- home
- Advanced Search
- Energy Research
- ES
- EU
- Energies
- Energy Research
- ES
- EU
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Jordi Garcia-Amorós;doi: 10.3390/en11102805
Linear switched reluctance motors are a focus of study for many applications because of their simple and sturdy electromagnetic structure, despite their lower thrust force density when compared with linear permanent magnet synchronous motors. This study presents a novel linear switched reluctance structure enhanced by the use of permanent magnets. The proposed structure preserves the main advantages of the reluctance machines, that is, mechanical and thermal robustness, fault tolerant, and easy assembly in spite of the permanent magnets. The linear hybrid reluctance motor is analyzed by finite element analysis and the results are validated by experimental results. The main findings show a significant increase in the thrust force when compared with the former reluctance structure, with a low detent force.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2805/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2805/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | IPODDEC| IPODDGrzegorz Ślusarz; Dariusz Twaróg; Barbara Gołębiewska; Marek Cierpiał-Wolan; Jarosław Gołębiewski; Philipp Plutecki;doi: 10.3390/en16031366
Increasing biogas production in the Three Seas Initiative countries (3SI) is a good way to reduce greenhouse gas emissions and to increase energy self-sufficiency by replacing some of the fossil energy sources. An assessment of the biogas production potential carried out for the 3SI at the NUTS 1 and NUTS 2 level shows that the potential of this energy carrier was stable for the period (from 2010–2021). The results showed that it can cover from approximately 10% (Hungary, Slovakia) to more than 34% (Estonia, Slovenia) of natural gas consumption; moreover, there is strong variation in the value of potential at the regional level (NUTS 2) in most of the countries studied. The biogas production forecast was carried out with the ARIMA model using four regressors, which are GDP, biogas potential utilisation, natural gas consumption and investments in RES (renewable energy sources) infrastructure, including changes in the EU energy policy after 24 February 2022. In the most promising scenario (four regressors), the results obtained for the period from 2022–2030 predict a rapid increase in biogas production in the 3SI countries, from 32.4 ± 11.3% for the Czech Republic to 138.7 ± 27.5% for Estonia (relative to 2021). However, in the case of six countries (Bulgaria, Lithuania, Hungary, Austria, Poland and Romania) the utilisation of 50% of the potential will most likely occur in the fifth decade of the 21st century. The above results differ significantly for those obtained for three regressors, where the highest rise is predicted for Bulgaria at 33.5 ± 16.1% and the lowest for Slovenia, at only 2.8 ± 14.4% (relative to 2021).
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1366/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1366/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United Kingdom, FinlandPublisher:MDPI AG Funded by:EC | AUTOSHIPEC| AUTOSHIPTheotokatos, Gerasimos; Hamann, Rainer; Psarros, George; Boulougouris; Evangelos; Bolbot, Victor;doi: 10.3390/en14206598
Stringent environmental regulations and efforts to improve the shipping operations sustainability have resulted in designing and employing more complex configurations for the ship power plants systems and the implementation of digitalised functionalities. Due to these systems complexity, critical situations arising from the components and subsystem failures, which may lead to accidents, require timely detection and mitigation. This study aims at enhancing the safety of ship complex systems and their operation by developing the concept of an integrated monitoring safety system that employs existing safety models and data fusion from shipboard sensors. Detailed Fault Trees that model the blackout top event, representing the sailing modes of a cruise ship and the operating modes of its plant, are employed. Shipboard sensors’ measurements acquired by the cruise ship alarm and monitoring system are integrated with these Fault Trees to account for the acquired shipboard information on the investigated power plant configuration and its components operating conditions, thus, facilitating the estimation of the blackout probability time variation as well as the dynamic criticality assessment of the power plant components. The proposed concept is verified by using a virtual simulation environment developed in Matlab/Simulink. This study supports the dynamic assessment of the ship power plants and therefore benefits the decision-making for enhancing the plant safety during operations.
CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/20/6598/pdfData sources: Multidisciplinary Digital Publishing InstituteAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archivehttp://dx.doi.org/10.3390/en14...Other literature type . 2021Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/20/6598/pdfData sources: Multidisciplinary Digital Publishing InstituteAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archivehttp://dx.doi.org/10.3390/en14...Other literature type . 2021Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:EC | PLURALEC| PLURALAngelos Mylonas; Jordi Macià-Cid; Thibault Q. Péan; Nasos Grigoropoulos; Ioannis T. Christou; Jordi Pascual; Jaume Salom;doi: 10.3390/en17205113
The Energy Performance of Buildings Directive (EPBD) has set a target to achieve carbon-neutral building stock and generate 80% of its electricity from renewable sources by 2050. While Model Predictive Control (MPC) can contribute significantly to energy flexibility in buildings, its remote implementation remains relatively unexplored, especially in the residential sector. The purpose of this research is to demonstrate the reliability, robustness, and computational efficiency of a cloud-based application of an MPC called Smart Energy Management (SEM) on a multi-family residential building. The SEM was tested on a virtual building model in TRNSYS using an open-source distributed event streaming platform for data exchange and synchronization. Simplified models for thermal behavior prediction, including an R3C3 model of the building, were developed in C++. The SEM was evaluated in eight scenarios with varying weather conditions, optimization criteria, and runtime periods. The results demonstrate that the SEM maintains stability and robustness over a 2-week period with a 15-minute planning resolution while ensuring thermal comfort. The C++ implementation of the optimization algorithm enables SEM deployment on low-spec servers, supporting cost-effective applications in real buildings with minimal intervention.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17205113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17205113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | CoACHEC| CoACHAuthors: Srinivasan, Bhuvanesh; Berthebaud, David; Mori, Takao;doi: 10.3390/en13030643
As a workable substitute for toxic PbTe-based thermoelectrics, GeTe-based materials are emanating as reliable alternatives. To assess the suitability of LiI as a dopant in thermoelectric GeTe, a prelusive study of thermoelectric properties of GeTe1−xLiIx (x = 0–0.02) alloys processed by Spark Plasma Sintering (SPS) are presented in this short communication. A maximum thermoelectric figure of merit, zT ~ 1.2, was attained at 773 K for 2 mol% LiI-doped GeTe composition, thanks to the combined benefits of a noted reduction in the thermal conductivity and a marginally improved power factor. The scattering of heat carrying phonons due to the presumable formation of Li-induced “pseudo-vacancies” and nano-precipitates contributed to the conspicuous suppression of lattice thermal conductivity, and consequently boosted the zT of the Sb-free (GeTe)0.98(LiI)0.02 sample when compared to that of pristine GeTe and Sb-rich (GeTe)x(LiSbTe2)2 compounds that were reported earlier.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 United KingdomPublisher:MDPI AG Funded by:FCT | D4, EC | REEMAINFCT| D4 ,EC| REEMAINAuthors: Ivan Korolija; Richard Greenough;doi: 10.3390/en9050335
This paper describes a study of the relative influences of different system design decisions upon the performance of an organic Rankine cycle (ORC) used to generate electricity from foundry waste heat. The design choices included concern the working fluid, whether to use a regenerator and the type of condenser. The novelty of the research lies in its inclusion of the influence of both the ORC location and the auxiliary electricity used by the pumps and fans in the ORC power system. Working fluids suitable for high temperature applications are compared, including three cyclic siloxanes, four linear siloxanes and three aromatic fluids. The ORC is modelled from first principles and simulation runs carried out using weather data for 106 European locations and a heat input profile that was derived from empirical data. The impact of design decisions upon ORC nominal efficiency is reported followed by the impact upon annual system efficiency in which variations in heat input and the condition of outdoor air over a year are considered. The main conclusion is that the location can have a significant impact upon the efficiency of ORC systems due to the influence of climate upon the condenser and auxiliary electricity requirements.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/5/335/pdfData sources: Multidisciplinary Digital Publishing InstituteDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/5/335/pdfData sources: Multidisciplinary Digital Publishing InstituteDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 SpainPublisher:MDPI AG Youssouf Mouleloued; Kamel Kara; Aissa Chouder; Abdelhadi Aouaichia; Santiago Silvestre Berges;handle: 2117/428877
In this paper, a new methodology for fault detection and diagnosis in photovoltaic systems is proposed. This method employs a novel Euclidean distance-based tree algorithm to classify various considered faults. Unlike the decision tree, which requires the use of the Gini index to split the data, this algorithm mainly relies on computing distances between an arbitrary point in the space and the entire dataset. Then, the minimum and the maximum distances of each class are extracted and ordered in ascending order. The proposed methodology requires four attributes: Solar irradiance, temperature, and the coordinates of the maximum power point (Impp, Vmpp). The developed procedure for fault detection and diagnosis is implemented and applied to classify a dataset comprising seven distinct classes: normal operation, string disconnection, short circuit of three modules, short circuit of ten modules, and three cases of string disconnection, with 25%, 50%, and 75% of partial shading. The obtained results demonstrate the high efficiency and effectiveness of the proposed methodology, with a classification accuracy reaching 97.33%. A comparison study between the developed fault detection and diagnosis methodology and Support Vector Machine, Decision Tree, Random Forest, and K-Nearest Neighbors algorithms is conducted. The proposed procedure shows high performance against the other algorithms in terms of accuracy, precision, recall, and F1-score.
Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefUPCommons. Portal del coneixement obert de la UPCArticle . 2025 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18071773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold more_vert Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefUPCommons. Portal del coneixement obert de la UPCArticle . 2025 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18071773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | HERCULES-2EC| HERCULES-2Stephan Karmann; Stefan Eicheldinger; Maximilian Prager; Malte Jaensch; Georg Wachtmeister;doi: 10.3390/en16041590
The following paper presents thermodynamic and optical investigations of hydrogen-enriched methane combustion, showing the potential of a hydrogen admixture as a means to decarbonize stationary power generation. The optical investigations are carried out through a fisheye optical system directly mounted into the combustion chamber, replacing one exhaust valve. All of the tests were carried out with constant fuel energy producing 16 bar indicated mean effective pressure. The engine under investigation is a port-fueled 4.8 L single-cylinder large-bore research engine. The test series compared the differences between a conventional spark plug and an unscavenged pre-chamber spark plug as an ignition system. The fuel blends under investigation are 5 and 10%V hydrogen mixed with methane and pure natural gas acting as a reference fuel. The thermodynamic results show a beneficial influence of the hydrogen admixture on both ignition systems and for all variations concerning the lean running limit, combustion stability and indicated efficiency, with the most significant influence being visible for the tests using conventional spark plugs. With the unscavenged pre-chamber spark plug and the combustion of the 10%V hydrogen admixture, an increase in the indicated efficiency of 0.8% compared to NG is achievable. The natural chemiluminescence intensity traces were observed to be predominantly influenced by the air–fuel equivalence ratio. This results in a 20% higher intensity for the unscavenged pre-chamber spark plug for the combustion of 10%V hydrogen compared to the conventional spark plug. This is also visible in the evaluations of the flame color derived from the dewarped combustion image series. The investigation of the torch flames also shows a difference in the air–fuel equivalence ratio but not between the different fuels. The results encourage the development of hydrogen-based fuels and the potential to store surplus sustainable energy in the form of hydrogen in existing gas grids.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/4/1590/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/4/1590/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Authors: Juan Antonio López-Villanueva; Pablo Rodríguez-Iturriaga; Luis Parrilla; Salvador Rodríguez-Bolívar;doi: 10.3390/en16052484
handle: 10481/98987
Battery aging is one of the key challenges that electrochemical energy storage faces. Models for both cycling and calendar aging are valuable for quantitatively assessing their contribution to overall capacity loss. Since batteries are stored and employed under varying conditions of temperature and state of charge in their real-life operation, the availability of a suitable model to anticipate the outcome of calendar aging in lithium-ion batteries under dynamic conditions is of great interest. In this article, we extend a novel model to predict the capacity loss due to calendar aging by using variable-order fractional calculus. For this purpose, some theoretical difficulties posed by variable-order definitions are discussed and compared by applying them to fit experimental results with a multi-parameter optimization procedure. We show that employing a variable-order model allows for a significant improvement in accuracy and predictive ability with respect to its constant-order counterpart. We conclude that variable-order models constitute an interesting alternative for reproducing complex behavior in dynamical systems, such as aging in lithium-ion batteries.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2484/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Institucional Universidad de GranadaArticle . 2025Data sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2484/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Institucional Universidad de GranadaArticle . 2025Data sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 DenmarkPublisher:MDPI AG Funded by:EC | PROMOTIONEC| PROMOTIONOscar Saborío-Romano; Ali Bidadfar; Ömer Göksu; Lorenzo Zeni; Nicolaos A. Cutululis;doi: 10.3390/en12173387
Diode rectifiers (DRs) have elicited increasing interest from both industry and academia as a feasible alternative for connecting offshore wind farms (OWFs) to HVDC networks. However, before such technology is deployed, more studies are needed to assess the actual capabilities of DR-connected OWFs to contribute to the secure operation of the networks linked to them. This study assessed the capability of such an OWF to provide support to an onshore AC network by means of (active) power oscillation damping (POD). A semi-aggregated OWF representation was considered in order to examine the dynamics of each grid-forming wind turbine (WT) within a string when providing POD, while achieving reasonable simulation times. Simulation results corroborate that such an OWF can provide POD by means of OWF active power controls similar to those developed for OWFs connected to HVDC via voltage source converters, while its grid-forming WTs share the reactive power consumption/production and keep the offshore voltage frequency and magnitude within their normal operating ranges. Open-loop test results show that such capability can, however, be restricted at operating points corresponding to the lowest and highest values of active power output.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/17/3387/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2019Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12173387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/17/3387/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2019Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12173387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Jordi Garcia-Amorós;doi: 10.3390/en11102805
Linear switched reluctance motors are a focus of study for many applications because of their simple and sturdy electromagnetic structure, despite their lower thrust force density when compared with linear permanent magnet synchronous motors. This study presents a novel linear switched reluctance structure enhanced by the use of permanent magnets. The proposed structure preserves the main advantages of the reluctance machines, that is, mechanical and thermal robustness, fault tolerant, and easy assembly in spite of the permanent magnets. The linear hybrid reluctance motor is analyzed by finite element analysis and the results are validated by experimental results. The main findings show a significant increase in the thrust force when compared with the former reluctance structure, with a low detent force.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2805/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2805/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | IPODDEC| IPODDGrzegorz Ślusarz; Dariusz Twaróg; Barbara Gołębiewska; Marek Cierpiał-Wolan; Jarosław Gołębiewski; Philipp Plutecki;doi: 10.3390/en16031366
Increasing biogas production in the Three Seas Initiative countries (3SI) is a good way to reduce greenhouse gas emissions and to increase energy self-sufficiency by replacing some of the fossil energy sources. An assessment of the biogas production potential carried out for the 3SI at the NUTS 1 and NUTS 2 level shows that the potential of this energy carrier was stable for the period (from 2010–2021). The results showed that it can cover from approximately 10% (Hungary, Slovakia) to more than 34% (Estonia, Slovenia) of natural gas consumption; moreover, there is strong variation in the value of potential at the regional level (NUTS 2) in most of the countries studied. The biogas production forecast was carried out with the ARIMA model using four regressors, which are GDP, biogas potential utilisation, natural gas consumption and investments in RES (renewable energy sources) infrastructure, including changes in the EU energy policy after 24 February 2022. In the most promising scenario (four regressors), the results obtained for the period from 2022–2030 predict a rapid increase in biogas production in the 3SI countries, from 32.4 ± 11.3% for the Czech Republic to 138.7 ± 27.5% for Estonia (relative to 2021). However, in the case of six countries (Bulgaria, Lithuania, Hungary, Austria, Poland and Romania) the utilisation of 50% of the potential will most likely occur in the fifth decade of the 21st century. The above results differ significantly for those obtained for three regressors, where the highest rise is predicted for Bulgaria at 33.5 ± 16.1% and the lowest for Slovenia, at only 2.8 ± 14.4% (relative to 2021).
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1366/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1366/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United Kingdom, FinlandPublisher:MDPI AG Funded by:EC | AUTOSHIPEC| AUTOSHIPTheotokatos, Gerasimos; Hamann, Rainer; Psarros, George; Boulougouris; Evangelos; Bolbot, Victor;doi: 10.3390/en14206598
Stringent environmental regulations and efforts to improve the shipping operations sustainability have resulted in designing and employing more complex configurations for the ship power plants systems and the implementation of digitalised functionalities. Due to these systems complexity, critical situations arising from the components and subsystem failures, which may lead to accidents, require timely detection and mitigation. This study aims at enhancing the safety of ship complex systems and their operation by developing the concept of an integrated monitoring safety system that employs existing safety models and data fusion from shipboard sensors. Detailed Fault Trees that model the blackout top event, representing the sailing modes of a cruise ship and the operating modes of its plant, are employed. Shipboard sensors’ measurements acquired by the cruise ship alarm and monitoring system are integrated with these Fault Trees to account for the acquired shipboard information on the investigated power plant configuration and its components operating conditions, thus, facilitating the estimation of the blackout probability time variation as well as the dynamic criticality assessment of the power plant components. The proposed concept is verified by using a virtual simulation environment developed in Matlab/Simulink. This study supports the dynamic assessment of the ship power plants and therefore benefits the decision-making for enhancing the plant safety during operations.
CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/20/6598/pdfData sources: Multidisciplinary Digital Publishing InstituteAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archivehttp://dx.doi.org/10.3390/en14...Other literature type . 2021Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/20/6598/pdfData sources: Multidisciplinary Digital Publishing InstituteAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archivehttp://dx.doi.org/10.3390/en14...Other literature type . 2021Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:EC | PLURALEC| PLURALAngelos Mylonas; Jordi Macià-Cid; Thibault Q. Péan; Nasos Grigoropoulos; Ioannis T. Christou; Jordi Pascual; Jaume Salom;doi: 10.3390/en17205113
The Energy Performance of Buildings Directive (EPBD) has set a target to achieve carbon-neutral building stock and generate 80% of its electricity from renewable sources by 2050. While Model Predictive Control (MPC) can contribute significantly to energy flexibility in buildings, its remote implementation remains relatively unexplored, especially in the residential sector. The purpose of this research is to demonstrate the reliability, robustness, and computational efficiency of a cloud-based application of an MPC called Smart Energy Management (SEM) on a multi-family residential building. The SEM was tested on a virtual building model in TRNSYS using an open-source distributed event streaming platform for data exchange and synchronization. Simplified models for thermal behavior prediction, including an R3C3 model of the building, were developed in C++. The SEM was evaluated in eight scenarios with varying weather conditions, optimization criteria, and runtime periods. The results demonstrate that the SEM maintains stability and robustness over a 2-week period with a 15-minute planning resolution while ensuring thermal comfort. The C++ implementation of the optimization algorithm enables SEM deployment on low-spec servers, supporting cost-effective applications in real buildings with minimal intervention.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17205113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17205113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | CoACHEC| CoACHAuthors: Srinivasan, Bhuvanesh; Berthebaud, David; Mori, Takao;doi: 10.3390/en13030643
As a workable substitute for toxic PbTe-based thermoelectrics, GeTe-based materials are emanating as reliable alternatives. To assess the suitability of LiI as a dopant in thermoelectric GeTe, a prelusive study of thermoelectric properties of GeTe1−xLiIx (x = 0–0.02) alloys processed by Spark Plasma Sintering (SPS) are presented in this short communication. A maximum thermoelectric figure of merit, zT ~ 1.2, was attained at 773 K for 2 mol% LiI-doped GeTe composition, thanks to the combined benefits of a noted reduction in the thermal conductivity and a marginally improved power factor. The scattering of heat carrying phonons due to the presumable formation of Li-induced “pseudo-vacancies” and nano-precipitates contributed to the conspicuous suppression of lattice thermal conductivity, and consequently boosted the zT of the Sb-free (GeTe)0.98(LiI)0.02 sample when compared to that of pristine GeTe and Sb-rich (GeTe)x(LiSbTe2)2 compounds that were reported earlier.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 United KingdomPublisher:MDPI AG Funded by:FCT | D4, EC | REEMAINFCT| D4 ,EC| REEMAINAuthors: Ivan Korolija; Richard Greenough;doi: 10.3390/en9050335
This paper describes a study of the relative influences of different system design decisions upon the performance of an organic Rankine cycle (ORC) used to generate electricity from foundry waste heat. The design choices included concern the working fluid, whether to use a regenerator and the type of condenser. The novelty of the research lies in its inclusion of the influence of both the ORC location and the auxiliary electricity used by the pumps and fans in the ORC power system. Working fluids suitable for high temperature applications are compared, including three cyclic siloxanes, four linear siloxanes and three aromatic fluids. The ORC is modelled from first principles and simulation runs carried out using weather data for 106 European locations and a heat input profile that was derived from empirical data. The impact of design decisions upon ORC nominal efficiency is reported followed by the impact upon annual system efficiency in which variations in heat input and the condition of outdoor air over a year are considered. The main conclusion is that the location can have a significant impact upon the efficiency of ORC systems due to the influence of climate upon the condenser and auxiliary electricity requirements.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/5/335/pdfData sources: Multidisciplinary Digital Publishing InstituteDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/5/335/pdfData sources: Multidisciplinary Digital Publishing InstituteDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 SpainPublisher:MDPI AG Youssouf Mouleloued; Kamel Kara; Aissa Chouder; Abdelhadi Aouaichia; Santiago Silvestre Berges;handle: 2117/428877
In this paper, a new methodology for fault detection and diagnosis in photovoltaic systems is proposed. This method employs a novel Euclidean distance-based tree algorithm to classify various considered faults. Unlike the decision tree, which requires the use of the Gini index to split the data, this algorithm mainly relies on computing distances between an arbitrary point in the space and the entire dataset. Then, the minimum and the maximum distances of each class are extracted and ordered in ascending order. The proposed methodology requires four attributes: Solar irradiance, temperature, and the coordinates of the maximum power point (Impp, Vmpp). The developed procedure for fault detection and diagnosis is implemented and applied to classify a dataset comprising seven distinct classes: normal operation, string disconnection, short circuit of three modules, short circuit of ten modules, and three cases of string disconnection, with 25%, 50%, and 75% of partial shading. The obtained results demonstrate the high efficiency and effectiveness of the proposed methodology, with a classification accuracy reaching 97.33%. A comparison study between the developed fault detection and diagnosis methodology and Support Vector Machine, Decision Tree, Random Forest, and K-Nearest Neighbors algorithms is conducted. The proposed procedure shows high performance against the other algorithms in terms of accuracy, precision, recall, and F1-score.
Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefUPCommons. Portal del coneixement obert de la UPCArticle . 2025 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18071773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold more_vert Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefUPCommons. Portal del coneixement obert de la UPCArticle . 2025 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18071773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | HERCULES-2EC| HERCULES-2Stephan Karmann; Stefan Eicheldinger; Maximilian Prager; Malte Jaensch; Georg Wachtmeister;doi: 10.3390/en16041590
The following paper presents thermodynamic and optical investigations of hydrogen-enriched methane combustion, showing the potential of a hydrogen admixture as a means to decarbonize stationary power generation. The optical investigations are carried out through a fisheye optical system directly mounted into the combustion chamber, replacing one exhaust valve. All of the tests were carried out with constant fuel energy producing 16 bar indicated mean effective pressure. The engine under investigation is a port-fueled 4.8 L single-cylinder large-bore research engine. The test series compared the differences between a conventional spark plug and an unscavenged pre-chamber spark plug as an ignition system. The fuel blends under investigation are 5 and 10%V hydrogen mixed with methane and pure natural gas acting as a reference fuel. The thermodynamic results show a beneficial influence of the hydrogen admixture on both ignition systems and for all variations concerning the lean running limit, combustion stability and indicated efficiency, with the most significant influence being visible for the tests using conventional spark plugs. With the unscavenged pre-chamber spark plug and the combustion of the 10%V hydrogen admixture, an increase in the indicated efficiency of 0.8% compared to NG is achievable. The natural chemiluminescence intensity traces were observed to be predominantly influenced by the air–fuel equivalence ratio. This results in a 20% higher intensity for the unscavenged pre-chamber spark plug for the combustion of 10%V hydrogen compared to the conventional spark plug. This is also visible in the evaluations of the flame color derived from the dewarped combustion image series. The investigation of the torch flames also shows a difference in the air–fuel equivalence ratio but not between the different fuels. The results encourage the development of hydrogen-based fuels and the potential to store surplus sustainable energy in the form of hydrogen in existing gas grids.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/4/1590/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/4/1590/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Authors: Juan Antonio López-Villanueva; Pablo Rodríguez-Iturriaga; Luis Parrilla; Salvador Rodríguez-Bolívar;doi: 10.3390/en16052484
handle: 10481/98987
Battery aging is one of the key challenges that electrochemical energy storage faces. Models for both cycling and calendar aging are valuable for quantitatively assessing their contribution to overall capacity loss. Since batteries are stored and employed under varying conditions of temperature and state of charge in their real-life operation, the availability of a suitable model to anticipate the outcome of calendar aging in lithium-ion batteries under dynamic conditions is of great interest. In this article, we extend a novel model to predict the capacity loss due to calendar aging by using variable-order fractional calculus. For this purpose, some theoretical difficulties posed by variable-order definitions are discussed and compared by applying them to fit experimental results with a multi-parameter optimization procedure. We show that employing a variable-order model allows for a significant improvement in accuracy and predictive ability with respect to its constant-order counterpart. We conclude that variable-order models constitute an interesting alternative for reproducing complex behavior in dynamical systems, such as aging in lithium-ion batteries.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2484/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Institucional Universidad de GranadaArticle . 2025Data sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2484/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Institucional Universidad de GranadaArticle . 2025Data sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 DenmarkPublisher:MDPI AG Funded by:EC | PROMOTIONEC| PROMOTIONOscar Saborío-Romano; Ali Bidadfar; Ömer Göksu; Lorenzo Zeni; Nicolaos A. Cutululis;doi: 10.3390/en12173387
Diode rectifiers (DRs) have elicited increasing interest from both industry and academia as a feasible alternative for connecting offshore wind farms (OWFs) to HVDC networks. However, before such technology is deployed, more studies are needed to assess the actual capabilities of DR-connected OWFs to contribute to the secure operation of the networks linked to them. This study assessed the capability of such an OWF to provide support to an onshore AC network by means of (active) power oscillation damping (POD). A semi-aggregated OWF representation was considered in order to examine the dynamics of each grid-forming wind turbine (WT) within a string when providing POD, while achieving reasonable simulation times. Simulation results corroborate that such an OWF can provide POD by means of OWF active power controls similar to those developed for OWFs connected to HVDC via voltage source converters, while its grid-forming WTs share the reactive power consumption/production and keep the offshore voltage frequency and magnitude within their normal operating ranges. Open-loop test results show that such capability can, however, be restricted at operating points corresponding to the lowest and highest values of active power output.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/17/3387/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2019Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12173387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/17/3387/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2019Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12173387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu