- home
- Advanced Search
- Energy Research
- 2025-2025
- Closed Access
- Restricted
- Open Source
- GB
- DK
- Energy Research
- 2025-2025
- Closed Access
- Restricted
- Open Source
- GB
- DK
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yujia Huang; Qiuye Sun; Zhe Chen; David Wenzhong Gao; Torben Bach Pedersen; Kim Guldstrand Larsen; Yushuai Li;IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2025.3527221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2025.3527221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Wiley Authors: Erik Kristensen; Mogens R. Flindt; Cintia O. Quintana;doi: 10.1111/gcb.70022
pmid: 39757865
ABSTRACTThe concept of “blue carbon” is, in this study, critically evaluated with respect to its definitions, measuring approaches, and time scales. Blue carbon deposited in ocean sediments can only counteract anthropogenic greenhouse gas (GHG) emissions if stored on a long‐term basis. The focus here is on the coastal blue carbon ecosystems (BCEs), mangrove forests, saltmarshes, and seagrass meadows due to their high primary production and large carbon stocks. Blue carbon sequestration in BCEs is typically estimated using either: 1. sediment carbon inventories combined with accretion rates or 2. carbon mass balance between input to and output from the sediment. The inventory approach is compromised by a lack of accurate accretion estimates over extended time periods. Hence, short‐term sedimentation assays cannot be reliably extrapolated to long timescales. The use of long‐term tracers like 210Pb, on the other hand, is invalid in most BCEs due to sediment mobility by bioturbation and other physical disturbances. While the mass balance approach provides reasonable short‐term (months) estimates, it often fails when extrapolated over longer time periods (> 100 years) due to climatic variations. Furthermore, many published budgets based on mass balance do not include all relevant carbon sources and sinks. Simulations of long‐term decomposition of mangrove, saltmarsh (Spartina sp.), and eelgrass (Zostera sp.) litter using a 3‐G exponential model indicate that current estimates of carbon sequestration based on the inventory and mass balance approaches are 3–18 times too high. Most published estimates of carbon sequestration in BCEs must therefore be considered overestimates. The climate mitigation potential of blue carbon in BCEs is also challenged by excess emissions of the GHG methane (CH4) and nitrous oxide (N2O) from biogenic structures in mangrove forests and saltmarsh sediments. Thus, in many cases, carbon sequestration into BCE sediments cannot keep pace with the simultaneous GHG emissions in CO2 equivalents.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Change BiologyArticle . 2025License: read_onlyData sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Change BiologyArticle . 2025License: read_onlyData sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Ziqi Zhang; Peng Li; Haoran Ji; Hao Yu; Jinli Zhao; Wei Xi; Jianzhong Wu;IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2024.3516792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2024.3516792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Contribution for newspaper or weekly magazine 2025 DenmarkPublisher:Energynautics GmbH Iov, Florin; Petersen, Lennart; Rico, jon Martinez; Raducu, George Alin; Pombo, Daniel Vasquez; Das, Kaushik;The high expansion rate of renewable generation in the last years was mainly driven by the green transition and the net zero emission targets for 2050. Concerns on the volatility of wind and solar energy, can be mitigated by combining these renewable energy sources with energy storage and operating them coordinately, creating hybrid power plants. Price of batteries has also dropped significantly reaching US$139/kWh in 2023 (battery pack price) and it is expected that by the end of this decade the price will fall below US$100/kWh. Thus, more developers and owners of large renewable plants are looking into their hybridization for both off-grid and grid-connected configurations. The advantages for such a hybrid renewable power plant include complementarity of energy production, better utilization of grid connection while reducing the connection costs, firm capacity of energy production, increase of revenue streams by providing ancillary services, etc. However, the control of a wide range of technologies i.e. wind turbines, solar PV and batteries, from different suppliers poses challenges during their integration into a hybrid power plant.This paper aims to provide an overview of the most common configurations of co-located hybrid power plants including their control architectures. The advantages and challenges for each configuration are discussed in detail from the perspective of OEMs and system integrators.The work presented is part of the ongoing activities in the IEA Wind TCP Task 50 on Hybrid Power Plants that aims to provide a systematic framework and guidelines in this area.
Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2025Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5b55bf1ec1a4c6f3a07543117da06193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2025Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5b55bf1ec1a4c6f3a07543117da06193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Qifan Chen; Siqi Bu; Xin Zhang; Shijun Yi; Yanli Wei;IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3422173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3422173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Hamid Reza Massrur; Mahmud Fotuhi-Firuzabad; Payman Dehghanian; Frede Blaabjerg;IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3392014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3392014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 06 Jan 2025 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Tracing Past Methane Vari...NSF| Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice CoresBen Riddell-Young; James Edward Lee; Edward J. Brook; Jochen Schmitt; Hubertus Fischer; Thomas K. Bauska; James A. Menking; René Iseli; Justin Reid Clark;pmid: 39743610
Understanding the causes of past atmospheric methane (CH4) variability is important for characterizing the relationship between CH4, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH4 contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE)1,2. The drivers of these CH4 variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH4, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic)3-5. Here we present multi-decadal-scale measurements of δ13C-CH4 and δD-CH4 from the WAIS Divide and Talos Dome ice cores and identify abrupt 1‰ enrichments in δ13C-CH4 synchronous with HE CH4 pulses and 0.5‰ δ13C-CH4 enrichments synchronous with DO CH4 increases. δD-CH4 varied little across the abrupt CH4 changes. Using box models to interpret these isotopic shifts6 and assuming a constant δ13C-CH4 of microbial emissions, we propose that abrupt shifts in tropical rainfall associated with HEs and DO events enhanced 13C-enriched pyrogenic CH4 emissions, and by extension global wildfire extent, by 90-150%. Carbon cycle box modelling experiments7 suggest that the resulting released terrestrial carbon could have caused from one-third to all of the abrupt CO2 increases associated with HEs. These findings suggest that fire regimes and the terrestrial carbon cycle varied contemporaneously and substantially with past abrupt climate changes of the last glacial period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Emerald Authors: Tereza Blazkova; Esben Rahbek Gjerdrum Pedersen; Kirsti Reitan Reitan Andersen;PurposeThis study aims to deepen the understanding of what stakeholders talk about when it comes to sustainable fashion on social media and how. Sustainable fashion is a broad umbrella term, which can distract attention from the differences between the individual subtopics and the sentiments ascribed to them. However, little systematic research exists on how the stakeholder activity and dominant sentiments vary across different sustainable fashion topics.Design/methodology/approachThis study is based on a social media analysis of 19,179 tweets authored by 1,819 distinct stakeholders on Twitter (now “X”) from 2007 to 2022. A large language model, a type of artificial intelligence (AI) that focuses on understanding and generating human language, is used to conduct a sentiment analysis of six stakeholder groups and 81 keywords linked to sustainable fashion. Two case examples are used to highlight the differences in stakeholder perceptions of sustainable fashion.FindingsThe social media analysis demonstrates how subcategories of sustainable fashion significantly differ in terms of stakeholder interest, activity and sentiments. For instance, tweets on circular economy and relevant subcategories (closed loop, recycling, upcycling, etc.) are popular, whereas issues linked to environmental, social and governance (ESG) and due diligence receive little attention on social media. While sentiments toward sustainable fashion are in general positive, discussions on topics such as labor rights issues are consistently associated with negative sentiments across most stakeholder groups.Originality/valueThis study contributes to the literature by demonstrating how stakeholders and sentiments vary across different topics linked to sustainable fashion on social media, which has become one of the main channels for communicating sustainability content. The findings thereby shed new light on dominant stakeholder positions regarding a wide variety of sustainable fashion topics.
Journal of Fashion M... arrow_drop_down Journal of Fashion Marketing and ManagementArticle . 2025 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefJournal of Fashion Marketing and ManagementArticle . 2025License: unspecifiedData sources: CBS Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/jfmm-05-2024-0184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Fashion M... arrow_drop_down Journal of Fashion Marketing and ManagementArticle . 2025 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefJournal of Fashion Marketing and ManagementArticle . 2025License: unspecifiedData sources: CBS Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/jfmm-05-2024-0184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Springer Science and Business Media LLC Funded by:NIH | Targeting the casein kina..., NIH | Stress-induced transposon..., NSF | Collaborative Research: M... +27 projectsNIH| Targeting the casein kinase 1 (CK1)-like kinase Yck2 in fungal pathogenesis ,NIH| Stress-induced transposon mobilization in the human fungal pathogen Cryptococcus ,NSF| Collaborative Research: MIM: Gut-inhabiting fungi influence structure and function of herptile microbiomes through horizontal gene transfer and novel metabolic function ,NIH| Calcineurin signaling cascades governing Cryptococcus virulence ,NIH| RNAi-dependent epimutation roles in antimicrobial drug resistance and pathogenesis ,NSF| Development and application of innovative tools to mitigate White Nose Syndrome, a lethal fungal disease decimating North American bat populations ,NIH| Regulation and function of mucosal IgA immune responses to mycobiota in the gut. ,ARC| Industrial Transformation Research Hubs - Grant ID: IH190100022 ,NIH| Functions of Cryptococcus neoformans mating type loci ,NIH| Targeting Hsp90 in cryptococcal fungal pathogenesis ,NIH| Protective Immune Responses to Blastomyces Dermatitidis ,NIH| Malassezia and Candida auris: skin microbiome dysbiosis and de-regulation of cutaneous homeostasis ,NIH| Conjugate vaccines for prevention and treatment of cryptococcosis ,NIH| Commensal fungal communities in the regulation of immunity and intestinal inflammation. ,NIH| Cross-kingdom RNA communications between plant and fungal pathogens ,NIH| Novel Combination Adjuvant for Eliciting Systemic and Mucosal CD8 T Cell Memory ,NSF| Develop innovative stable RNA-based anti-fungal reagents to control plant fungal diseases ,NIH| The Genetic Basis of Virulence in Cryptococcus Neoformans ,NIH| Microbes in Health and Disease Training Program ,NIH| Mechanisms of vaccine immunity against coccidioidomycosis ,CIHR ,NIH| Biology of Fungal Melanin ,NIH| Systematic Analysis of Morphogenesis, Commensalism, and Virulence in a Leading Human Fungal Pathogen ,NIH| Evolved Heterogeneity Contributes to Chronic Fungal Lung Infections ,NIH| IMMUNOSUPPRESSANT TARGETS IN CRYPTOCOCCUS NEOFORMANS ,NIH| Molecular Pathogenesis of Blastomycosis ,NIH| Mononuclear phagocyte networks in mycobiota regulation and antifungal immunity. ,NIH| Synergy of Host Defense Mechanisms in the Lung ,NIH| Evolution of Aspergillus fumigatus virulence ,NSF| CAREER: When do mycorrhizal fungi influence plant community dynamics?Nicola T. Case; Sarah J. Gurr; Matthew C. Fisher; David S. Blehert; Charles Boone; Arturo Casadevall; Anuradha Chowdhary; Christina A. Cuomo; Cameron R. Currie; David W. Denning; Iuliana V. Ene; Lillian K. Fritz-Laylin; Aleeza C. Gerstein; Neil A. R. Gow; Asiya Gusa; Iliyan D. Iliev; Timothy Y. James; Hailing Jin; Regine Kahmann; Bruce S. Klein; James W. Kronstad; Kyla S. Ost; Kabir G. Peay; Rebecca S. Shapiro; Donald C. Sheppard; Neta Shlezinger; Jason E. Stajich; Eva H. Stukenbrock; John W. Taylor; Gerard D. Wright; Leah E. Cowen; Joseph Heitman; Julia A. Segre;Over the past billion years, the fungal kingdom has diversified to more than two million species, with over 95% still undescribed. Beyond the well-known macroscopic mushrooms and microscopic yeast, fungi are heterotrophs that feed on almost any organic carbon, recycling nutrients through the decay of dead plants and animals and sequestering carbon into Earth's ecosystems. Human-directed applications of fungi extend from leavened bread, alcoholic beverages and biofuels to pharmaceuticals, including antibiotics and psychoactive compounds. Conversely, fungal infections pose risks to ecosystems ranging from crops to wildlife to humans; these risks are driven, in part, by human and animal movement, and might be accelerating with climate change. Genomic surveys are expanding our knowledge of the true biodiversity of the fungal kingdom, and genome-editing tools make it possible to imagine harnessing these organisms to fuel the bioeconomy. Here, we examine the fungal threats facing civilization and investigate opportunities to use fungi to combat these threats.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08419-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08419-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Springer Science and Business Media LLC Funded by:UKRI | Supply chain for power el...UKRI| Supply chain for power electronic devicesAuthors: Parvin, Golfam; Parisa-Sadat, Ashofteh;pmid: 40000593
The dam and hydropower plant in the Marun basin located in southwestern Iran have faced severe challenges in recent years in providing agricultural irrigation water and domestic electricity due to the adverse effects of climate change and population growth. To overcome these challenges, 11 strategies as water-energy nexus scenarios were discussed. For this purpose, first, the effects of climate change on temperature and precipitation variables were examined in three concentration pathway (RCP) RCP2.6, RCP4.5, and RCP8.5 from fifth report of International Panel on Climate Change (IPCC). Then, the inflow to the reservoir and the irrigation water required in the future time period were calculated using the artificial neural network and Cropwat models, respectively. The water system was modeled in the water evaluation and planning (WEAP) model, and the energy system was modeled in the low emissions analysis platform (LEAP) model and then coupled with each other. Considering the field situation of the Marun basin, 11 water-energy nexus (WEN) scenarios and nine nexus indexes for evaluating the scenarios were proposed by the expert group. In order to select the best scenario in the future time interval, the ordinal priority approach (OPA) decision-making method integrated with D-number theory was used. The results reveal that the maximum water-energy nexus sustainability index under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios are 31.56, 34.3, and 34.9 for the WEN4 (i.e., reducing the weeds and vegetables cultivation area by 30%), WEN7 (i.e., reduction in the grain maize and vegetables cultivation area each by 5% units and increasing forage crops cultivation area by 10% units), and WEN11 (i.e., decreasing household electricity consumption intensity by 20% throughout increasing electricity tariffs) scenarios, respectively. Also, the results of the OPA method show that the most important index in evaluating the nexus scenarios is the energy sector sustainability index with a weight of 0.142, and the best nexus scenario is the WEN7 scenario with a final weight of 0.189. The comprehensive decision-making process within the comprehensive framework of the water-energy nexus under the impact of climate change, presented in this study, can easily be adopted and applied in other river basins because of verified tools in water and energy, explicit steps, and available initial data.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-025-36105-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-025-36105-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yujia Huang; Qiuye Sun; Zhe Chen; David Wenzhong Gao; Torben Bach Pedersen; Kim Guldstrand Larsen; Yushuai Li;IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2025.3527221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2025.3527221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Wiley Authors: Erik Kristensen; Mogens R. Flindt; Cintia O. Quintana;doi: 10.1111/gcb.70022
pmid: 39757865
ABSTRACTThe concept of “blue carbon” is, in this study, critically evaluated with respect to its definitions, measuring approaches, and time scales. Blue carbon deposited in ocean sediments can only counteract anthropogenic greenhouse gas (GHG) emissions if stored on a long‐term basis. The focus here is on the coastal blue carbon ecosystems (BCEs), mangrove forests, saltmarshes, and seagrass meadows due to their high primary production and large carbon stocks. Blue carbon sequestration in BCEs is typically estimated using either: 1. sediment carbon inventories combined with accretion rates or 2. carbon mass balance between input to and output from the sediment. The inventory approach is compromised by a lack of accurate accretion estimates over extended time periods. Hence, short‐term sedimentation assays cannot be reliably extrapolated to long timescales. The use of long‐term tracers like 210Pb, on the other hand, is invalid in most BCEs due to sediment mobility by bioturbation and other physical disturbances. While the mass balance approach provides reasonable short‐term (months) estimates, it often fails when extrapolated over longer time periods (> 100 years) due to climatic variations. Furthermore, many published budgets based on mass balance do not include all relevant carbon sources and sinks. Simulations of long‐term decomposition of mangrove, saltmarsh (Spartina sp.), and eelgrass (Zostera sp.) litter using a 3‐G exponential model indicate that current estimates of carbon sequestration based on the inventory and mass balance approaches are 3–18 times too high. Most published estimates of carbon sequestration in BCEs must therefore be considered overestimates. The climate mitigation potential of blue carbon in BCEs is also challenged by excess emissions of the GHG methane (CH4) and nitrous oxide (N2O) from biogenic structures in mangrove forests and saltmarsh sediments. Thus, in many cases, carbon sequestration into BCE sediments cannot keep pace with the simultaneous GHG emissions in CO2 equivalents.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Change BiologyArticle . 2025License: read_onlyData sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Change BiologyArticle . 2025License: read_onlyData sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Ziqi Zhang; Peng Li; Haoran Ji; Hao Yu; Jinli Zhao; Wei Xi; Jianzhong Wu;IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2024.3516792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2024.3516792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Contribution for newspaper or weekly magazine 2025 DenmarkPublisher:Energynautics GmbH Iov, Florin; Petersen, Lennart; Rico, jon Martinez; Raducu, George Alin; Pombo, Daniel Vasquez; Das, Kaushik;The high expansion rate of renewable generation in the last years was mainly driven by the green transition and the net zero emission targets for 2050. Concerns on the volatility of wind and solar energy, can be mitigated by combining these renewable energy sources with energy storage and operating them coordinately, creating hybrid power plants. Price of batteries has also dropped significantly reaching US$139/kWh in 2023 (battery pack price) and it is expected that by the end of this decade the price will fall below US$100/kWh. Thus, more developers and owners of large renewable plants are looking into their hybridization for both off-grid and grid-connected configurations. The advantages for such a hybrid renewable power plant include complementarity of energy production, better utilization of grid connection while reducing the connection costs, firm capacity of energy production, increase of revenue streams by providing ancillary services, etc. However, the control of a wide range of technologies i.e. wind turbines, solar PV and batteries, from different suppliers poses challenges during their integration into a hybrid power plant.This paper aims to provide an overview of the most common configurations of co-located hybrid power plants including their control architectures. The advantages and challenges for each configuration are discussed in detail from the perspective of OEMs and system integrators.The work presented is part of the ongoing activities in the IEA Wind TCP Task 50 on Hybrid Power Plants that aims to provide a systematic framework and guidelines in this area.
Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2025Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5b55bf1ec1a4c6f3a07543117da06193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2025Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5b55bf1ec1a4c6f3a07543117da06193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Qifan Chen; Siqi Bu; Xin Zhang; Shijun Yi; Yanli Wei;IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3422173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3422173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Hamid Reza Massrur; Mahmud Fotuhi-Firuzabad; Payman Dehghanian; Frede Blaabjerg;IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3392014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3392014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 06 Jan 2025 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Tracing Past Methane Vari...NSF| Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice CoresBen Riddell-Young; James Edward Lee; Edward J. Brook; Jochen Schmitt; Hubertus Fischer; Thomas K. Bauska; James A. Menking; René Iseli; Justin Reid Clark;pmid: 39743610
Understanding the causes of past atmospheric methane (CH4) variability is important for characterizing the relationship between CH4, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH4 contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE)1,2. The drivers of these CH4 variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH4, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic)3-5. Here we present multi-decadal-scale measurements of δ13C-CH4 and δD-CH4 from the WAIS Divide and Talos Dome ice cores and identify abrupt 1‰ enrichments in δ13C-CH4 synchronous with HE CH4 pulses and 0.5‰ δ13C-CH4 enrichments synchronous with DO CH4 increases. δD-CH4 varied little across the abrupt CH4 changes. Using box models to interpret these isotopic shifts6 and assuming a constant δ13C-CH4 of microbial emissions, we propose that abrupt shifts in tropical rainfall associated with HEs and DO events enhanced 13C-enriched pyrogenic CH4 emissions, and by extension global wildfire extent, by 90-150%. Carbon cycle box modelling experiments7 suggest that the resulting released terrestrial carbon could have caused from one-third to all of the abrupt CO2 increases associated with HEs. These findings suggest that fire regimes and the terrestrial carbon cycle varied contemporaneously and substantially with past abrupt climate changes of the last glacial period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Emerald Authors: Tereza Blazkova; Esben Rahbek Gjerdrum Pedersen; Kirsti Reitan Reitan Andersen;PurposeThis study aims to deepen the understanding of what stakeholders talk about when it comes to sustainable fashion on social media and how. Sustainable fashion is a broad umbrella term, which can distract attention from the differences between the individual subtopics and the sentiments ascribed to them. However, little systematic research exists on how the stakeholder activity and dominant sentiments vary across different sustainable fashion topics.Design/methodology/approachThis study is based on a social media analysis of 19,179 tweets authored by 1,819 distinct stakeholders on Twitter (now “X”) from 2007 to 2022. A large language model, a type of artificial intelligence (AI) that focuses on understanding and generating human language, is used to conduct a sentiment analysis of six stakeholder groups and 81 keywords linked to sustainable fashion. Two case examples are used to highlight the differences in stakeholder perceptions of sustainable fashion.FindingsThe social media analysis demonstrates how subcategories of sustainable fashion significantly differ in terms of stakeholder interest, activity and sentiments. For instance, tweets on circular economy and relevant subcategories (closed loop, recycling, upcycling, etc.) are popular, whereas issues linked to environmental, social and governance (ESG) and due diligence receive little attention on social media. While sentiments toward sustainable fashion are in general positive, discussions on topics such as labor rights issues are consistently associated with negative sentiments across most stakeholder groups.Originality/valueThis study contributes to the literature by demonstrating how stakeholders and sentiments vary across different topics linked to sustainable fashion on social media, which has become one of the main channels for communicating sustainability content. The findings thereby shed new light on dominant stakeholder positions regarding a wide variety of sustainable fashion topics.
Journal of Fashion M... arrow_drop_down Journal of Fashion Marketing and ManagementArticle . 2025 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefJournal of Fashion Marketing and ManagementArticle . 2025License: unspecifiedData sources: CBS Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/jfmm-05-2024-0184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Fashion M... arrow_drop_down Journal of Fashion Marketing and ManagementArticle . 2025 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefJournal of Fashion Marketing and ManagementArticle . 2025License: unspecifiedData sources: CBS Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/jfmm-05-2024-0184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Springer Science and Business Media LLC Funded by:NIH | Targeting the casein kina..., NIH | Stress-induced transposon..., NSF | Collaborative Research: M... +27 projectsNIH| Targeting the casein kinase 1 (CK1)-like kinase Yck2 in fungal pathogenesis ,NIH| Stress-induced transposon mobilization in the human fungal pathogen Cryptococcus ,NSF| Collaborative Research: MIM: Gut-inhabiting fungi influence structure and function of herptile microbiomes through horizontal gene transfer and novel metabolic function ,NIH| Calcineurin signaling cascades governing Cryptococcus virulence ,NIH| RNAi-dependent epimutation roles in antimicrobial drug resistance and pathogenesis ,NSF| Development and application of innovative tools to mitigate White Nose Syndrome, a lethal fungal disease decimating North American bat populations ,NIH| Regulation and function of mucosal IgA immune responses to mycobiota in the gut. ,ARC| Industrial Transformation Research Hubs - Grant ID: IH190100022 ,NIH| Functions of Cryptococcus neoformans mating type loci ,NIH| Targeting Hsp90 in cryptococcal fungal pathogenesis ,NIH| Protective Immune Responses to Blastomyces Dermatitidis ,NIH| Malassezia and Candida auris: skin microbiome dysbiosis and de-regulation of cutaneous homeostasis ,NIH| Conjugate vaccines for prevention and treatment of cryptococcosis ,NIH| Commensal fungal communities in the regulation of immunity and intestinal inflammation. ,NIH| Cross-kingdom RNA communications between plant and fungal pathogens ,NIH| Novel Combination Adjuvant for Eliciting Systemic and Mucosal CD8 T Cell Memory ,NSF| Develop innovative stable RNA-based anti-fungal reagents to control plant fungal diseases ,NIH| The Genetic Basis of Virulence in Cryptococcus Neoformans ,NIH| Microbes in Health and Disease Training Program ,NIH| Mechanisms of vaccine immunity against coccidioidomycosis ,CIHR ,NIH| Biology of Fungal Melanin ,NIH| Systematic Analysis of Morphogenesis, Commensalism, and Virulence in a Leading Human Fungal Pathogen ,NIH| Evolved Heterogeneity Contributes to Chronic Fungal Lung Infections ,NIH| IMMUNOSUPPRESSANT TARGETS IN CRYPTOCOCCUS NEOFORMANS ,NIH| Molecular Pathogenesis of Blastomycosis ,NIH| Mononuclear phagocyte networks in mycobiota regulation and antifungal immunity. ,NIH| Synergy of Host Defense Mechanisms in the Lung ,NIH| Evolution of Aspergillus fumigatus virulence ,NSF| CAREER: When do mycorrhizal fungi influence plant community dynamics?Nicola T. Case; Sarah J. Gurr; Matthew C. Fisher; David S. Blehert; Charles Boone; Arturo Casadevall; Anuradha Chowdhary; Christina A. Cuomo; Cameron R. Currie; David W. Denning; Iuliana V. Ene; Lillian K. Fritz-Laylin; Aleeza C. Gerstein; Neil A. R. Gow; Asiya Gusa; Iliyan D. Iliev; Timothy Y. James; Hailing Jin; Regine Kahmann; Bruce S. Klein; James W. Kronstad; Kyla S. Ost; Kabir G. Peay; Rebecca S. Shapiro; Donald C. Sheppard; Neta Shlezinger; Jason E. Stajich; Eva H. Stukenbrock; John W. Taylor; Gerard D. Wright; Leah E. Cowen; Joseph Heitman; Julia A. Segre;Over the past billion years, the fungal kingdom has diversified to more than two million species, with over 95% still undescribed. Beyond the well-known macroscopic mushrooms and microscopic yeast, fungi are heterotrophs that feed on almost any organic carbon, recycling nutrients through the decay of dead plants and animals and sequestering carbon into Earth's ecosystems. Human-directed applications of fungi extend from leavened bread, alcoholic beverages and biofuels to pharmaceuticals, including antibiotics and psychoactive compounds. Conversely, fungal infections pose risks to ecosystems ranging from crops to wildlife to humans; these risks are driven, in part, by human and animal movement, and might be accelerating with climate change. Genomic surveys are expanding our knowledge of the true biodiversity of the fungal kingdom, and genome-editing tools make it possible to imagine harnessing these organisms to fuel the bioeconomy. Here, we examine the fungal threats facing civilization and investigate opportunities to use fungi to combat these threats.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08419-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08419-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Springer Science and Business Media LLC Funded by:UKRI | Supply chain for power el...UKRI| Supply chain for power electronic devicesAuthors: Parvin, Golfam; Parisa-Sadat, Ashofteh;pmid: 40000593
The dam and hydropower plant in the Marun basin located in southwestern Iran have faced severe challenges in recent years in providing agricultural irrigation water and domestic electricity due to the adverse effects of climate change and population growth. To overcome these challenges, 11 strategies as water-energy nexus scenarios were discussed. For this purpose, first, the effects of climate change on temperature and precipitation variables were examined in three concentration pathway (RCP) RCP2.6, RCP4.5, and RCP8.5 from fifth report of International Panel on Climate Change (IPCC). Then, the inflow to the reservoir and the irrigation water required in the future time period were calculated using the artificial neural network and Cropwat models, respectively. The water system was modeled in the water evaluation and planning (WEAP) model, and the energy system was modeled in the low emissions analysis platform (LEAP) model and then coupled with each other. Considering the field situation of the Marun basin, 11 water-energy nexus (WEN) scenarios and nine nexus indexes for evaluating the scenarios were proposed by the expert group. In order to select the best scenario in the future time interval, the ordinal priority approach (OPA) decision-making method integrated with D-number theory was used. The results reveal that the maximum water-energy nexus sustainability index under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios are 31.56, 34.3, and 34.9 for the WEN4 (i.e., reducing the weeds and vegetables cultivation area by 30%), WEN7 (i.e., reduction in the grain maize and vegetables cultivation area each by 5% units and increasing forage crops cultivation area by 10% units), and WEN11 (i.e., decreasing household electricity consumption intensity by 20% throughout increasing electricity tariffs) scenarios, respectively. Also, the results of the OPA method show that the most important index in evaluating the nexus scenarios is the energy sector sustainability index with a weight of 0.142, and the best nexus scenario is the WEN7 scenario with a final weight of 0.189. The comprehensive decision-making process within the comprehensive framework of the water-energy nexus under the impact of climate change, presented in this study, can easily be adopted and applied in other river basins because of verified tools in water and energy, explicit steps, and available initial data.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-025-36105-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-025-36105-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu