- home
- Advanced Search
- Energy Research
- 11. Sustainability
- DK
- Energy and Buildings
- Energy Research
- 11. Sustainability
- DK
- Energy and Buildings
description Publicationkeyboard_double_arrow_right Article , Journal 2017 DenmarkPublisher:Elsevier BV Authors: Jensen, Søren Østergaard;Marszal-Pomianowska, Anna;
Marszal-Pomianowska, Anna
Marszal-Pomianowska, Anna in OpenAIRELollini, Roberto;
Lollini, Roberto
Lollini, Roberto in OpenAIREPasut, Wilmer;
+4 AuthorsPasut, Wilmer
Pasut, Wilmer in OpenAIREJensen, Søren Østergaard;Marszal-Pomianowska, Anna;
Marszal-Pomianowska, Anna
Marszal-Pomianowska, Anna in OpenAIRELollini, Roberto;
Lollini, Roberto
Lollini, Roberto in OpenAIREPasut, Wilmer;
Knotzer, Armin; Engelmann, Peter; Stafford, Anne;Pasut, Wilmer
Pasut, Wilmer in OpenAIREReynders, Glenn;
Reynders, Glenn
Reynders, Glenn in OpenAIREAbstract The increasing global energy demand, the foreseen reduction of available fossil fuels and the increasing evidence off global warming during the last decades have generated a high interest in renewable energy sources. However, renewable energy sources, such as wind and solar power, have an intrinsic variability that can seriously affect the stability of the energy system if they account for a high percentage of the total generation. The Energy Flexibility of buildings is commonly suggested as part of the solution to alleviate some of the upcoming challenges in the future demand-respond energy systems (electrical, district heating and gas grids). Buildings can supply flexibility services in different ways, e.g. utilization of thermal mass, adjustability of HVAC system use (e.g. heating/cooling/ventilation), charging of electric vehicles, and shifting of plug-loads. However, there is currently no overview or insight into how much Energy Flexibility different building may be able to offer to the future energy systems in the sense of avoiding excess energy production, increase the stability of the energy networks, minimize congestion problems, enhance the efficiency and cost effectiveness of the future energy networks. Therefore, there is a need for increasing knowledge on and demonstration of the Energy Flexibility buildings can provide to energy networks. At the same time, there is a need for identifying critical aspects and possible solutions to manage this Energy Flexibility, while maintaining the comfort of the occupants and minimizing the use of non-renewable energy. In this context, the IEA (International Energy Agency) EBC (Energy in Buildings and Communities program) Annex 67: “Energy Flexible Buildings” was started in 2015. The article presents the background and the work plan of IEA EBC Annex 67 as well as already obtained results. Annex 67 is a corporation between participants from 16 countries: Austria, Belgium, Canada, China, Denmark, Finland, France, Germany, Ireland, Italy, The Netherlands, Norway, Portugal, Spain, Switzerland and UK.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.08.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 318 citations 318 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.08.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Elsevier BV Authors: Tove Malmqvist; Marie Nehasilova;Alice Moncaster;
Alice Moncaster
Alice Moncaster in OpenAIREHarpa Birgisdottir;
+3 AuthorsHarpa Birgisdottir
Harpa Birgisdottir in OpenAIRETove Malmqvist; Marie Nehasilova;Alice Moncaster;
Alice Moncaster
Alice Moncaster in OpenAIREHarpa Birgisdottir;
Harpa Birgisdottir
Harpa Birgisdottir in OpenAIREFreja Nygaard Rasmussen;
Freja Nygaard Rasmussen
Freja Nygaard Rasmussen in OpenAIREAoife Houlihan Wiberg;
José Potting;Aoife Houlihan Wiberg
Aoife Houlihan Wiberg in OpenAIREThe dominance of operational energy and related greenhouse gas (GHG) emissions of most existing buildings is decreasing in new construction, when primary fossil energy of building operation decreas ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.01.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.01.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors:Rasmus Elbæk Hedegaard;
Theis Heidmann Pedersen;Rasmus Elbæk Hedegaard
Rasmus Elbæk Hedegaard in OpenAIREMichael Dahl Knudsen;
Michael Dahl Knudsen
Michael Dahl Knudsen in OpenAIRESteffen Petersen;
Steffen Petersen
Steffen Petersen in OpenAIREAbstract Model-based control schemes such as model predictive control (MPC) can assist smart-energy systems in achieving higher efficiency and utilization of renewable energy sources. A practical barrier for deploying such control schemes for space heating of residential buildings is the costs related to obtaining the weather data measurements needed for identifying a model that describes the dynamic behaviour of the building. Therefore, this paper reports on a simulation-based study investigating whether there is a significant impact on the performance of MPC schemes when substituting these weather measurements with data from meteorological weather services. Since access to weather forecasts is necessary during the operation of the MPC scheme, this implementation approach draws on data already available to remove the need for weather measurements. The results indicated that this approach only led to a minor performance impact in that heating savings were reduced by 4% while comfort violations increased by less than 0.1 Kh per day on average. The results thereby suggest that the use of data from meteorological forecast services for model identification may constitute a cost-efficient alternative to on-site or near-by weather measurements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 DenmarkPublisher:Elsevier BV Authors:Mingzhe Liu;
Mingzhe Liu
Mingzhe Liu in OpenAIREPer Kvols Heiselberg;
Per Kvols Heiselberg
Per Kvols Heiselberg in OpenAIREYovko Ivanov Antonov;
Frederik Søndergaard Mikkelsen;Yovko Ivanov Antonov
Yovko Ivanov Antonov in OpenAIREAbstract Roof windows are widely used in northern European countries, contributing positively by giving daylight, passive solar heat and view to the outside. In order to improve their thermal property, triple glazing unit together with external shutter are more and more common on the market. Additionally, the junction part between window and roof is also important since it greatly influences the linear thermal transmittance (LTT) along edges of the window and the daylight level of the room. This research presents a parametric analysis for roof windows with triple glazing unit and external shutter from perspectives of energy, daylight and thermal comfort. The investigation can be described in two parts: • Analysis of thermal and comfort performance for triple glazing unit with an external shutter. • Analysis of combined performance of daylight level and LTT for roof windows. Performances of energy and thermal comfort of triple glazing unit with external shutter can be influenced by different properties, including the width of the cavity between shutter and external pane, air penetration rate through the cavity between shutter and external pane, the tilt angle of the window. The study conducts analysis on the energy and comfort performances of the window by calculating U-value of the entire window and internal surface temperature of the glazing. The calculations are performed by a model developed via state-space modelling using Simulink/MATLAB. The results reveal that the external shutter improves both the thermal and comfort performances of the window. The ways of installing windows on a roof and cutting on the internal wall along window edges also have great influences on the combined performance of daylight level and LTT along the edge between window and roof. Therefore, daylight and LTT are also evaluated with different parameters, including the thickness of roof insulation, installation level of windows on the roof, cutting of lining and extra insulation around the perimeter of windows. The analysis is conducted using DIVA/Rhino and Flixo. The calculations show that the lower installation level and extra insulation around the window frame can decrease linear thermal transmittance of the entire window by more than 60%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1988Publisher:Elsevier BV Authors:Philomena M. Bluyssen;
Philomena M. Bluyssen
Philomena M. Bluyssen in OpenAIREGeo Clausen;
Povl Ole Fanger; J. Lauridsen;Geo Clausen
Geo Clausen in OpenAIREAbstract Pollution sources were quantified by the new olf unit in 20 randomly selected offices and assembly halls in Copenhagen. The spaces were visited three times by 54 judges, who assessed the acceptability of the air: (1) while unoccupied and unventilated to quantify pollution sources in the space; (2) while unoccupied and ventilated to quantify pollution sources in the ventilation system; and (3) while occupied and ventilated to determine pollution caused by occupants and smoking. Ventilation rates, carbon dioxide, carbon monoxide, particulates, and total volatile organic compounds were measured, but did not explain the large variations in perceived air quality. For each occupant in the 15 offices there were on average 6–7 olfs from other pollution sources; 1–2 olfs were situated in the materials in the space, 3 olfs in the ventilation system, and 2 olfs were caused by tobacco smoking. The ventilation rate was 25 l/s per occupant, but due to the extensive other pollution sources only 4 l/s per olf. This explains why an average of more than 30% of the subjects found the air quality in the offices unacceptable. The obvious way to improve indoor air quality is to remove pollution sources in the spaces and in the ventilation systems. This will at the same time improve air quality, decrease required ventilation and energy consumption, and diminish the risk of draughts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0378-7788(88)90052-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 129 citations 129 popularity Top 10% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0378-7788(88)90052-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors:Kan Shindo;
Kan Shindo
Kan Shindo in OpenAIREJun Shinoda;
Ongun B. Kazanci; Dragos-Ioan Bogatu; +2 AuthorsJun Shinoda
Jun Shinoda in OpenAIREKan Shindo;
Kan Shindo
Kan Shindo in OpenAIREJun Shinoda;
Ongun B. Kazanci; Dragos-Ioan Bogatu;Jun Shinoda
Jun Shinoda in OpenAIREShin-ichi Tanabe;
Shin-ichi Tanabe
Shin-ichi Tanabe in OpenAIREBjarne W. Olesen;
Bjarne W. Olesen
Bjarne W. Olesen in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:Kyriaki Foteinaki;
Kyriaki Foteinaki
Kyriaki Foteinaki in OpenAIRERongling Li;
Rongling Li
Rongling Li in OpenAIREThibault Péan;
Thibault Péan
Thibault Péan in OpenAIRECarsten Rode;
+1 AuthorsCarsten Rode
Carsten Rode in OpenAIREKyriaki Foteinaki;
Kyriaki Foteinaki
Kyriaki Foteinaki in OpenAIRERongling Li;
Rongling Li
Rongling Li in OpenAIREThibault Péan;
Thibault Péan
Thibault Péan in OpenAIRECarsten Rode;
Carsten Rode
Carsten Rode in OpenAIREJaume Salom;
Jaume Salom
Jaume Salom in OpenAIREAbstract Energy flexibility is a cost-effective solution to facilitate secure operation of the energy system while integrating large share of renewables. Thermal energy infrastructure is a great asset for flexibility in systems with widely developed district heating networks. The aim of the present work is to investigate the potential for low-energy residential buildings to be operated flexibly, according to the needs of district heating system. An apartment block is studied, utilizing the storage capacity of thermal mass as storage medium. Two sets of data are utilized: heat load of Greater Copenhagen and dynamic heat production cost which is used as a price signal for the scheduling of the heating use in the building. Scenarios with different control signals are determined in order to achieve load shifting. The findings show that pre-heating is highly effective for load shifting and peak load reduction. During morning peak load hours, energy use is reduced in all scenarios between 40% and 87%. Although with load shifting higher energy use may occur, it occurs mostly at times when the city heat load is lower and heat production is less expensive and less carbon-intensive. Indoor temperature has a wider range and/or more fluctuations, yet remains within acceptable limits.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.109804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.109804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 DenmarkPublisher:Elsevier BV Authors: Skarning, Gunnlaug Cecilie Jensen;Hviid, Christian Anker;
Hviid, Christian Anker
Hviid, Christian Anker in OpenAIRESvendsen, Svend;
Svendsen, Svend
Svendsen, Svend in OpenAIREAbstract Dynamic solar shading is commonly suggested as a means of reducing the problem of overheating in well-insulated residential buildings, while at the same time letting daylight and solar irradiation in when needed. To critically investigate what dynamic shading can and cannot do compared to permanent alternatives in buildings with very low space-heating demand, this study mapped and compared energy, daylighting and thermal comfort for various combinations of window size and glazing properties, with and without dynamic shading. The study considered a loft room with sloped roof windows and moderate venting options in nearly zero-energy homes in Rome and Copenhagen. The more flexible solution space with dynamic shading made it possible to either reduce the time with operative temperatures exceeding the comfort limit by 40–50 h or increase daylighting by 750–1000 h more than could be achieved without shading. However, dynamic shading could not improve the optimum space-heating demand of the loft room in any predictable way, and without using dynamic shading, illuminances of 300 lx in 75% of the space could be achieved in 50–63% of the daylight hours with no more than 40–100 h exceeding the comfort ranges as defined by the Adaptive Thermal Comfort (ATC) model.
Energy and Buildings arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.11.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Buildings arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.11.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors:Sanja Lazarova-Molnar;
Sanja Lazarova-Molnar
Sanja Lazarova-Molnar in OpenAIREHamid Reza Shaker;
Hamid Reza Shaker
Hamid Reza Shaker in OpenAIREAbstract Buildings account for ca. 40% of the total energy consumption and ca. 20% of the total CO2 emissions. More effective and advanced control integrated into Building Management Systems (BMS) represents an opportunity to improve energy efficiency. The ease of availability of sensors technology and instrumentation within today's intelligent buildings enable collecting high quality data which could be used directly in data-based analysis and control methods. The area of data-based systems analysis and control is concentrating on developing analysis and control methods that rely on data collected from meters and sensors, and information obtained by data processing. This differs from the traditional model-based approaches that are based on mathematical models of systems. We propose and describe a data-driven controllability measure for discrete-time linear systems. The concept is developed within a data-based system analysis and control framework. Therefore, only measured data is used to obtain the proposed controllability measure. The proposed controllability measure not only shows if the system is controllable or not, but also reveals the level of controllability, which is the information its previous counterparts failed to provide. We use two illustrative examples to demonstrate the method, which also include an intelligent building.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.11.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.11.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, DenmarkPublisher:Elsevier BV Authors:Birgisdottir, H.;
Birgisdottir, H.
Birgisdottir, H. in OpenAIREMoncaster, A.;
Moncaster, A.
Moncaster, A. in OpenAIREHoulihan Wiberg, A.;
Chae, C.; +6 AuthorsHoulihan Wiberg, A.
Houlihan Wiberg, A. in OpenAIREBirgisdottir, H.;
Birgisdottir, H.
Birgisdottir, H. in OpenAIREMoncaster, A.;
Moncaster, A.
Moncaster, A. in OpenAIREHoulihan Wiberg, A.;
Chae, C.; Yokoyama, K.;Houlihan Wiberg, A.
Houlihan Wiberg, A. in OpenAIREBalouktsi, M.;
Seo, S.; Oka, T.; Lützkendorf, T.; Malmqvist, T.;Balouktsi, M.
Balouktsi, M. in OpenAIREThe current regulations to reduce energy consumption and greenhouse gas emissions (GHG) from buildings have focused on operational energy consumption. Thus legislation excludes measurement and reduction of the embodied energy and embodied GHG emissions over the building life cycle. Embodied impacts are a significant and growing proportion and it is increasingly recognized that the focus on reducing operational energy consumption needs to be accompanied by a parallel focus on reducing embodied impacts. Over the last six years the Annex 57 has addressed this issue, with researchers from 15 countries working together to develop a detailed understanding of the multiple calculation methods and the interpretation of their results. Based on an analysis of 80 case studies, Annex 57 showed various inconsistencies in current methodological approaches, which inhibit comparisons of results and difficult development of robust reduction strategies. Reinterpreting the studies through an understanding of the methodological differences enabled the cases to be used to demonstrate a number of important strategies for the reduction of embodied impacts. Annex 57 has also produced clear recommendations for uniform definitions and templates which improve the description of system boundaries, completeness of inventory and quality of data, and consequently the transparency of embodied impact assessments.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2017Full-Text: http://oro.open.ac.uk/50807/9/50807.pdfData sources: CORE (RIOXX-UK Aggregator)KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 115 citations 115 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
download 446download downloads 446 Powered bymore_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2017Full-Text: http://oro.open.ac.uk/50807/9/50807.pdfData sources: CORE (RIOXX-UK Aggregator)KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu