- home
- Advanced Search
- Energy Research
- Closed Access
- Restricted
- engineering and technology
- HK
- EC
- Energy Research
- Closed Access
- Restricted
- engineering and technology
- HK
- EC
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Roberto J. Cabral; Eduardo Orduna;Arturo S. Bretas;
John Morales; +2 AuthorsArturo S. Bretas
Arturo S. Bretas in OpenAIRERoberto J. Cabral; Eduardo Orduna;Arturo S. Bretas;
John Morales; John Morales;Arturo S. Bretas
Arturo S. Bretas in OpenAIREChristian Rehtanz;
Christian Rehtanz
Christian Rehtanz in OpenAIREAbstract Protection devices are designed to provide high sensitivity to transients produced by undesirable conditions like lightning stroke, avoiding their operation under all tolerable events like switching operations. The problem of incorrect operation due to transient phenomena can be handled by two means, one is to allow the transients and provide additional logics in the relay, other means is to damp the oscillation from source side. Protection relays’ not always must trip or send a trip signal and sometimes, only an alarm is necessary. In this context, this research presents a fast and reliable formulation for transmission lines (TLs) switching operations and lightning strokes detection and identification. The proposed methodology is based on Principal Component Analysis (PCA) and Euclidean Norm (EN); by using PCA it is possible to determine that normal operation signals describe a very well defined Ellipsoidal Pattern (EP). In this manner, by calculating the Euclidean Norm (EN) among Principal Components (PCs) for each sample and the origin of the reference Ellipsoidal Pattern, switching operations and lightning strokes are detected and identified. Test results show that the proposed algorithm presents high success on phenomena detection and identification, presenting a high potential for online applications.
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2016.01.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2016.01.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 China (People's Republic of)Publisher:Elsevier BV Authors:Zeng, Yikai;
Zeng, Yikai
Zeng, Yikai in OpenAIREZhao, Tianshou;
Zhao, Tianshou
Zhao, Tianshou in OpenAIREAn, Liang;
An, Liang
An, Liang in OpenAIREZhou, Xuelong;
+1 AuthorsZhou, Xuelong
Zhou, Xuelong in OpenAIREZeng, Yikai;
Zeng, Yikai
Zeng, Yikai in OpenAIREZhao, Tianshou;
Zhao, Tianshou
Zhao, Tianshou in OpenAIREAn, Liang;
An, Liang
An, Liang in OpenAIREZhou, Xuelong;
Zhou, Xuelong
Zhou, Xuelong in OpenAIREWei, Lei;
Wei, Lei
Wei, Lei in OpenAIREAbstract The promise of redox flow batteries (RFBs) utilizing soluble redox couples, such as all vanadium ions as well as iron and chromium ions, is becoming increasingly recognized for large-scale energy storage of renewables such as wind and solar, owing to their unique advantages including scalability, intrinsic safety, and long cycle life. An ongoing question associated with these two RFBs is determining whether the vanadium redox flow battery (VRFB) or iron-chromium redox flow battery (ICRFB) is more suitable and competitive for large-scale energy storage. To address this concern, a comparative study has been conducted for the two types of battery based on their charge–discharge performance, cycle performance, and capital cost. It is found that: i) the two batteries have similar energy efficiencies at high current densities; ii) the ICRFB exhibits a higher capacity decay rate than does the VRFB; and iii) the ICRFB is much less expensive in capital costs when operated at high power densities or at large capacities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.09.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 263 citations 263 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.09.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Journal , Other literature type 2016Publisher:American Society of Mechanical Engineers The offshore wells are subject to hostile environments of such areas as the North Sea, GOM and the high arctic. The strong loop ocean currents and induced eddies can pose significant problems for deep-water well. Broadly divided ocean currents, surface currents, bottom currents and vertical currents, interact with the deep water well structures as one of environmental forces. One of the engineering challenges in deep water drilling is temperature gradient. In the past the temperature in the wellbore was ignored and an isothermal system was assumed because no practical means existed to determine the well bore temperature profile. But the fact is that the negative thermal gradient exists between surface to seafloor and it becomes positive below the seafloor. The extreme values could be as low as 40°F and as high as 150∼200°F. In addition to low temperature condition, the significant heat exchange also occurs for high temperature and geothermal reservoirs. The universal matrix form of implicit finite differential equations is introduced to predict the temperature profile of the fluid in the well and near-wellbore formation. This paper is to combine various factors together to derive a solver for the transient temperature modeling during the dirculation of riserless drilling, which can be the basis to describe the near-wellbore well stability under geo-thermal stress and predict the annular pressure during HPHT injection or production, which can also be used to including but not limited to the dynamic temperature profile and bottom-hole temperature, improving cementing program design, casing thermal stresses to be determined.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2021 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/omae2016-54023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2021 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/omae2016-54023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Royal Society of Chemistry (RSC) Authors:Zhuojian Liang;
Zhuojian Liang
Zhuojian Liang in OpenAIREQingli Zou;
Qingli Zou
Qingli Zou in OpenAIREJing Xie;
Jing Xie
Jing Xie in OpenAIREYi-Chun Lu;
Yi-Chun Lu
Yi-Chun Lu in OpenAIREdoi: 10.1039/d0ee01114b
Charging lithium–oxygen batteries with redox mediators suppresses singlet oxygen generation at rates orders of magnitude faster than quenchers.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01114b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01114b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Authors:Shuxia Li;
Shuyue Ding;Shuxia Li
Shuxia Li in OpenAIREDidi Wu;
Xiaopu Wang;
+3 AuthorsXiaopu Wang
Xiaopu Wang in OpenAIREShuxia Li;
Shuyue Ding;Shuxia Li
Shuxia Li in OpenAIREDidi Wu;
Xiaopu Wang;
Xiaopu Wang
Xiaopu Wang in OpenAIREYongmao Hao;
Qingping Li; Weixin Pang;Yongmao Hao
Yongmao Hao in OpenAIREGas production from an offshore hydrate-bearing sediment (HBS) by depressurization will reduce the strength of cementation and increase the effective stress of hydrate reservoirs, which can result ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.0c03833&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.0c03833&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:NSERCNSERCAuthors:Jihao Shi;
Bo Chang;Jihao Shi
Jihao Shi in OpenAIREFaisal Khan;
Yuanjiang Chang; +3 AuthorsFaisal Khan
Faisal Khan in OpenAIREJihao Shi;
Bo Chang;Jihao Shi
Jihao Shi in OpenAIREFaisal Khan;
Yuanjiang Chang; Yuan Zhu; Guoming Chen; Chunjie Zhang;Faisal Khan
Faisal Khan in OpenAIREAbstract Explosion risk analysis (ERA) is an effective method to investigate potential accidents in hydrogen production facilities. The ERA suffers from significant hydrogen dispersion-explosion scenario-related parametric uncertainty. To better understand the uncertainty in ERA results, thousands of Computational Fluid Dynamics (CFD) scenarios need to be computed. Such a large number of CFD simulations are computationally expensive. This study presents a stochastic procedure by integrating a Bayesian Regularization Artificial Neural Network (BRANN) methodology with ERA to effectively manage the uncertainty as well as reducing the stimulation intensity in hydrogen explosion risk study. This BRANN method randomly generates thousands of non-simulation data presenting the relevant hydrogen dispersion and explosion physics. The generated data is used to develop scenario-based probability models, which are then used to estimate the exceedance frequency of maximum overpressure. The performance of the proposed approach is verified by analyzing the parametric sensitivity on the exceedance frequency curve and comparing the results against the traditional ERA approach.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.03.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.03.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:Elsevier BV Abstract The present study is aimed to investigate and compare effects of biodiesel-ethanol (BE) and biodiesel-n-butanol (BBu) blends on combustion, performance and emissions of a direct-injection diesel engine. Experiments were conducted on BE5 (5% ethanol and 95% biodiesel, v/v), BE10, BE15, BBu5, BBu10 and BBu15, at five engine loads and at 1800 rpm. In regard to combustion characteristics, effects on maximum heat release rate, maximum in-cylinder pressure, start of combustion, combustion duration and coefficients of variations (COVs) of IMEP and maximum increase rate of in-cylinder pressure were investigated. In regard to engine performance, effects on BSFC and BTE were investigated. The blended fuels have adverse effects on engine performance especially at low load, with the BE blends having more adverse effects than the BBu blends. Moreover, on average of the five engine loads, the BBu and BE blends increase CO emission by 13.7% and 22.8% and HC emission by 5.6% and 29.2%, respectively; but reduce NOx emission by 6.5% and 28.0%, particle mass concentration by 20.7% and 20.6% and particle number concentration by 22% and 21%, respectively. Overall, the BE blends are more effective in reducing particulate and NOx emissions but the BBu blends would lead to less increase in CO and HC emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.05.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.05.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 Hong Kong, China (People's Republic of)Publisher:Elsevier BV Yuwei Dai; Yuwei Dai; Hong Ling; Jian Hang; Fuyao Zhang; Cheuk Ming Mak;handle: 10397/99541
Abstract Driven by wind and buoyancy effects in the urban environment, ventilation performance and pollutant transmission are highly related to human health. In order to investigate characteristics of the single-sided natural ventilation and interunit dispersion problem, this study conducted scaled outdoor experiments in summer and winter periods in two-dimensional street canyons. Tracer gas method was adopted to predict the ventilation rate and simulate the pollutant dispersion. It was found the ventilation performance of windward and leeward rooms showed different trends with wind velocities. Archimedes number Ar was used to examine the interactions of the buoyancy and the wind forces. It revealed that the non-dimensional ventilation rates of all rooms were generally smaller than the results of buoyancy effect only. It indicates that interactions between the buoyancy and wind effects were destructive, which reduced the ventilation rates. The interunit dispersion characteristics with the wind effect were highly dependent on source locations. The results of the tracer gas concentrations of the reentered rooms were not showing simple increasing or decreasing trends. This study provides authentic and instant airflow and pollutant dispersion information in an urban environment. The dataset of this experiment can offer validations for further numerical simulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Elsevier BV Authors:Zhou, Yuekuan;
Zhou, Yuekuan
Zhou, Yuekuan in OpenAIREZheng, Siqian;
Zheng, Siqian
Zheng, Siqian in OpenAIREZhang, Guoqiang;
Zhang, Guoqiang
Zhang, Guoqiang in OpenAIREAbstract Renewable energy utilisation, latent energy storage, optimal system design, and robust system operation are critical elements for carbon-free buildings and communities. Machine learning methods are effective to assist the energy-efficient renewable systems during multi-criteria design and multi-level uncertainty-based operation periods. However, the current literature provides little knowledge on this topic. In this study, a state-of-the-art-review on phase change materials for cooling applications is presented, in terms of smart ventilations, intelligent PCMs charging/discharging, deterministic parametrical analysis, stochastic uncertainty-based performance prediction and optimisation. Furthermore, technical effectiveness of machine learning methods in single and multi-objective optimisations has been presented, through hybrid PCMs integrated renewable systems. Multivariables involved in the review include thermo-physical, geometrical and operating parameters of PCMs. Multi-criteria employed in the review include heat transfer rate, cooling energy storage density, heat storage and release efficiency, and indoor thermal comfort. The literature review presents technical challenges, such as tradeoff solutions between computational accuracy and efficiency, generic methods for effective selection amongst multi-diversified optimal solutions along the Pareto front, the general methodology for multi-level uncertainty quantification, smart controllers with accurate predictions under high-level parameters’ uncertainty and stochastic occupants’ behaviors. The future outlook and recommendations of machine learning methods in PCMs integrated cooling systems have also been presented as avenues for upcoming research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.110013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.110013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 China (People's Republic of)Publisher:Elsevier BV Authors:Zhou, Xuelong;
Zhou, Xuelong
Zhou, Xuelong in OpenAIREZhao, Tianshou;
Zhao, Tianshou
Zhao, Tianshou in OpenAIREAn, Liang;
An, Liang
An, Liang in OpenAIREZeng, Yikai;
+1 AuthorsZeng, Yikai
Zeng, Yikai in OpenAIREZhou, Xuelong;
Zhou, Xuelong
Zhou, Xuelong in OpenAIREZhao, Tianshou;
Zhao, Tianshou
Zhao, Tianshou in OpenAIREAn, Liang;
An, Liang
An, Liang in OpenAIREZeng, Yikai;
Zhu, Xingbao;Zeng, Yikai
Zeng, Yikai in OpenAIREAbstract Conventional vanadium redox flow batteries (VRFBs) using Nafion 115 suffered from issues associated with high ohmic resistance and high capital cost. In this work, we report a commercial membrane (VANADion), consisting of a porous layer and a dense Nafion layer, as a promising alternative to Nafion 115. In the dual-layer structure, the porous layer (∼210 μm) can offer a high ionic conductivity and the dense Nafion layer (∼20 μm) can depress the convective flow of electrolyte through the membrane. By comparing with the conventional Nafion 115 in a VRFB, it is found that the change from the conventional Nafion 115 to the composite one results in an increase in the energy efficiency from 71.3% to 76.2% and an increase in the electrolyte utilization from 54.1% to 68.4% at a current density of as high as 240 mA cm−2. In addition, although two batteries show the comparable cycling performance at current densities ranging from 80 mA cm−2 to 240 mA cm−2, the composite membrane is estimated to be significantly cheaper than the conventional Nafion 115 due to the fact that the porous layer is rather cost-effective and the dense Nafion layer is rather thin. The impressive combination of desirable performance and low cost makes this composite membrane highly promising in the VRFB applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 71 citations 71 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu