- home
- Advanced Search
- Energy Research
- National Science Foundation
- FR
- DK
- Energy Research
- National Science Foundation
- FR
- DK
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 02 Sep 2024 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Inter-Hemispheric Climate..., NSF | Collaborative Research: A..., NSF | Collaborative Research: I... +3 projectsNSF| Inter-Hemispheric Climate Teleconnections in response to Massive Iceberg Discharge in the North Atlantic ,NSF| Collaborative Research: A "Horizontal Ice Core" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica ,NSF| Collaborative Research: Investigating the potential of carbon-14 in polar firn and ice as a tracer of past cosmic ray flux and an absolute dating tool ,NSF| Collaborative Research: Investigating the potential of carbon-14 in polar firn and ice as a tracer of past cosmic ray flux and an absolute dating tool ,NSF| Collaborative Research: Investigating the potential of carbon-14 in polar firn and ice as a tracer of past cosmic ray flux and an absolute dating tool ,NSF| How Thick Is the Convective Zone: A Study of Firn Air in the Megadunes Near Vostok, AntarcticaAuthors:Hmiel, B.;
Petrenko, V. V.; Dyonisius, M. N.; Buizert, C.; +15 AuthorsHmiel, B.
Hmiel, B. in OpenAIREHmiel, B.;
Petrenko, V. V.; Dyonisius, M. N.; Buizert, C.;Hmiel, B.
Hmiel, B. in OpenAIRESmith, A. M.;
Smith, A. M.
Smith, A. M. in OpenAIREPlace, P. F.;
Harth, C.; Beaudette, R.; Hua, Q.; Yang, B.;Place, P. F.
Place, P. F. in OpenAIREVimont, I.;
Michel, S. E.; Severinghaus, J. P.;Vimont, I.
Vimont, I. in OpenAIREEtheridge, D.;
Bromley, T.;Etheridge, D.
Etheridge, D. in OpenAIRESchmitt, Jochen;
Fain, X.;Schmitt, Jochen
Schmitt, Jochen in OpenAIREWeiss, R. F.;
Dlugokencky, E.;Weiss, R. F.
Weiss, R. F. in OpenAIREpmid: 32076219
Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era. Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate. Carbon-14 in CH4 (14CH4) can be used to distinguish between fossil (14C-free) CH4 emissions and contemporaneous biogenic sources; however, poorly constrained direct 14CH4 emissions from nuclear reactors have complicated this approach since the middle of the 20th century. Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year) between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year. Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago, but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core 14CH4 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)—an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-1991-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 186 citations 186 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-1991-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Embargo end date: 01 Jan 2014 Switzerland, Germany, Netherlands, DenmarkPublisher:Copernicus GmbH Funded by:NSERC, NSF | BE/CBC: Biocomplexity Ass..., NSF | Fire in Northern Alaska: ... +4 projectsNSERC ,NSF| BE/CBC: Biocomplexity Associated with the Response of Tundra Carbon Balance to Warming and Drying Across Multiple Spatial and Temporal Scales ,NSF| Fire in Northern Alaska: Effect of a Changing Disturbance Regime on a Regional Macrosystem ,RCN| Greenhouse gases in the North: from local to regional scale ,NWO| Stability of carbon pools in far east Siberia ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,EC| GREENCYCLESIIAuthors:Birger Ulf Hansen;
Marcin Jackowicz-Korczynski;Birger Ulf Hansen
Birger Ulf Hansen in OpenAIRETorsten Sachs;
Peter M. Lafleur; +16 AuthorsTorsten Sachs
Torsten Sachs in OpenAIREBirger Ulf Hansen;
Marcin Jackowicz-Korczynski;Birger Ulf Hansen
Birger Ulf Hansen in OpenAIRETorsten Sachs;
Peter M. Lafleur;Torsten Sachs
Torsten Sachs in OpenAIRETorben R. Christensen;
Torben R. Christensen;Torben R. Christensen
Torben R. Christensen in OpenAIREWalter C. Oechel;
Walter C. Oechel
Walter C. Oechel in OpenAIRELars Kutzbach;
Adrian V. Rocha;Lars Kutzbach
Lars Kutzbach in OpenAIREWerner Eugster;
Magnus Lund;Werner Eugster
Werner Eugster in OpenAIREM. K. van der Molen;
Mika Aurela;M. K. van der Molen
M. K. van der Molen in OpenAIREThomas Friborg;
Thomas Friborg
Thomas Friborg in OpenAIREFrans-Jan W. Parmentier;
Frans-Jan W. Parmentier;Frans-Jan W. Parmentier
Frans-Jan W. Parmentier in OpenAIREElyn Humphreys;
Elyn Humphreys
Elyn Humphreys in OpenAIREDaniel P. Rasse;
Daniel P. Rasse
Daniel P. Rasse in OpenAIREMikkel P. Tamstorf;
Mikkel P. Tamstorf
Mikkel P. Tamstorf in OpenAIREHerbert N. Mbufong;
Herbert N. Mbufong
Herbert N. Mbufong in OpenAIREAbstract. This paper aims to assess the spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC) parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Peak season data were collected during different years (between 1998 and 2010) using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE) using an NEE–irradiance model. Parameters from LRCs represent site-specific traits and characteristics describing the following: (a) NEE at light saturation (Fcsat), (b) dark respiration (Rd), (c) light use efficiency (α), (d) NEE when light is at 1000 μmol m−2 s−1 (Fc1000), (e) potential photosynthesis at light saturation (Psat) and (f) the light compensation point (LCP). Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. We did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, leaf area index (LAI) and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat, thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than were assimilation parameters. This indicates the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.
GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint 2022Embargo end date: 01 Jan 2022Publisher:IEEE Funded by:NSF | CAREER: Enabling grid-awa..., EC | TRUST-MLNSF| CAREER: Enabling grid-aware aggregation and real-time control of distributed energy resources in electric power distribution systems ,EC| TRUST-MLarXiv: 2204.05554
For fast timescales or long prediction horizons, the AC optimal power flow (OPF) problem becomes a computational challenge for large-scale, realistic AC networks. To overcome this challenge, this paper presents a novel network reduction methodology that leverages an efficient mixed-integer linear programming (MILP) formulation of a Kron-based reduction that is optimal in the sense that it balances the degree of the reduction with resulting modeling errors in the reduced network. The method takes as inputs the full AC network and a pre-computed library of AC load flow data and uses the graph Laplacian to constraint nodal reductions to only be feasible for neighbors of non-reduced nodes. This results in a highly effective MILP formulation which is embedded within an iterative scheme to successively improve the Kron-based network reduction until convergence. The resulting optimal network reduction is, thus, grounded in the physics of the full network. The accuracy of the network reduction methodology is then explored for a 100+ node medium-voltage radial distribution feeder example across a wide range of operating conditions. It is finally shown that a network reduction of 25-85% can be achieved within seconds and with worst-case voltage magnitude deviation errors within any super node cluster of less than 0.01pu. These results illustrate that the proposed optimization-based approach to Kron reduction of networks is viable for larger networks and suitable for use within various power system applications.
arXiv.org e-Print Ar... arrow_drop_down https://doi.org/10.1109/cdc510...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cdc51059.2022.9992730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://doi.org/10.1109/cdc510...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cdc51059.2022.9992730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Jan 2018 United StatesPublisher:Public Library of Science (PLoS) Funded by:NSF | Coastal SEES Collaborativ..., SNSF | Ocean extremes in a warme..., SNSF | Frontiers in pancreatic p... +1 projectsNSF| Coastal SEES Collaborative Research: Adaptations of fish and fishing communities to rapid climate change ,SNSF| Ocean extremes in a warmer world: Discovering risks for marine ecosystems (OceanX) ,SNSF| Frontiers in pancreatic physiology: Physiology and cell biology of the human acinar cell (workshop) ,NSF| OCE-PRF Track 1 (Broadening Participation): The influence of predator-prey interactions on climate-induced range shifts in marine communitiesAuthors:Selden, Rebecca L.;
Selden, Rebecca L.
Selden, Rebecca L. in OpenAIREMorley, James W.;
Morley, James W.
Morley, James W. in OpenAIRELatour, Robert J.;
Latour, Robert J.
Latour, Robert J. in OpenAIREFrölicher, Thomas L.;
+2 AuthorsFrölicher, Thomas L.
Frölicher, Thomas L. in OpenAIRESelden, Rebecca L.;
Selden, Rebecca L.
Selden, Rebecca L. in OpenAIREMorley, James W.;
Morley, James W.
Morley, James W. in OpenAIRELatour, Robert J.;
Latour, Robert J.
Latour, Robert J. in OpenAIREFrölicher, Thomas L.;
Seagraves, Richard J.;Frölicher, Thomas L.
Frölicher, Thomas L. in OpenAIREPinsky, Malin L.;
Pinsky, Malin L.
Pinsky, Malin L. in OpenAIREpmid: 29768423
pmc: PMC5955691
Recent shifts in the geographic distribution of marine species have been linked to shifts in preferred thermal habitats. These shifts in distribution have already posed challenges for living marine resource management, and there is a strong need for projections of how species might be impacted by future changes in ocean temperatures during the 21st century. We modeled thermal habitat for 686 marine species in the Atlantic and Pacific oceans using long-term ecological survey data from the North American continental shelves. These habitat models were coupled to output from sixteen general circulation models that were run under high (RCP 8.5) and low (RCP 2.6) future greenhouse gas emission scenarios over the 21st century to produce 32 possible future outcomes for each species. The models generally agreed on the magnitude and direction of future shifts for some species (448 or 429 under RCP 8.5 and RCP 2.6, respectively), but strongly disagreed for other species (116 or 120 respectively). This allowed us to identify species with more or less robust predictions. Future shifts in species distributions were generally poleward and followed the coastline, but also varied among regions and species. Species from the U.S. and Canadian west coast including the Gulf of Alaska had the highest projected magnitude shifts in distribution, and many species shifted more than 1000 km under the high greenhouse gas emissions scenario. Following a strong mitigation scenario consistent with the Paris Agreement would likely produce substantially smaller shifts and less disruption to marine management efforts. Our projections offer an important tool for identifying species, fisheries, and management efforts that are particularly vulnerable to climate change impacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0196127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 230 citations 230 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0196127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 23 Feb 2021 Switzerland, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceAuthors: Orrin Myers; Georges Kunstler;Jalene M. LaMontagne;
Jalene M. LaMontagne
Jalene M. LaMontagne in OpenAIREJames A. Lutz;
+60 AuthorsJames A. Lutz
James A. Lutz in OpenAIREOrrin Myers; Georges Kunstler;Jalene M. LaMontagne;
Jalene M. LaMontagne
Jalene M. LaMontagne in OpenAIREJames A. Lutz;
James A. Lutz
James A. Lutz in OpenAIREIstem Fer;
Jordan Luongo;Istem Fer
Istem Fer in OpenAIRERenata Poulton-Kamakura;
Renata Poulton-Kamakura
Renata Poulton-Kamakura in OpenAIREJanneke HilleRisLambers;
Yassine Messaoud; Sam Pearse;Janneke HilleRisLambers
Janneke HilleRisLambers in OpenAIREGregory S. Gilbert;
Natalie L. Cleavitt; C. D. Reid; Inés Ibáñez; Michael A. Steele; Miranda D. Redmond; Susan L. Cohen; Jerry F. Franklin; Benoît Courbaud; Don C. Bragg; Ethan Ready; C. Lane Scher; Andreas P. Wion; William H. Schlesinger;Gregory S. Gilbert
Gregory S. Gilbert in OpenAIREShubhi Sharma;
Robert R. Parmenter; Amanda M. Schwantes;Shubhi Sharma
Shubhi Sharma in OpenAIREScott M. Pearson;
Thomas G. Whitham;Scott M. Pearson
Scott M. Pearson in OpenAIREThomas T. Veblen;
Thomas T. Veblen
Thomas T. Veblen in OpenAIREChristopher L. Kilner;
Christopher L. Kilner
Christopher L. Kilner in OpenAIRESamantha Sutton;
Chase L. Nuñez;Samantha Sutton
Samantha Sutton in OpenAIREEmily V. Moran;
Emily V. Moran
Emily V. Moran in OpenAIRENathan L. Stephenson;
Nathan L. Stephenson
Nathan L. Stephenson in OpenAIREAdrian J. Das;
Jennifer J. Swenson; Cathryn H. Greenberg; Roman Zlotin;Adrian J. Das
Adrian J. Das in OpenAIREJames S. Clark;
James S. Clark;James S. Clark
James S. Clark in OpenAIREWalter D. Koenig;
Robert A. Andrus; Amy V. Whipple;Walter D. Koenig
Walter D. Koenig in OpenAIREJill F. Johnstone;
Eliot J. B. McIntire;Jill F. Johnstone
Jill F. Johnstone in OpenAIREKyle C. Rodman;
Timothy J. Fahey; Erin Shanahan; Jonathan Myers; Johannes M. H. Knops; Catherine A. Gehring; Diana Macias;Kyle C. Rodman
Kyle C. Rodman in OpenAIREQinfeng Guo;
Qinfeng Guo
Qinfeng Guo in OpenAIREChristopher M. Moore;
Christopher M. Moore
Christopher M. Moore in OpenAIREMichael Dietze;
Mélaine Aubry-Kientz; Dale G. Brockway;Michael Dietze
Michael Dietze in OpenAIREMichał Bogdziewicz;
Michał Bogdziewicz
Michał Bogdziewicz in OpenAIREKai Zhu;
Kai Zhu
Kai Zhu in OpenAIREYves Bergeron;
Robert Daley;Yves Bergeron
Yves Bergeron in OpenAIREMargaret Swift;
Kristin Legg;Margaret Swift
Margaret Swift in OpenAIREpmc: PMC7902660
AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Spain, FrancePublisher:Elsevier BV Funded by:NSF | International Research Fe...NSF| International Research Fellowship Program: Solar Energy ScienceMarron, Df; Canovas, E.; Levy, My;Marti, A.;
Marti, A.
Marti, A. in OpenAIRELuque, A.;
Afshar, M.; Albert, J.;Luque, A.
Luque, A. in OpenAIRELehmann, S.;
Abou-Ras, D.; Sadewasser, S.;Lehmann, S.
Lehmann, S. in OpenAIREBarreau, Nicolas;
Barreau, Nicolas
Barreau, Nicolas in OpenAIRENanostructured chalcopyrite compounds have recently been proposed as absorber materials for advanced photovoltaic devices. We have used photoreflectance (PR) to evaluate the impact of interdiffusion phenomena and the presence of native defects on the optoelectronic properties of such materials. Two model material systems have been analyzed: (i) thin layers of CuGaSe2 (Eg=1.7 eV) and CuInSe2 (1.0 eV) in a wide/low/wide bandgap stack that have been grown onto GaAs(0 0 1) substrates by metalorganic chemical vapor deposition (MOCVD); and (ii) thin In2S3 samples (Eg=2.0 eV) containing small amounts of Cu that have been grown by co-evaporation (PVD) intending to form CuxInySz (Eg1.5 eV) nanoclusters into the In2S3 matrix. The results have been analyzed according to the third-derivative functional form (TDFF). The valence band structure of selenide reference samples could be resolved and uneven interdiffusion of Ga and In in the layer stack could be inferred from the shift of PR-signatures. Hints of electronic confinement associated to the transitions at the low-gap region have been found in the selenide layer stack. Regarding the sulphide system, In2S3 is characterized by the presence of native deep states, as revealed by PR. The defect structure of the compound undergoes changes when incorporating Cu and no conclusive result about the presence of ternary clusters of a distinct phase could be drawn. Interdiffusion phenomena and the presence of native defects in chalcopyrites and related compounds will determine their potential use in advanced photovoltaic devices based on nanostructures.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United KingdomPublisher:Wiley Funded by:NSF | COLLABORATIVE RESEARCH: A...NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsAuthors: Noah F. Greenwald;Sara Labrousse;
Sara Labrousse
Sara Labrousse in OpenAIREPhilip N. Trathan;
Philip N. Trathan
Philip N. Trathan in OpenAIREStéphanie Jenouvrier;
+11 AuthorsStéphanie Jenouvrier
Stéphanie Jenouvrier in OpenAIRENoah F. Greenwald;Sara Labrousse;
Sara Labrousse
Sara Labrousse in OpenAIREPhilip N. Trathan;
Philip N. Trathan
Philip N. Trathan in OpenAIREStéphanie Jenouvrier;
Julienne Stroeve; Julienne Stroeve; Julienne Stroeve;Stéphanie Jenouvrier
Stéphanie Jenouvrier in OpenAIREMarika M. Holland;
Barbara Wienecke;Marika M. Holland
Marika M. Holland in OpenAIREShaye Wolf;
Peter T. Fretwell;Shaye Wolf
Shaye Wolf in OpenAIREJudy Che-Castaldo;
Christophe Barbraud; Michelle A. LaRue; Michelle A. LaRue;Judy Che-Castaldo
Judy Che-Castaldo in OpenAIREAbstractSpecies extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate‐dependent meta‐population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi‐extinct by 2100. We conclude that the species should be listed as threatened under the ESA.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 17 Powered bymore_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 29 Jun 2022 Russian Federation, Italy, United Kingdom, France, Russian Federation, Netherlands, ItalyPublisher:Wiley Funded by:NSF | Collaborative Research: P..., UKRI | Do past fires explain cur..., UKRI | Forecasting the impacts o...NSF| Collaborative Research: Predicting ecosystem resilience to climate and disturbance events with a multi-scale hydraulic trait framework ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataAuthors:Jucker, Tommaso;
Fischer, Fabian Jörg;Jucker, Tommaso
Jucker, Tommaso in OpenAIREChave, Jérôme;
Chave, Jérôme
Chave, Jérôme in OpenAIRECoomes, David;
+115 AuthorsCoomes, David
Coomes, David in OpenAIREJucker, Tommaso;
Fischer, Fabian Jörg;Jucker, Tommaso
Jucker, Tommaso in OpenAIREChave, Jérôme;
Chave, Jérôme
Chave, Jérôme in OpenAIRECoomes, David;
Caspersen, John;Coomes, David
Coomes, David in OpenAIREAli, Arshad;
Panzou, Grace Jopaul Loubota; Feldpausch, Ted R;Ali, Arshad
Ali, Arshad in OpenAIREFalster, Daniel;
Usoltsev, Vladimir A; Adu-Bredu, Stephen;Falster, Daniel
Falster, Daniel in OpenAIREAlves, Luciana F;
Aminpour, Mohammad;Alves, Luciana F
Alves, Luciana F in OpenAIREAngoboy, Ilondea B;
Angoboy, Ilondea B
Angoboy, Ilondea B in OpenAIREAnten, Niels PR;
Antin, Cécile; Askari, Yousef; Avilés, Rodrigo Muñoz; Ayyappan, Narayanan;Anten, Niels PR
Anten, Niels PR in OpenAIREBalvanera, Patricia;
Banin, Lindsay;Balvanera, Patricia
Balvanera, Patricia in OpenAIREBarbier, Nicolas;
Barbier, Nicolas
Barbier, Nicolas in OpenAIREBattles, John J;
Beeckman, Hans; Bocko, Yannick E; Bond-Lamberty, Ben; Bongers, Frans; Bowers, Samuel; Brade, Thomas; Van Breugel, Michiel; Chantrain, Arthur; Chaudhary, Rajeev;Battles, John J
Battles, John J in OpenAIREDai, Jingyu;
Dalponte, Michele;Dai, Jingyu
Dai, Jingyu in OpenAIREDimobe, Kangbéni;
Domec, Jean-Christophe; Doucet, Jean-Louis; Duursma, Remko A;Dimobe, Kangbéni
Dimobe, Kangbéni in OpenAIREEnríquez, Moisés;
Van Ewijk, Karin Y; Farfán-Rios, William; Fayolle, Adeline; Forni, Eric;Enríquez, Moisés
Enríquez, Moisés in OpenAIREForrester, David I;
Gilani, Hammad; Godlee, John L; Gourlet-Fleury, Sylvie; Haeni, Matthias; Hall, Jefferson S; He, Jie-Kun; Hemp, Andreas; Hernández-Stefanoni, José L; Higgins, Steven I; Holdaway, Robert J; Hussain, Kiramat;Forrester, David I
Forrester, David I in OpenAIREHutley, Lindsay B;
Hutley, Lindsay B
Hutley, Lindsay B in OpenAIREIchie, Tomoaki;
Iida, Yoshiko; Jiang, Hai-Sheng; Joshi, Puspa Raj; Kaboli, Hasan;Ichie, Tomoaki
Ichie, Tomoaki in OpenAIRELarsary, Maryam Kazempour;
Larsary, Maryam Kazempour
Larsary, Maryam Kazempour in OpenAIREKenzo, Tanaka;
Kloeppel, Brian D; Kohyama, Takashi; Kunwar, Suwash; Kuyah, Shem;Kenzo, Tanaka
Kenzo, Tanaka in OpenAIREKvasnica, Jakub;
Kvasnica, Jakub
Kvasnica, Jakub in OpenAIRELin, Siliang;
Lin, Siliang
Lin, Siliang in OpenAIRELines, Emily;
Liu, Hongyan; Lorimer, Craig; Loumeto, Jean-Joël; Malhi, Yadvinder; Marshall, Peter L;Lines, Emily
Lines, Emily in OpenAIREMattsson, Eskil;
Mattsson, Eskil
Mattsson, Eskil in OpenAIREMatula, Radim;
Matula, Radim
Matula, Radim in OpenAIREMeave, Jorge A;
Meave, Jorge A
Meave, Jorge A in OpenAIREMensah, Sylvanus;
Mi, Xiangcheng; Momo, Stéphane;Mensah, Sylvanus
Mensah, Sylvanus in OpenAIREMoncrieff, Glenn R;
Mora, Francisco; Nissanka, Sarath P; O'Hara, Kevin L; Pearce, Steven; Pelissier, Raphaël; Peri, Pablo L; Ploton, Pierre; Poorter, Lourens; Pour, Mohsen Javanmiri; Pourbabaei, Hassan; Rada, Juan Manuel Dupuy; Ribeiro, Sabina C;Moncrieff, Glenn R
Moncrieff, Glenn R in OpenAIRERyan, Casey;
Sanaei, Anvar; Sanger, Jennifer;Ryan, Casey
Ryan, Casey in OpenAIRESchlund, Michael;
Schlund, Michael
Schlund, Michael in OpenAIRESellan, Giacomo;
Sellan, Giacomo
Sellan, Giacomo in OpenAIREShenkin, Alexander;
Sonké, Bonaventure; Sterck, Frank J;Shenkin, Alexander
Shenkin, Alexander in OpenAIRESvátek, Martin;
Takagi, Kentaro; Trugman, Anna T; Ullah, Farman; Vadeboncoeur, Matthew A; Valipour, Ahmad; Vanderwel, Mark C;Svátek, Martin
Svátek, Martin in OpenAIREVovides, Alejandra G;
Wang, Weiwei; Wang, Li-Qiu; Wirth, Christian; Woods, Murray; Xiang, Wenhua; De Aquino Ximenes, Fabiano; Xu, Yaozhan;Vovides, Alejandra G
Vovides, Alejandra G in OpenAIREYamada, Toshihiro;
Zavala, Miguel A;Yamada, Toshihiro
Yamada, Toshihiro in OpenAIREpmid: 35703577
pmc: PMC9542605
AbstractData capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non‐forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC‐BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 59 Powered bymore_vert CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:NIH | Alcohol-induced cardiac i..., NIH | Maturation of Human Pluri..., NIH | Georgia Clinical & Transl... +2 projectsNIH| Alcohol-induced cardiac injury and repair in human induced pluripotent stem cell model ,NIH| Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes ,NIH| Georgia Clinical & Translational Science Alliance (GaCTSA) ,NIH| A systematic analysis of alcohol-induced cardiotoxicity in human pluripotent stem cell-derived cardiomyocytes ,NSF| ISS: Engineering Stem Cell-Derived Cardiac Microtissues with Metabolic Regulators in Space to Promote Cardiomyocyte MaturationAuthors:Chunhui Xu;
Chunhui Xu;Chunhui Xu
Chunhui Xu in OpenAIREFangxu Sun;
Lawrence C Armand; +3 AuthorsFangxu Sun
Fangxu Sun in OpenAIREChunhui Xu;
Chunhui Xu;Chunhui Xu
Chunhui Xu in OpenAIREFangxu Sun;
Lawrence C Armand; Rui Liu; Rui Liu; Ronghu Wu;Fangxu Sun
Fangxu Sun in OpenAIREChronic alcohol consumption in adults can induce cardiomyopathy, arrhythmias, and heart failure. In newborns, prenatal alcohol exposure can increase the risk of congenital heart diseases. Understanding biological mechanisms involved in the long-term alcohol exposure-induced cardiotoxicity is pivotal to the discovery of therapeutic strategies. In this study, cardiomyocytes derived from human pluripotent stem cells (hiPSC-CMs) were treated with clinically relevant doses of ethanol for various durations up to 5 weeks. The treated cells were characterized for their cellular properties and functions, and global proteomic profiling was conducted to understand the molecular changes associated with long-term ethanol exposure. Increased cell death, oxidative stress, deranged Ca2+ handling, abnormal action potential, altered contractility, and suppressed structure development were observed in ethanol-treated cells. Many dysregulated proteins identified by global proteomic profiling were involved in apoptosis, heart contraction, and extracellular collagen matrix. In addition, several signaling pathways including the Wnt and TGFβ signaling pathways were affected due to long-term ethanol treatment. Therefore, chronic ethanol treatment of hiPSC-CMs induces cardiotoxicity, impairs cardiac functions, and alters protein expression and signaling pathways. This study demonstrates the utility of hiPSC-CMs as a novel model for chronic alcohol exposure study and provides the molecular mechanisms associated with long-term alcohol exposure in human cardiomyocytes.
Stem Cell Reviews an... arrow_drop_down Stem Cell Reviews and ReportsArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12015-021-10267-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Stem Cell Reviews an... arrow_drop_down Stem Cell Reviews and ReportsArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12015-021-10267-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, United Kingdom, Australia, Portugal, United Kingdom, United Kingdom, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: E..., ARC | Testing climatic, physiol..., ARC | Woodland response to elev... +3 projectsNSF| Collaborative Research: Ecoclimate Teleconnections between Amazonia and Temperate North America: Cross-Region Feedbacks among Tree Mortality, Land Use Change, and the Atmosphere ,ARC| Testing climatic, physiological and hydrological assumptions underpinning water yield from montane forests ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,ARC| Shifting rainfall from spring to autumn: tree growth and water use under climate change ,NSF| COLLABORATIVE RESEARCH: EAGER-NEON: Prototyping Assessment of Ecoclimate Teleconnections Affecting NEON Domains ,NSF| Transformative Behavior of Energy, Water and Carbon in the Critical Zone II: Interactions between Long- and Short-term Processes that Control Delivery of Critical Zone ServicesAuthors:Jordi Martínez-Vilalta;
Jordi Martínez-Vilalta
Jordi Martínez-Vilalta in OpenAIRETimothy J. Brodribb;
Simon M. Landhäusser;Timothy J. Brodribb
Timothy J. Brodribb in OpenAIREMelanie J. B. Zeppel;
+62 AuthorsMelanie J. B. Zeppel
Melanie J. B. Zeppel in OpenAIREJordi Martínez-Vilalta;
Jordi Martínez-Vilalta
Jordi Martínez-Vilalta in OpenAIRETimothy J. Brodribb;
Simon M. Landhäusser;Timothy J. Brodribb
Timothy J. Brodribb in OpenAIREMelanie J. B. Zeppel;
Melanie J. B. Zeppel;Melanie J. B. Zeppel
Melanie J. B. Zeppel in OpenAIREWilliam T. Pockman;
Thomas Kolb;William T. Pockman
William T. Pockman in OpenAIREHenrik Hartmann;
Andy Hector; Travis E. Huxman; Alison K. Macalady; Darin J. Law;Henrik Hartmann
Henrik Hartmann in OpenAIREL. Turin Dickman;
Matthew J. Germino;L. Turin Dickman
L. Turin Dickman in OpenAIREDanielle A. Way;
Danielle A. Way; Leander D. L. Anderegg; Robert E. Pangle; John S. Sperry;Danielle A. Way
Danielle A. Way in OpenAIREDavid T. Tissue;
Nate G. McDowell; J. D. Muss;David T. Tissue
David T. Tissue in OpenAIREBrent E. Ewers;
Honglang Duan; Patrick J. Hudson;Brent E. Ewers
Brent E. Ewers in OpenAIREPatrick J. Mitchell;
Patrick J. Mitchell
Patrick J. Mitchell in OpenAIREFrida I. Piper;
Elizabeth A. Pinkard; Lucía Galiano;Frida I. Piper
Frida I. Piper in OpenAIRETrenton E. Franz;
Trenton E. Franz
Trenton E. Franz in OpenAIREUwe G. Hacke;
Joe Quirk; Greg A. Barron-Gafford; Keith Reinhardt; Adam D. Collins; Arthur Gessler; David M. Love; Jeffrey M. Kane; Sanna Sevanto;Uwe G. Hacke
Uwe G. Hacke in OpenAIREHarald Bugmann;
Harald Bugmann
Harald Bugmann in OpenAIREMaurizio Mencuccini;
David D. Breshears; Henry D. Adams;Maurizio Mencuccini
Maurizio Mencuccini in OpenAIRENúria Garcia-Forner;
David A. Galvez;Núria Garcia-Forner
Núria Garcia-Forner in OpenAIREJames D. Lewis;
James D. Lewis
James D. Lewis in OpenAIREDavid J. Beerling;
David J. Beerling
David J. Beerling in OpenAIREMichael O'Brien;
Michael O'Brien
Michael O'Brien in OpenAIREChonggang Xu;
Michael W. Jenkins; Jennifer A. Plaut; Anna Sala; Craig D. Allen; Monica L. Gaylord; Monica L. Gaylord;Chonggang Xu
Chonggang Xu in OpenAIREEnrico A. Yepez;
Enrico A. Yepez
Enrico A. Yepez in OpenAIREMichel Vennetier;
Jean-Marc Limousin; Anthony P. O'Grady; Richard Cobb;Michel Vennetier
Michel Vennetier in OpenAIREFrancesco Ripullone;
William R. L. Anderegg;Francesco Ripullone
Francesco Ripullone in OpenAIRERodrigo Vargas;
Rodrigo Vargas
Rodrigo Vargas in OpenAIRERodrigo Hakamada;
Rodrigo Hakamada
Rodrigo Hakamada in OpenAIREMichael G. Ryan;
Michael G. Ryan;Michael G. Ryan
Michael G. Ryan in OpenAIREWidespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 790 citations 790 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 74visibility views 74 download downloads 2,340 Powered bymore_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu