK
- IEEE Access
- Energy Research
- Open Access
- Restricted
- AU
- DK
- IEEE Access
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Hassan Karimi; Taher Niknam; Moslem Dehghani; Mohammad Ghiasi; Mina Ghasemigarpachi; Sanjeevikumar Padmanaban; Sajad Tabatabaee; Hamdulah Aliev;Automation in power distribution systems and supervisory control and data acquisition (SCADA), which perform network switching automatically and remotely, allows distribution companies to flexibly control distribution power grids. Cross-section switches also has a significant role in the automation in distribution systems, in that the operational optimization of these switches is able to enhance the supply power quality and reliability indicators, and can be a prosperous solution to increase the reliability, efficiency and overall service quality in services to customers. In this regard, in this work, the genetic optimization algorithm (GOA) approach which integrated the Steepest Descend Technique (SDT) is proposed and enhanced based on the features of the mentioned issue to sketch the optimal location and control of automatic and manual cross-section switches and protection relay systems in distribution power systems. The GOA is able to search globally that can prevent the result from locally convergence, also, GOA gives superior primary solutions for the SDT. Thus, the SDT can search locally with higher performance which increase the solutions’ accuracy. Therefore, an optimization formulation is proposed to improve the value-based reliability of the suggested layout considering the cost of customer downtime and the costs related to segmentation of switches and relay protection devices. Also, a distributed generation (DG) system in distribution networks is considered based on the islanded state of generation units. The effectiveness of the optimal suggested procedure is evaluated and represented via performing a practical test system in the distribution network of Ahvaz city in Iran. The results show that using proposed method and by optimally allocating switches maneuver, energy losses without switches are reduced from 310.17 (MWh) to 254.2 (MWh), and also by using DG, losses are reduced from 554.01 to 533.61 which confirms the ability and higher accuracy of the proposed method to improve reliability indices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3096128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3096128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xiaoxiao Meng; Niancheng Zhou; Qianggang Wang; Josep M. Guerrero;In this paper, a nonlinear, bounded, distributed secondary control (DSC) method is proposed to coordinate all the distributed generators (DGs) in islanded AC microgrids (MGs). This proposed consensus-based DSC strategy can not only guarantee the restoration control of frequency and voltage but also realize an accurate active power sharing control. Through introducing a nonlinear dynamic from beta cumulative distribution function (CDF), the convergence speed of DSC is accelerated, the asymptotical convergence of DSC is ensured, and the transient overshoot of DSC is diminished compared with traditional DSC. Moreover, by ensuring the Lipchitz continuity characteristic of the control algorithm, the common chattering phenomenon in non-Lipchitz DSC scheme is eliminated. The stability and performance of the proposed DSC are also analyzed in this paper. An islanded AC microgrid test system with four inverter-based DGs is built in MATLAB/SIMULINK to further validate the effeteness of the proposed DSC strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2019.2900172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2019.2900172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Lihua Liu; Jianguo Zhu; Linfeng Zheng;Lithium-ion batteries are generally regarded as a leading candidate for energy storage systems. The safe and reliable operation of lithium-ion batteries depends largely on accurate estimation of the state of charge (SOC), which requires an accurate battery model. Bearing strong mechanisms, the electrochemical model (EM) can mimic the battery dynamics with high fidelity, and thus the EM-based methods can produce more reliable SOC estimates. This paper proposes a novel EM-based SOC estimation method for lithium-ion batteries from the electrochemical mechanism perspective. Firstly, a single particle model is employed to gain a direct insight into the electrochemical reactions inside the battery, and it is found that the model output voltage and SOC are strongly related to the lithium-ion concentrations of solid phases. A simple negative voltage feedback module is then applied to observe the voltage error between the cell referenced terminal voltage and the model output voltage. To eliminate the voltage error and achieve a precise estimate, a quantitative relationship between the voltage error and corrected amount of lithium-ion concentrations is deduced based on the Nernst equation. The performance of proposed method has been systemically evaluated under different operating conditions, including various charging and discharging current rates, erroneous initial SOCs, and cell aging levels. Although an erroneous initial SOC of 50% is applied to the proposed algorithm, promising estimates with the mean absolute errors of 0.22% and 1.35% can be still achieved under the constant and dynamic loading conditions, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3039783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3039783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Duc-Dung Tran; Dac-Binh Ha; Van Nhan Vo; Chakchai So-In; Hung Tran; Tri Gia Nguyen; Zubair Ahmed Baig; Surasak Sanguanpong;In this paper, we investigate downlink cooperative multiple-input single-output wireless sensor networks with the nonorthogonal multiple access technique and simultaneous wireless information and power transfer over Nakagami-m fading. Specifically, the considered network includes a multiantenna sink node, an energy-limited relay cluster, a high-priority sensor node (SN) cluster, and a low-priority SN cluster. Prior to transmission, a transmit antenna, a relay, a high-priority SN, and a low-priority SN are selected. In this paper, we propose three antenna-relay-destination selection schemes, i.e., sink node-high-priority, sink node-relay, and sink node-low-priority. In each proposed scheme, we consider two relaying strategies, i.e., decode-and-forward and amplify-and-forward, and then, we derive the corresponding closed-form expressions of outage probability at the selected SNs. In addition, we introduce two algorithms: 1) the powersplitting ratio optimization algorithm and 2) the best antenna-relay-destination selection determination algorithm. Finally, we utilize the Monte Carlo simulations to verify our analytical results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2872935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2872935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Ghiasi, Mohammad; Dehghani, Moslem; Niknam, Taher; Baghaee, Hamid Reza; Padmanaban, Sanjeevikumar; Gharehpetian, Gevork B.; Aliev, Hamdulah;Unexpected natural disasters or physical attacks can have various consequences, including extensive and prolonged blackouts on power systems. Energy systems should be resistant to unwanted events, and their performance is not easily affected by such conditions. The power system should also have sufficient flexibility to adapt to severe disturbances without losing its full version; it should restore itself immediately after resolving the disturbance. This critical feature of the behavior of infrastructure systems in power grids is called resilience. In this paper, the concepts related to resilience in the power system against severe disturbance are explained. The resilience and evaluation process components are introduced; then, an optimal design of resilient substations in the Noorabad city distribution grid against physical attack is presented. This research proposes an optimal solution for simultaneously allocating the feeder routing issue and substation facilities and finding the models of installed conductors and economic hardening of power lines due to unexpected physical attacks on vital urban operational infrastructure. The values of distribution networks are calculated using the grey wolf optimization (GWO) algorithm to solve the problem of designing an optimal distribution network scheme (ODNS) and optimal resilient distribution network scheme (ORDNS). Obtained results confirm the effectiveness of the proposed resiliency-cost-based optimization approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3066419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3066419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Md. Mejbaul Haque; Peter J. Wolfs; Sanath Alahakoon; Md. Ariful Islam; Mithulan Nadarajah; Firuz Zare; Omar Farrok;The integration of battery energy storage (BES) with photovoltaic (PV) systems is becoming economically attractive for residential customers. The conventional approach for the interconnection of PV and battery systems requires at least two separate power converters that results in multistage power conversion for some power flows. The dc-dc three port converters (TPCs) are an alternative solution. These converters have many topological variants and possess different operating principles, topological benefits and limitations, and complexities. This paper concentrates on the topological study of TPCs for integrated PV and BES systems applications in the power range from a few hundred watts to 350 kW. These are classified into three different categories based on their isolation features between the ports to establish a topological mapping of the reported TPCs. This provides a framework that systematically explores the full range of technical benefits and limitations of each TPC topology. This paper also examines the possible extension of the TPC topologies for grid-interactive PV-BES systems where bidirectional power flow capability is required between grid and BES systems. This extensive review will provide a useful framework and a strong point of reference for researchers for the selection of TPC topologies to meet the system requirements for PV and energy storage applications.
IEEE Access arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2023.3235924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Access arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2023.3235924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Eslam Al-Hassan; Hussain Shareef; Md. Mainul Islam; Addy Wahyudie; Atef Amin Abdrabou;The recent increase in electricity tariff and the introduction of feed-in tariff from renewable resources have increased the interest of energy consumers, such as those in commercial and residential buildings, in reducing their energy usage. This paper proposes a smart power socket and central control system that utilizes the Zigbee communication protocol to control energy usage. The system is designed such that smart sockets wirelessly provide the necessary data to a central controller. Then, the system analyzes the data to generate control commands to turn the devices attached to the smart socket ON or OFF. Experimental results show that the proposed smart socket can correctly read the power consumption of wirelessly connected devices from up to 18 m away without loss of data. The central controller can effectively control multiple sockets on the basis of a scheduled user program code. A 24-min implementation of the proposed energy management algorithm shows a reduction of 0.811 kWmin (0.0134 kWh) in energy usage after the use of the smart sockets as load controllers. Thus, the proposed smart socket system can be fully utilized in a home energy management system with a proper scheduling algorithm.
IEEE Access arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2868788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Access arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2868788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Giuseppe Sciume; Emilio Jose Palacios-Garcia; Pierluigi Gallo; Eleonora Riva Sanseverino; +2 AuthorsGiuseppe Sciume; Emilio Jose Palacios-Garcia; Pierluigi Gallo; Eleonora Riva Sanseverino; Juan C. Vasquez; Josep M. Guerrero;The use of Distributed Ledger Technologies such as Blockchain for certifying Demand Response services allows for the creation of a distributed system in which customers can communicate with the system operator to provide their flexibility, in a secure, transparent and traceable way. Blockchain technology also supports incentive mechanisms for users taking part in the service through the generation of utility tokens to recognize the user's contribution. This paper presents the experimental test of a novel methodology for Demand Response programs implementation by using the Blockchain technology. The latter is employed for defining a distributed Demand Response service and a new system for its tracing and certification. For this work, a Smart Contract has been conceived and written to execute Demand Response events, calculate users' baseline, compute the support provided by each user towards the fulfilment of the requested load curve modification and remunerate each user with utility tokens proportionally to their contribution. To test the methodology, a Hyperledger Fabric network and a Smart Contract were deployed on four nodes of the Microgrid Laboratory of the Department of Energy Technology at Aalborg University (DK). Subsequently, a realistic scenario comprising two consumer nodes was developed using power electronic converters for generating the household profiles and Smart Meters for the measurement of the consumption profiles. Theoretical and experimental results show the feasibility of Distributed Ledger Technologies in smart grids management with a minimum investment in new hardware while enabling the active participation of customers in Demand Response more transparently and fairly.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3012781&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3012781&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Farhad Farivar; Octavian Bass; Daryoush Habibi;This paper presents a memory-based adaptive sliding mode load frequency control (LFC) strategy aimed at minimizing the impacts of exogenous power disturbances and parameter uncertainties on frequency deviations in interconnected power systems with energy storage. First, the dynamic model of the system is constructed by considering the participation of the energy storage system (ESS) in the conventional decentralized LFC model of a multiarea power system. A disturbance observer (DOB) is proposed to generate an online approximation of the lumped disturbance. In order to enhance the transient performance of the system and effectively mitigate the adverse effects of power fluctuations on grid frequency, a novel memory-based sliding surface is developed. This sliding surface incorporates the estimation of the lumped disturbance, as well as the past and present information of the state variables. The conservative assumption about the lumped disturbance is eased by considering the unknown upper bound of the disturbance and its first derivative. Based on the output of the proposed DOB, an adaptive continuous sliding mode controller with prescribed ${H_{\infty} }$ performance index is introduced. This controller ensures that the sliding surface is reachable and guarantees asymptotic stability of the closed-loop system. The controller design utilizes strict linear matrix inequalities (LMIs) to achieve these objectives. Finally, the applicability and efficacy of the proposed scheme are verified through comparative simulation cases.
Edith Cowan Universi... arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BY NC NDFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/3101Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2023.3317181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Edith Cowan Universi... arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BY NC NDFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/3101Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2023.3317181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Li Qiu; Yantao Li; Yijie Yu; A. Abu-Siada; Qi Xiong; Xiaoxiang Li; Liang Li; Pan Su; Quanliang Cao;In the conventional electromagnetic tube expansion, the end effects generated by the conventional helix coil may lead to inhomogeneous tube deformation in the axial direction. This paper is aimed at overcoming this issue by proposing a new concave coil structure to replace the helix coil currently used by the industry practice to generate a radial electromagnetic force on the tube. The proposed concave coil is expected to reinforce the electromagnetic force distribution profile and, hence, improving the axial inhomogeneous deformation of the tube. In this context, a new R-L criterion of deformation uniformity is first proposed. Second, an electromagnetic-structural coupling finite element model is established to investigate the relationship between the distribution of electromagnetic force generated by the concave coil and the uniformity of the tube under various voltage levels. The effectiveness of the proposed method is validated through a series of experimental and simulation analyses. Furthermore, based on the characteristics of the electromagnetic tube expansion, a modified multilayer concave coil structure is proposed to overcome the axial inhomogeneous deformation of long tubes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2019.2923264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2019.2923264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Hassan Karimi; Taher Niknam; Moslem Dehghani; Mohammad Ghiasi; Mina Ghasemigarpachi; Sanjeevikumar Padmanaban; Sajad Tabatabaee; Hamdulah Aliev;Automation in power distribution systems and supervisory control and data acquisition (SCADA), which perform network switching automatically and remotely, allows distribution companies to flexibly control distribution power grids. Cross-section switches also has a significant role in the automation in distribution systems, in that the operational optimization of these switches is able to enhance the supply power quality and reliability indicators, and can be a prosperous solution to increase the reliability, efficiency and overall service quality in services to customers. In this regard, in this work, the genetic optimization algorithm (GOA) approach which integrated the Steepest Descend Technique (SDT) is proposed and enhanced based on the features of the mentioned issue to sketch the optimal location and control of automatic and manual cross-section switches and protection relay systems in distribution power systems. The GOA is able to search globally that can prevent the result from locally convergence, also, GOA gives superior primary solutions for the SDT. Thus, the SDT can search locally with higher performance which increase the solutions’ accuracy. Therefore, an optimization formulation is proposed to improve the value-based reliability of the suggested layout considering the cost of customer downtime and the costs related to segmentation of switches and relay protection devices. Also, a distributed generation (DG) system in distribution networks is considered based on the islanded state of generation units. The effectiveness of the optimal suggested procedure is evaluated and represented via performing a practical test system in the distribution network of Ahvaz city in Iran. The results show that using proposed method and by optimally allocating switches maneuver, energy losses without switches are reduced from 310.17 (MWh) to 254.2 (MWh), and also by using DG, losses are reduced from 554.01 to 533.61 which confirms the ability and higher accuracy of the proposed method to improve reliability indices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3096128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3096128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xiaoxiao Meng; Niancheng Zhou; Qianggang Wang; Josep M. Guerrero;In this paper, a nonlinear, bounded, distributed secondary control (DSC) method is proposed to coordinate all the distributed generators (DGs) in islanded AC microgrids (MGs). This proposed consensus-based DSC strategy can not only guarantee the restoration control of frequency and voltage but also realize an accurate active power sharing control. Through introducing a nonlinear dynamic from beta cumulative distribution function (CDF), the convergence speed of DSC is accelerated, the asymptotical convergence of DSC is ensured, and the transient overshoot of DSC is diminished compared with traditional DSC. Moreover, by ensuring the Lipchitz continuity characteristic of the control algorithm, the common chattering phenomenon in non-Lipchitz DSC scheme is eliminated. The stability and performance of the proposed DSC are also analyzed in this paper. An islanded AC microgrid test system with four inverter-based DGs is built in MATLAB/SIMULINK to further validate the effeteness of the proposed DSC strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2019.2900172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2019.2900172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Lihua Liu; Jianguo Zhu; Linfeng Zheng;Lithium-ion batteries are generally regarded as a leading candidate for energy storage systems. The safe and reliable operation of lithium-ion batteries depends largely on accurate estimation of the state of charge (SOC), which requires an accurate battery model. Bearing strong mechanisms, the electrochemical model (EM) can mimic the battery dynamics with high fidelity, and thus the EM-based methods can produce more reliable SOC estimates. This paper proposes a novel EM-based SOC estimation method for lithium-ion batteries from the electrochemical mechanism perspective. Firstly, a single particle model is employed to gain a direct insight into the electrochemical reactions inside the battery, and it is found that the model output voltage and SOC are strongly related to the lithium-ion concentrations of solid phases. A simple negative voltage feedback module is then applied to observe the voltage error between the cell referenced terminal voltage and the model output voltage. To eliminate the voltage error and achieve a precise estimate, a quantitative relationship between the voltage error and corrected amount of lithium-ion concentrations is deduced based on the Nernst equation. The performance of proposed method has been systemically evaluated under different operating conditions, including various charging and discharging current rates, erroneous initial SOCs, and cell aging levels. Although an erroneous initial SOC of 50% is applied to the proposed algorithm, promising estimates with the mean absolute errors of 0.22% and 1.35% can be still achieved under the constant and dynamic loading conditions, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3039783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3039783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Duc-Dung Tran; Dac-Binh Ha; Van Nhan Vo; Chakchai So-In; Hung Tran; Tri Gia Nguyen; Zubair Ahmed Baig; Surasak Sanguanpong;In this paper, we investigate downlink cooperative multiple-input single-output wireless sensor networks with the nonorthogonal multiple access technique and simultaneous wireless information and power transfer over Nakagami-m fading. Specifically, the considered network includes a multiantenna sink node, an energy-limited relay cluster, a high-priority sensor node (SN) cluster, and a low-priority SN cluster. Prior to transmission, a transmit antenna, a relay, a high-priority SN, and a low-priority SN are selected. In this paper, we propose three antenna-relay-destination selection schemes, i.e., sink node-high-priority, sink node-relay, and sink node-low-priority. In each proposed scheme, we consider two relaying strategies, i.e., decode-and-forward and amplify-and-forward, and then, we derive the corresponding closed-form expressions of outage probability at the selected SNs. In addition, we introduce two algorithms: 1) the powersplitting ratio optimization algorithm and 2) the best antenna-relay-destination selection determination algorithm. Finally, we utilize the Monte Carlo simulations to verify our analytical results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2872935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2872935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Ghiasi, Mohammad; Dehghani, Moslem; Niknam, Taher; Baghaee, Hamid Reza; Padmanaban, Sanjeevikumar; Gharehpetian, Gevork B.; Aliev, Hamdulah;Unexpected natural disasters or physical attacks can have various consequences, including extensive and prolonged blackouts on power systems. Energy systems should be resistant to unwanted events, and their performance is not easily affected by such conditions. The power system should also have sufficient flexibility to adapt to severe disturbances without losing its full version; it should restore itself immediately after resolving the disturbance. This critical feature of the behavior of infrastructure systems in power grids is called resilience. In this paper, the concepts related to resilience in the power system against severe disturbance are explained. The resilience and evaluation process components are introduced; then, an optimal design of resilient substations in the Noorabad city distribution grid against physical attack is presented. This research proposes an optimal solution for simultaneously allocating the feeder routing issue and substation facilities and finding the models of installed conductors and economic hardening of power lines due to unexpected physical attacks on vital urban operational infrastructure. The values of distribution networks are calculated using the grey wolf optimization (GWO) algorithm to solve the problem of designing an optimal distribution network scheme (ODNS) and optimal resilient distribution network scheme (ORDNS). Obtained results confirm the effectiveness of the proposed resiliency-cost-based optimization approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3066419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3066419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Md. Mejbaul Haque; Peter J. Wolfs; Sanath Alahakoon; Md. Ariful Islam; Mithulan Nadarajah; Firuz Zare; Omar Farrok;The integration of battery energy storage (BES) with photovoltaic (PV) systems is becoming economically attractive for residential customers. The conventional approach for the interconnection of PV and battery systems requires at least two separate power converters that results in multistage power conversion for some power flows. The dc-dc three port converters (TPCs) are an alternative solution. These converters have many topological variants and possess different operating principles, topological benefits and limitations, and complexities. This paper concentrates on the topological study of TPCs for integrated PV and BES systems applications in the power range from a few hundred watts to 350 kW. These are classified into three different categories based on their isolation features between the ports to establish a topological mapping of the reported TPCs. This provides a framework that systematically explores the full range of technical benefits and limitations of each TPC topology. This paper also examines the possible extension of the TPC topologies for grid-interactive PV-BES systems where bidirectional power flow capability is required between grid and BES systems. This extensive review will provide a useful framework and a strong point of reference for researchers for the selection of TPC topologies to meet the system requirements for PV and energy storage applications.
IEEE Access arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2023.3235924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Access arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2023.3235924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Eslam Al-Hassan; Hussain Shareef; Md. Mainul Islam; Addy Wahyudie; Atef Amin Abdrabou;The recent increase in electricity tariff and the introduction of feed-in tariff from renewable resources have increased the interest of energy consumers, such as those in commercial and residential buildings, in reducing their energy usage. This paper proposes a smart power socket and central control system that utilizes the Zigbee communication protocol to control energy usage. The system is designed such that smart sockets wirelessly provide the necessary data to a central controller. Then, the system analyzes the data to generate control commands to turn the devices attached to the smart socket ON or OFF. Experimental results show that the proposed smart socket can correctly read the power consumption of wirelessly connected devices from up to 18 m away without loss of data. The central controller can effectively control multiple sockets on the basis of a scheduled user program code. A 24-min implementation of the proposed energy management algorithm shows a reduction of 0.811 kWmin (0.0134 kWh) in energy usage after the use of the smart sockets as load controllers. Thus, the proposed smart socket system can be fully utilized in a home energy management system with a proper scheduling algorithm.
IEEE Access arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2868788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Access arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2868788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Giuseppe Sciume; Emilio Jose Palacios-Garcia; Pierluigi Gallo; Eleonora Riva Sanseverino; +2 AuthorsGiuseppe Sciume; Emilio Jose Palacios-Garcia; Pierluigi Gallo; Eleonora Riva Sanseverino; Juan C. Vasquez; Josep M. Guerrero;The use of Distributed Ledger Technologies such as Blockchain for certifying Demand Response services allows for the creation of a distributed system in which customers can communicate with the system operator to provide their flexibility, in a secure, transparent and traceable way. Blockchain technology also supports incentive mechanisms for users taking part in the service through the generation of utility tokens to recognize the user's contribution. This paper presents the experimental test of a novel methodology for Demand Response programs implementation by using the Blockchain technology. The latter is employed for defining a distributed Demand Response service and a new system for its tracing and certification. For this work, a Smart Contract has been conceived and written to execute Demand Response events, calculate users' baseline, compute the support provided by each user towards the fulfilment of the requested load curve modification and remunerate each user with utility tokens proportionally to their contribution. To test the methodology, a Hyperledger Fabric network and a Smart Contract were deployed on four nodes of the Microgrid Laboratory of the Department of Energy Technology at Aalborg University (DK). Subsequently, a realistic scenario comprising two consumer nodes was developed using power electronic converters for generating the household profiles and Smart Meters for the measurement of the consumption profiles. Theoretical and experimental results show the feasibility of Distributed Ledger Technologies in smart grids management with a minimum investment in new hardware while enabling the active participation of customers in Demand Response more transparently and fairly.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3012781&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3012781&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Farhad Farivar; Octavian Bass; Daryoush Habibi;This paper presents a memory-based adaptive sliding mode load frequency control (LFC) strategy aimed at minimizing the impacts of exogenous power disturbances and parameter uncertainties on frequency deviations in interconnected power systems with energy storage. First, the dynamic model of the system is constructed by considering the participation of the energy storage system (ESS) in the conventional decentralized LFC model of a multiarea power system. A disturbance observer (DOB) is proposed to generate an online approximation of the lumped disturbance. In order to enhance the transient performance of the system and effectively mitigate the adverse effects of power fluctuations on grid frequency, a novel memory-based sliding surface is developed. This sliding surface incorporates the estimation of the lumped disturbance, as well as the past and present information of the state variables. The conservative assumption about the lumped disturbance is eased by considering the unknown upper bound of the disturbance and its first derivative. Based on the output of the proposed DOB, an adaptive continuous sliding mode controller with prescribed ${H_{\infty} }$ performance index is introduced. This controller ensures that the sliding surface is reachable and guarantees asymptotic stability of the closed-loop system. The controller design utilizes strict linear matrix inequalities (LMIs) to achieve these objectives. Finally, the applicability and efficacy of the proposed scheme are verified through comparative simulation cases.
Edith Cowan Universi... arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BY NC NDFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/3101Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2023.3317181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Edith Cowan Universi... arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BY NC NDFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/3101Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2023.3317181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Li Qiu; Yantao Li; Yijie Yu; A. Abu-Siada; Qi Xiong; Xiaoxiang Li; Liang Li; Pan Su; Quanliang Cao;In the conventional electromagnetic tube expansion, the end effects generated by the conventional helix coil may lead to inhomogeneous tube deformation in the axial direction. This paper is aimed at overcoming this issue by proposing a new concave coil structure to replace the helix coil currently used by the industry practice to generate a radial electromagnetic force on the tube. The proposed concave coil is expected to reinforce the electromagnetic force distribution profile and, hence, improving the axial inhomogeneous deformation of the tube. In this context, a new R-L criterion of deformation uniformity is first proposed. Second, an electromagnetic-structural coupling finite element model is established to investigate the relationship between the distribution of electromagnetic force generated by the concave coil and the uniformity of the tube under various voltage levels. The effectiveness of the proposed method is validated through a series of experimental and simulation analyses. Furthermore, based on the characteristics of the electromagnetic tube expansion, a modified multilayer concave coil structure is proposed to overcome the axial inhomogeneous deformation of long tubes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2019.2923264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2019.2923264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu