- home
- Advanced Search
- Energy Research
- Open Access
- Open Source
- Embargo
- 14. Life underwater
- GB
- ES
- Energy Research
- Open Access
- Open Source
- Embargo
- 14. Life underwater
- GB
- ES
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 SpainPublisher:MDPI AG Authors: Dorado-Guerra, Diana Yaritza; Paredes Arquiola, Javier; Pérez-Martín, Miguel Ángel; Tafur Hermann, Harold;doi: 10.3390/su132212835
handle: 10251/179421
High nutrient discharge from groundwater (GW) into surface water (SW) have multiple undesirable effects on river water quality. With the aim to estimate the impact of anthropic pressures and river–aquifer interactions on nitrate status in SW, this study integrates two hydrological simulation and water quality models. PATRICAL models SW–GW interactions and RREA models streamflow changes due to human activity. The models were applied to the Júcar River Basin District (RBD), where 33% of the aquifers have a concentration above 50 mg NO3−/L. As a result, there is a direct linear correlation between the nitrate concentration in rivers and aquifers (Júcar r2 = 0.9, and Turia r2 = 0.8), since in these Mediterranean basins, the main amount of river flows comes from groundwater discharge. The concentration of nitrates in rivers and GW tends to increase downstream of the district, where artificial surfaces and agriculture are concentrated. The total NO3− load to Júcar RBD rivers was estimated at 10,202 tN/year (239 kg/km2/year), from which 99% is generated by diffuse pollution, and 3378 tN/year (79 kg/km2/year) is discharged into the Mediterranean Sea. Changes in nitrate concentration in the RBD rivers are strongly related to the source of irrigation water, river–aquifer interactions, and flow regulation. The models used in this paper allow the identification of pollution sources, the forecasting of nitrate concentration in surface and groundwater, and the evaluation of the efficiency of measures to prevent water degradation, among other applications.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 54visibility views 54 download downloads 118 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 SpainPublisher:MDPI AG Authors: Dorado-Guerra, Diana Yaritza; Paredes Arquiola, Javier; Pérez-Martín, Miguel Ángel; Tafur Hermann, Harold;doi: 10.3390/su132212835
handle: 10251/179421
High nutrient discharge from groundwater (GW) into surface water (SW) have multiple undesirable effects on river water quality. With the aim to estimate the impact of anthropic pressures and river–aquifer interactions on nitrate status in SW, this study integrates two hydrological simulation and water quality models. PATRICAL models SW–GW interactions and RREA models streamflow changes due to human activity. The models were applied to the Júcar River Basin District (RBD), where 33% of the aquifers have a concentration above 50 mg NO3−/L. As a result, there is a direct linear correlation between the nitrate concentration in rivers and aquifers (Júcar r2 = 0.9, and Turia r2 = 0.8), since in these Mediterranean basins, the main amount of river flows comes from groundwater discharge. The concentration of nitrates in rivers and GW tends to increase downstream of the district, where artificial surfaces and agriculture are concentrated. The total NO3− load to Júcar RBD rivers was estimated at 10,202 tN/year (239 kg/km2/year), from which 99% is generated by diffuse pollution, and 3378 tN/year (79 kg/km2/year) is discharged into the Mediterranean Sea. Changes in nitrate concentration in the RBD rivers are strongly related to the source of irrigation water, river–aquifer interactions, and flow regulation. The models used in this paper allow the identification of pollution sources, the forecasting of nitrate concentration in surface and groundwater, and the evaluation of the efficiency of measures to prevent water degradation, among other applications.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 54visibility views 54 download downloads 118 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Authors: Geovanna Villacreses; Diego Jijón; Juan Francisco Nicolalde; Javier Martínez-Gómez; +1 AuthorsGeovanna Villacreses; Diego Jijón; Juan Francisco Nicolalde; Javier Martínez-Gómez; Franz Betancourt;doi: 10.3390/en16010029
handle: 10017/61912
The Galapagos Islands have been declared a World Heritage site due to their unique biodiversity, which makes them a living museum and a natural laboratory for humankind. However, to fulfill the energy needs of its habitants and foreign visitors, the islands have depended on fossil fuel energies that have produced levels of lead and chemical agents that are affecting the islands’ air quality, flora, and fauna. Therefore, zero-carbon initiatives have been created to protect the islands, wherein solar and wind power plants have been studied as reliable alternatives. In this way, Geographical Information Systems based on Multicriteria Decision Methods constitute a methodology that minimizes the destruction and disturbance of nature in order to assess the best location for the implementation of these alternative energy sources. Therefore, by exploring the geographical information along with the Analytical Hierarchical Processes and the Ordered Weighted Average methods, it was possible to identify the potential for solar power plants of 10 MW on each island; likewise, for wind power plants, it was found that the islands possess implementation potential that has been analyzed in the field, showing that the best location is on Baltra Island, but is not limited to it.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/29/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 106visibility views 106 download downloads 17 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/29/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Authors: Geovanna Villacreses; Diego Jijón; Juan Francisco Nicolalde; Javier Martínez-Gómez; +1 AuthorsGeovanna Villacreses; Diego Jijón; Juan Francisco Nicolalde; Javier Martínez-Gómez; Franz Betancourt;doi: 10.3390/en16010029
handle: 10017/61912
The Galapagos Islands have been declared a World Heritage site due to their unique biodiversity, which makes them a living museum and a natural laboratory for humankind. However, to fulfill the energy needs of its habitants and foreign visitors, the islands have depended on fossil fuel energies that have produced levels of lead and chemical agents that are affecting the islands’ air quality, flora, and fauna. Therefore, zero-carbon initiatives have been created to protect the islands, wherein solar and wind power plants have been studied as reliable alternatives. In this way, Geographical Information Systems based on Multicriteria Decision Methods constitute a methodology that minimizes the destruction and disturbance of nature in order to assess the best location for the implementation of these alternative energy sources. Therefore, by exploring the geographical information along with the Analytical Hierarchical Processes and the Ordered Weighted Average methods, it was possible to identify the potential for solar power plants of 10 MW on each island; likewise, for wind power plants, it was found that the islands possess implementation potential that has been analyzed in the field, showing that the best location is on Baltra Island, but is not limited to it.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/29/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 106visibility views 106 download downloads 17 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/29/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 AustraliaPublisher:Public Library of Science (PLoS) Funded by:UKRI | A holistic model of the f...UKRI| A holistic model of the factors controlling reef-fish populations, including both pre- and post-settlement processesPeter J. Mumby; Peter J. Mumby; Daniel R. Brumbaugh; Daniel R. Brumbaugh; Alastair R. Harborne; Alastair R. Harborne;Lionfish (Pterois volitans/miles) have invaded the majority of the Caribbean region within five years. As voracious predators of native fishes with a broad habitat distribution, lionfish are poised to cause an unprecedented disruption to coral reef diversity and function. Controls of lionfish densities within its native range are poorly understood, but they have been recorded in the stomachs of large-bodied Caribbean groupers. Whether grouper predation of lionfish is sufficient to act as a biocontrol of the invasive species is unknown, but pest biocontrol by predatory fishes has been reported in other ecosystems. Groupers were surveyed along a chain of Bahamian reefs, including one of the region's most successful marine reserves which supports the top one percentile of Caribbean grouper biomass. Lionfish biomass exhibited a 7-fold and non-linear reduction in relation to the biomass of grouper. While Caribbean grouper appear to be a biocontrol of invasive lionfish, the overexploitation of their populations by fishers, means that their median biomass on Caribbean reefs is an order of magnitude less than in our study. Thus, chronic overfishing will probably prevent natural biocontrol of lionfishes in the Caribbean.
PLoS ONE arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0021510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PLoS ONE arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0021510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 AustraliaPublisher:Public Library of Science (PLoS) Funded by:UKRI | A holistic model of the f...UKRI| A holistic model of the factors controlling reef-fish populations, including both pre- and post-settlement processesPeter J. Mumby; Peter J. Mumby; Daniel R. Brumbaugh; Daniel R. Brumbaugh; Alastair R. Harborne; Alastair R. Harborne;Lionfish (Pterois volitans/miles) have invaded the majority of the Caribbean region within five years. As voracious predators of native fishes with a broad habitat distribution, lionfish are poised to cause an unprecedented disruption to coral reef diversity and function. Controls of lionfish densities within its native range are poorly understood, but they have been recorded in the stomachs of large-bodied Caribbean groupers. Whether grouper predation of lionfish is sufficient to act as a biocontrol of the invasive species is unknown, but pest biocontrol by predatory fishes has been reported in other ecosystems. Groupers were surveyed along a chain of Bahamian reefs, including one of the region's most successful marine reserves which supports the top one percentile of Caribbean grouper biomass. Lionfish biomass exhibited a 7-fold and non-linear reduction in relation to the biomass of grouper. While Caribbean grouper appear to be a biocontrol of invasive lionfish, the overexploitation of their populations by fishers, means that their median biomass on Caribbean reefs is an order of magnitude less than in our study. Thus, chronic overfishing will probably prevent natural biocontrol of lionfishes in the Caribbean.
PLoS ONE arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0021510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PLoS ONE arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0021510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United KingdomPublisher:MDPI AG Funded by:UKRI | Mechanisms and consequenc...UKRI| Mechanisms and consequences of tipping points in lowland agricultural landscapesAuthors: Stephen C. L. Watson; Adrian C. Newton;doi: 10.3390/su10051368
Although it is widely assumed that business activity is dependent on flows of ecosystem services (ES), little evidence is available with which to evaluate this contention. To address this knowledge gap, we conducted a questionnaire survey of business dependencies on twenty-six different ES in the English county of Dorset, where the environment supports a significant component of the local economy. Responses were received from 212 businesses across twenty-eight sectors. While virtually all businesses (98%) were familiar with the concept of ES, dependency on ES was highly divided with 50% of businesses surveyed claiming no dependence on any ES flows. The highest businesses dependencies reported in this study were for regulating services with the ES of water quality and waste water treatment being of particular importance to businesses. The results however, advised that greater efforts are needed in highlighting the indirect benefits provided by Dorset’s ecosystems, with eight business sectors (58% of respondents) claiming no or little dependence on supporting and habitat services including the ES of biodiversity, habitats for species and maintenance of genetic diversity. Many businesses also indicated little or no dependence on the globally important ES of pollination and soil condition, which may reflect a lack of awareness of dependencies occurring upstream of their value chains. At the sector level, businesses directly involved in protecting, extracting, or manufacturing raw materials were found to be more dependent on provisioning, regulatory and supporting ES than those operating in the service sector who favored cultural ES. These results highlight the value of assessing business dependencies on ES flows, which could usefully inform environmental management and accounting systems and improve monitoring of business performance, and thereby contribute to achievement of sustainability goals.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/5/1368/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/5/1368/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United KingdomPublisher:MDPI AG Funded by:UKRI | Mechanisms and consequenc...UKRI| Mechanisms and consequences of tipping points in lowland agricultural landscapesAuthors: Stephen C. L. Watson; Adrian C. Newton;doi: 10.3390/su10051368
Although it is widely assumed that business activity is dependent on flows of ecosystem services (ES), little evidence is available with which to evaluate this contention. To address this knowledge gap, we conducted a questionnaire survey of business dependencies on twenty-six different ES in the English county of Dorset, where the environment supports a significant component of the local economy. Responses were received from 212 businesses across twenty-eight sectors. While virtually all businesses (98%) were familiar with the concept of ES, dependency on ES was highly divided with 50% of businesses surveyed claiming no dependence on any ES flows. The highest businesses dependencies reported in this study were for regulating services with the ES of water quality and waste water treatment being of particular importance to businesses. The results however, advised that greater efforts are needed in highlighting the indirect benefits provided by Dorset’s ecosystems, with eight business sectors (58% of respondents) claiming no or little dependence on supporting and habitat services including the ES of biodiversity, habitats for species and maintenance of genetic diversity. Many businesses also indicated little or no dependence on the globally important ES of pollination and soil condition, which may reflect a lack of awareness of dependencies occurring upstream of their value chains. At the sector level, businesses directly involved in protecting, extracting, or manufacturing raw materials were found to be more dependent on provisioning, regulatory and supporting ES than those operating in the service sector who favored cultural ES. These results highlight the value of assessing business dependencies on ES flows, which could usefully inform environmental management and accounting systems and improve monitoring of business performance, and thereby contribute to achievement of sustainability goals.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/5/1368/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/5/1368/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Kuenzer, Claudia; Heimhuber, Valentin; Day, John; Varis, Olli; Bucx, Tom; Renaud, Fabrice; Gaohuan, Liu; Tuan, Vo Quoc; Schlurmann, Thorsten; Glamore; William;River deltas and estuaries are disproportionally-significant coastal landforms that are inhabited by nearly 600 M people globally. In recent history, rapid socio-economic development has dramatically changed many of the World's mega deltas, which have typically undergone agricultural intensification and expansion, land-use change, urbanization, water resources engineering and exploitation of natural resources. As a result, mega deltas have evolved into complex and potentially vulnerable socio-ecological systems with unique threats and coping capabilities. The goal of this research was to establish a holistic understanding of threats, resilience, and adaptation for four mega deltas of variable geography and levels of socio-economic development, namely the Mekong, Yellow River, Yangtze, and Rhine deltas. Compiling this kind of information is critical for managing and developing these complex coastal areas sustainably but is typically hindered by a lack of consistent quantitative data across the ecological, social and economic sectors. To overcome this limitation, we adopted a qualitative approach, where delta characteristics across all sectors were assessed through systematic expert surveys. This approach enabled us to generate a comparative assessment of threats, resilience, and resilience-strengthening adaptation across the four deltas. Our assessment provides novel insights into the various components that dominate the overall risk situation in each delta and, for the first time, illustrates how each of these components differ across the four mega deltas. As such, our findings can guide a more detailed, sector specific, risk assessment or assist in better targeting the implementation of risk mitigation and adaptation strategies.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Kuenzer, Claudia; Heimhuber, Valentin; Day, John; Varis, Olli; Bucx, Tom; Renaud, Fabrice; Gaohuan, Liu; Tuan, Vo Quoc; Schlurmann, Thorsten; Glamore; William;River deltas and estuaries are disproportionally-significant coastal landforms that are inhabited by nearly 600 M people globally. In recent history, rapid socio-economic development has dramatically changed many of the World's mega deltas, which have typically undergone agricultural intensification and expansion, land-use change, urbanization, water resources engineering and exploitation of natural resources. As a result, mega deltas have evolved into complex and potentially vulnerable socio-ecological systems with unique threats and coping capabilities. The goal of this research was to establish a holistic understanding of threats, resilience, and adaptation for four mega deltas of variable geography and levels of socio-economic development, namely the Mekong, Yellow River, Yangtze, and Rhine deltas. Compiling this kind of information is critical for managing and developing these complex coastal areas sustainably but is typically hindered by a lack of consistent quantitative data across the ecological, social and economic sectors. To overcome this limitation, we adopted a qualitative approach, where delta characteristics across all sectors were assessed through systematic expert surveys. This approach enabled us to generate a comparative assessment of threats, resilience, and resilience-strengthening adaptation across the four deltas. Our assessment provides novel insights into the various components that dominate the overall risk situation in each delta and, for the first time, illustrates how each of these components differ across the four mega deltas. As such, our findings can guide a more detailed, sector specific, risk assessment or assist in better targeting the implementation of risk mitigation and adaptation strategies.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 LithuaniaPublisher:Elsevier BV Authors: Kriaučiūnienė, Jūratė; Virbickas, Tomas; Šarauskienė, Diana; Jakimavičius, Darius; +9 AuthorsKriaučiūnienė, Jūratė; Virbickas, Tomas; Šarauskienė, Diana; Jakimavičius, Darius; Kažys, Justas; Bukantis, Arūnas; Kesminas, Vytautas; Povilaitis, Arvydas; Dainys, Justas; Akstinas, Vytautas; Jurgelėnaitė, Aldona; Meilutytė-Lukauskienė, Diana; Tomkevičienė, Aldona;pmid: 30682609
Alterations of abiotic factors (e.g., river water temperature and discharge) will definitely affect the fundamental processes of aquatic ecosystems. The purpose of this study was to examine the impact of climate change on the structure of fish assemblages in fast-flowing rivers belonging to the catchment of the major Eastern European river, the Nemunas. Five catchments of semi-natural rivers were selected for the study. Projections of abiotic factors were developed for the near (2016-2035) and far future (2081-2100) periods, according to four RCP scenarios and three climate models using the HBV hydrological modelling tool. Fish metric projections were developed based on a multiple regression using spatial data. No significant changes in projections of abiotic and biotic variables are generally expected in the near future. In the far future period, the abiotic factors are projected to change significantly, i.e., river water temperature is going to increase by 4.0-5.1 °C, and river discharge is projected to decrease by 16.7-40.6%, according to RCP8.5. By the end of century, the relative abundance of stenothermal fish is projected to decline from 24 to 51% in the reference period to 0-20% under RCP8.5. Eurythermal fish should benefit from climate change, and their abundance is likely to increase from 16 to 38% in the reference period to 38-65% under RCP8.5. Future alterations of river water temperature will have significantly more influence on the abundance of the analysed fish assemblages than river discharge.
Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2019Data sources: Vilnius University Institutional RepositoryInstitutional Repository of Nature Research CentreArticle . 2019Data sources: Institutional Repository of Nature Research CentreThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.01.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2019Data sources: Vilnius University Institutional RepositoryInstitutional Repository of Nature Research CentreArticle . 2019Data sources: Institutional Repository of Nature Research CentreThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.01.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 LithuaniaPublisher:Elsevier BV Authors: Kriaučiūnienė, Jūratė; Virbickas, Tomas; Šarauskienė, Diana; Jakimavičius, Darius; +9 AuthorsKriaučiūnienė, Jūratė; Virbickas, Tomas; Šarauskienė, Diana; Jakimavičius, Darius; Kažys, Justas; Bukantis, Arūnas; Kesminas, Vytautas; Povilaitis, Arvydas; Dainys, Justas; Akstinas, Vytautas; Jurgelėnaitė, Aldona; Meilutytė-Lukauskienė, Diana; Tomkevičienė, Aldona;pmid: 30682609
Alterations of abiotic factors (e.g., river water temperature and discharge) will definitely affect the fundamental processes of aquatic ecosystems. The purpose of this study was to examine the impact of climate change on the structure of fish assemblages in fast-flowing rivers belonging to the catchment of the major Eastern European river, the Nemunas. Five catchments of semi-natural rivers were selected for the study. Projections of abiotic factors were developed for the near (2016-2035) and far future (2081-2100) periods, according to four RCP scenarios and three climate models using the HBV hydrological modelling tool. Fish metric projections were developed based on a multiple regression using spatial data. No significant changes in projections of abiotic and biotic variables are generally expected in the near future. In the far future period, the abiotic factors are projected to change significantly, i.e., river water temperature is going to increase by 4.0-5.1 °C, and river discharge is projected to decrease by 16.7-40.6%, according to RCP8.5. By the end of century, the relative abundance of stenothermal fish is projected to decline from 24 to 51% in the reference period to 0-20% under RCP8.5. Eurythermal fish should benefit from climate change, and their abundance is likely to increase from 16 to 38% in the reference period to 38-65% under RCP8.5. Future alterations of river water temperature will have significantly more influence on the abundance of the analysed fish assemblages than river discharge.
Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2019Data sources: Vilnius University Institutional RepositoryInstitutional Repository of Nature Research CentreArticle . 2019Data sources: Institutional Repository of Nature Research CentreThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.01.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2019Data sources: Vilnius University Institutional RepositoryInstitutional Repository of Nature Research CentreArticle . 2019Data sources: Institutional Repository of Nature Research CentreThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.01.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United Kingdom, Australia, AustraliaPublisher:Cold Spring Harbor Laboratory Funded by:UKRI | 3D Printing of Pharmaceut..., ARC | Discovery Projects - Gran...UKRI| 3D Printing of Pharmaceutical Products for Bespoke Medicinal Delivery ,ARC| Discovery Projects - Grant ID: DP160103071Authors: Tessa M. Page; Carmel McDougall; Ido Bar; Guillermo Diaz-Pulido;AbstractCrustose coralline algae (CCA) are a group of calcifying red macroalgae crucial to tropical coral reefs because they form crusts that cement together the reef framework1. Previous research into the responses of CCA to ocean warming (OW) and ocean acidification (OA) have found reductions in calcification rates and survival2,3, with magnitude of effect being species-specific. Responses of CCA to OW and OA could be linked to evolutionary divergence time and/or their underlying molecular biology, the role of either being unknown in CCA. Here we showSporolithon durum, a species from an earlier diverged lineage that exhibits low sensitivity to climate stressors, had little change in metabolic performance and did not significantly alter the expression of any genes when exposed to temperature and pH perturbations. In contrast,Porolithon onkodes, a species from a recently diverged lineage, reduced photosynthetic rates and had over 400 significantly differentially expressed genes in response to experimental treatments, with differential regulation of genes relating to physiological processes. We suggest earlier diverged CCA may be resistant to OW and OA conditions predicted for 2100, whereas taxa from more recently diverged lineages with demonstrated high sensitivity to climate stressors may have limited ability for acclimatisation.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421564Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/27115Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.04.18.440109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421564Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/27115Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.04.18.440109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United Kingdom, Australia, AustraliaPublisher:Cold Spring Harbor Laboratory Funded by:UKRI | 3D Printing of Pharmaceut..., ARC | Discovery Projects - Gran...UKRI| 3D Printing of Pharmaceutical Products for Bespoke Medicinal Delivery ,ARC| Discovery Projects - Grant ID: DP160103071Authors: Tessa M. Page; Carmel McDougall; Ido Bar; Guillermo Diaz-Pulido;AbstractCrustose coralline algae (CCA) are a group of calcifying red macroalgae crucial to tropical coral reefs because they form crusts that cement together the reef framework1. Previous research into the responses of CCA to ocean warming (OW) and ocean acidification (OA) have found reductions in calcification rates and survival2,3, with magnitude of effect being species-specific. Responses of CCA to OW and OA could be linked to evolutionary divergence time and/or their underlying molecular biology, the role of either being unknown in CCA. Here we showSporolithon durum, a species from an earlier diverged lineage that exhibits low sensitivity to climate stressors, had little change in metabolic performance and did not significantly alter the expression of any genes when exposed to temperature and pH perturbations. In contrast,Porolithon onkodes, a species from a recently diverged lineage, reduced photosynthetic rates and had over 400 significantly differentially expressed genes in response to experimental treatments, with differential regulation of genes relating to physiological processes. We suggest earlier diverged CCA may be resistant to OW and OA conditions predicted for 2100, whereas taxa from more recently diverged lineages with demonstrated high sensitivity to climate stressors may have limited ability for acclimatisation.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421564Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/27115Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.04.18.440109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421564Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/27115Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.04.18.440109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Julia L. Blanchard; Peter J. Mumby; Peter J. Mumby; Alice Rogers; Alice Rogers;pmid: 24746794
Coral reefs face a diverse array of threats, from eutrophication and overfishing to climate change. As live corals are lost and their skeletons eroded, the structural complexity of reefs declines. This may have important consequences for the survival and growth of reef fish because complex habitats mediate predator-prey interactions [1, 2] and influence competition [3-5] through the provision of prey refugia. A positive correlation exists between structural complexity and reef fish abundance and diversity in both temperate and tropical ecosystems [6-10]. However, it is not clear how the diversity of available refugia interacts with individual predator-prey relationships to explain emergent properties at the community scale. Furthermore, we do not yet have the ability to predict how habitat loss might affect the productivity of whole reef communities and the fisheries they support. Using data from an unfished reserve in The Bahamas, we find that structural complexity is associated not only with increased fish biomass and abundance, but also with nonlinearities in the size spectra of fish, implying disproportionately high abundances of certain size classes. By developing a size spectrum food web model that links the vulnerability of prey to predation with the structural complexity of a reef, we show that these nonlinearities can be explained by size-structured prey refugia that reduce mortality rates and alter growth rates in different parts of the size spectrum. Fitting the model with data from a structurally complex habitat, we predict that a loss of complexity could cause more than a 3-fold reduction in fishery productivity.
Current Biology arrow_drop_down Current BiologyArticle . 2014License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2014 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2014.03.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 280 citations 280 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Current Biology arrow_drop_down Current BiologyArticle . 2014License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2014 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2014.03.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Julia L. Blanchard; Peter J. Mumby; Peter J. Mumby; Alice Rogers; Alice Rogers;pmid: 24746794
Coral reefs face a diverse array of threats, from eutrophication and overfishing to climate change. As live corals are lost and their skeletons eroded, the structural complexity of reefs declines. This may have important consequences for the survival and growth of reef fish because complex habitats mediate predator-prey interactions [1, 2] and influence competition [3-5] through the provision of prey refugia. A positive correlation exists between structural complexity and reef fish abundance and diversity in both temperate and tropical ecosystems [6-10]. However, it is not clear how the diversity of available refugia interacts with individual predator-prey relationships to explain emergent properties at the community scale. Furthermore, we do not yet have the ability to predict how habitat loss might affect the productivity of whole reef communities and the fisheries they support. Using data from an unfished reserve in The Bahamas, we find that structural complexity is associated not only with increased fish biomass and abundance, but also with nonlinearities in the size spectra of fish, implying disproportionately high abundances of certain size classes. By developing a size spectrum food web model that links the vulnerability of prey to predation with the structural complexity of a reef, we show that these nonlinearities can be explained by size-structured prey refugia that reduce mortality rates and alter growth rates in different parts of the size spectrum. Fitting the model with data from a structurally complex habitat, we predict that a loss of complexity could cause more than a 3-fold reduction in fishery productivity.
Current Biology arrow_drop_down Current BiologyArticle . 2014License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2014 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2014.03.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 280 citations 280 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Current Biology arrow_drop_down Current BiologyArticle . 2014License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2014 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2014.03.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Editorial CSIC Authors: Rull, Valentí;handle: 10261/64624
El reciente e inesperado descubrimiento de que las Cycadales actuales no son relictos Jurásico-Cretácicos (200-65 Mya), ya que todos sus géneros iniciaron su diversificación durante el Mioceno Tardío (12 Mya), ha puesto en entredicho un mito evolutivo clásico. En esta nota se expone como este hallazgo puede, además, proporcionar nuevas pistas sobre el origen de la elevada biodiversidad tropical.
Collectanea Botanica arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/collectbot.2012.v31.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
visibility 32visibility views 32 download downloads 59 Powered bymore_vert Collectanea Botanica arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/collectbot.2012.v31.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Editorial CSIC Authors: Rull, Valentí;handle: 10261/64624
El reciente e inesperado descubrimiento de que las Cycadales actuales no son relictos Jurásico-Cretácicos (200-65 Mya), ya que todos sus géneros iniciaron su diversificación durante el Mioceno Tardío (12 Mya), ha puesto en entredicho un mito evolutivo clásico. En esta nota se expone como este hallazgo puede, además, proporcionar nuevas pistas sobre el origen de la elevada biodiversidad tropical.
Collectanea Botanica arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/collectbot.2012.v31.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
visibility 32visibility views 32 download downloads 59 Powered bymore_vert Collectanea Botanica arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/collectbot.2012.v31.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Jason M. Hall-Spencer; Jason M. Hall-Spencer; Shigeki Wada; Mayumi Kuroyama; Nicolas Floc’h; Ben P. Harvey; Marco Milazzo; Kosei Komatsu; Sylvain Agostini; Koetsu Kon;AbstractOcean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral‐dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral‐dominated ecosystems. We show that increased herbivory by warm‐water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf‐dominated ecosystems, rather than the complex coral‐dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Jason M. Hall-Spencer; Jason M. Hall-Spencer; Shigeki Wada; Mayumi Kuroyama; Nicolas Floc’h; Ben P. Harvey; Marco Milazzo; Kosei Komatsu; Sylvain Agostini; Koetsu Kon;AbstractOcean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral‐dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral‐dominated ecosystems. We show that increased herbivory by warm‐water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf‐dominated ecosystems, rather than the complex coral‐dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 SpainPublisher:MDPI AG Authors: Dorado-Guerra, Diana Yaritza; Paredes Arquiola, Javier; Pérez-Martín, Miguel Ángel; Tafur Hermann, Harold;doi: 10.3390/su132212835
handle: 10251/179421
High nutrient discharge from groundwater (GW) into surface water (SW) have multiple undesirable effects on river water quality. With the aim to estimate the impact of anthropic pressures and river–aquifer interactions on nitrate status in SW, this study integrates two hydrological simulation and water quality models. PATRICAL models SW–GW interactions and RREA models streamflow changes due to human activity. The models were applied to the Júcar River Basin District (RBD), where 33% of the aquifers have a concentration above 50 mg NO3−/L. As a result, there is a direct linear correlation between the nitrate concentration in rivers and aquifers (Júcar r2 = 0.9, and Turia r2 = 0.8), since in these Mediterranean basins, the main amount of river flows comes from groundwater discharge. The concentration of nitrates in rivers and GW tends to increase downstream of the district, where artificial surfaces and agriculture are concentrated. The total NO3− load to Júcar RBD rivers was estimated at 10,202 tN/year (239 kg/km2/year), from which 99% is generated by diffuse pollution, and 3378 tN/year (79 kg/km2/year) is discharged into the Mediterranean Sea. Changes in nitrate concentration in the RBD rivers are strongly related to the source of irrigation water, river–aquifer interactions, and flow regulation. The models used in this paper allow the identification of pollution sources, the forecasting of nitrate concentration in surface and groundwater, and the evaluation of the efficiency of measures to prevent water degradation, among other applications.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 54visibility views 54 download downloads 118 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 SpainPublisher:MDPI AG Authors: Dorado-Guerra, Diana Yaritza; Paredes Arquiola, Javier; Pérez-Martín, Miguel Ángel; Tafur Hermann, Harold;doi: 10.3390/su132212835
handle: 10251/179421
High nutrient discharge from groundwater (GW) into surface water (SW) have multiple undesirable effects on river water quality. With the aim to estimate the impact of anthropic pressures and river–aquifer interactions on nitrate status in SW, this study integrates two hydrological simulation and water quality models. PATRICAL models SW–GW interactions and RREA models streamflow changes due to human activity. The models were applied to the Júcar River Basin District (RBD), where 33% of the aquifers have a concentration above 50 mg NO3−/L. As a result, there is a direct linear correlation between the nitrate concentration in rivers and aquifers (Júcar r2 = 0.9, and Turia r2 = 0.8), since in these Mediterranean basins, the main amount of river flows comes from groundwater discharge. The concentration of nitrates in rivers and GW tends to increase downstream of the district, where artificial surfaces and agriculture are concentrated. The total NO3− load to Júcar RBD rivers was estimated at 10,202 tN/year (239 kg/km2/year), from which 99% is generated by diffuse pollution, and 3378 tN/year (79 kg/km2/year) is discharged into the Mediterranean Sea. Changes in nitrate concentration in the RBD rivers are strongly related to the source of irrigation water, river–aquifer interactions, and flow regulation. The models used in this paper allow the identification of pollution sources, the forecasting of nitrate concentration in surface and groundwater, and the evaluation of the efficiency of measures to prevent water degradation, among other applications.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 54visibility views 54 download downloads 118 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Authors: Geovanna Villacreses; Diego Jijón; Juan Francisco Nicolalde; Javier Martínez-Gómez; +1 AuthorsGeovanna Villacreses; Diego Jijón; Juan Francisco Nicolalde; Javier Martínez-Gómez; Franz Betancourt;doi: 10.3390/en16010029
handle: 10017/61912
The Galapagos Islands have been declared a World Heritage site due to their unique biodiversity, which makes them a living museum and a natural laboratory for humankind. However, to fulfill the energy needs of its habitants and foreign visitors, the islands have depended on fossil fuel energies that have produced levels of lead and chemical agents that are affecting the islands’ air quality, flora, and fauna. Therefore, zero-carbon initiatives have been created to protect the islands, wherein solar and wind power plants have been studied as reliable alternatives. In this way, Geographical Information Systems based on Multicriteria Decision Methods constitute a methodology that minimizes the destruction and disturbance of nature in order to assess the best location for the implementation of these alternative energy sources. Therefore, by exploring the geographical information along with the Analytical Hierarchical Processes and the Ordered Weighted Average methods, it was possible to identify the potential for solar power plants of 10 MW on each island; likewise, for wind power plants, it was found that the islands possess implementation potential that has been analyzed in the field, showing that the best location is on Baltra Island, but is not limited to it.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/29/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 106visibility views 106 download downloads 17 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/29/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Authors: Geovanna Villacreses; Diego Jijón; Juan Francisco Nicolalde; Javier Martínez-Gómez; +1 AuthorsGeovanna Villacreses; Diego Jijón; Juan Francisco Nicolalde; Javier Martínez-Gómez; Franz Betancourt;doi: 10.3390/en16010029
handle: 10017/61912
The Galapagos Islands have been declared a World Heritage site due to their unique biodiversity, which makes them a living museum and a natural laboratory for humankind. However, to fulfill the energy needs of its habitants and foreign visitors, the islands have depended on fossil fuel energies that have produced levels of lead and chemical agents that are affecting the islands’ air quality, flora, and fauna. Therefore, zero-carbon initiatives have been created to protect the islands, wherein solar and wind power plants have been studied as reliable alternatives. In this way, Geographical Information Systems based on Multicriteria Decision Methods constitute a methodology that minimizes the destruction and disturbance of nature in order to assess the best location for the implementation of these alternative energy sources. Therefore, by exploring the geographical information along with the Analytical Hierarchical Processes and the Ordered Weighted Average methods, it was possible to identify the potential for solar power plants of 10 MW on each island; likewise, for wind power plants, it was found that the islands possess implementation potential that has been analyzed in the field, showing that the best location is on Baltra Island, but is not limited to it.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/29/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 106visibility views 106 download downloads 17 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/29/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 AustraliaPublisher:Public Library of Science (PLoS) Funded by:UKRI | A holistic model of the f...UKRI| A holistic model of the factors controlling reef-fish populations, including both pre- and post-settlement processesPeter J. Mumby; Peter J. Mumby; Daniel R. Brumbaugh; Daniel R. Brumbaugh; Alastair R. Harborne; Alastair R. Harborne;Lionfish (Pterois volitans/miles) have invaded the majority of the Caribbean region within five years. As voracious predators of native fishes with a broad habitat distribution, lionfish are poised to cause an unprecedented disruption to coral reef diversity and function. Controls of lionfish densities within its native range are poorly understood, but they have been recorded in the stomachs of large-bodied Caribbean groupers. Whether grouper predation of lionfish is sufficient to act as a biocontrol of the invasive species is unknown, but pest biocontrol by predatory fishes has been reported in other ecosystems. Groupers were surveyed along a chain of Bahamian reefs, including one of the region's most successful marine reserves which supports the top one percentile of Caribbean grouper biomass. Lionfish biomass exhibited a 7-fold and non-linear reduction in relation to the biomass of grouper. While Caribbean grouper appear to be a biocontrol of invasive lionfish, the overexploitation of their populations by fishers, means that their median biomass on Caribbean reefs is an order of magnitude less than in our study. Thus, chronic overfishing will probably prevent natural biocontrol of lionfishes in the Caribbean.
PLoS ONE arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0021510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PLoS ONE arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0021510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 AustraliaPublisher:Public Library of Science (PLoS) Funded by:UKRI | A holistic model of the f...UKRI| A holistic model of the factors controlling reef-fish populations, including both pre- and post-settlement processesPeter J. Mumby; Peter J. Mumby; Daniel R. Brumbaugh; Daniel R. Brumbaugh; Alastair R. Harborne; Alastair R. Harborne;Lionfish (Pterois volitans/miles) have invaded the majority of the Caribbean region within five years. As voracious predators of native fishes with a broad habitat distribution, lionfish are poised to cause an unprecedented disruption to coral reef diversity and function. Controls of lionfish densities within its native range are poorly understood, but they have been recorded in the stomachs of large-bodied Caribbean groupers. Whether grouper predation of lionfish is sufficient to act as a biocontrol of the invasive species is unknown, but pest biocontrol by predatory fishes has been reported in other ecosystems. Groupers were surveyed along a chain of Bahamian reefs, including one of the region's most successful marine reserves which supports the top one percentile of Caribbean grouper biomass. Lionfish biomass exhibited a 7-fold and non-linear reduction in relation to the biomass of grouper. While Caribbean grouper appear to be a biocontrol of invasive lionfish, the overexploitation of their populations by fishers, means that their median biomass on Caribbean reefs is an order of magnitude less than in our study. Thus, chronic overfishing will probably prevent natural biocontrol of lionfishes in the Caribbean.
PLoS ONE arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0021510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PLoS ONE arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0021510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United KingdomPublisher:MDPI AG Funded by:UKRI | Mechanisms and consequenc...UKRI| Mechanisms and consequences of tipping points in lowland agricultural landscapesAuthors: Stephen C. L. Watson; Adrian C. Newton;doi: 10.3390/su10051368
Although it is widely assumed that business activity is dependent on flows of ecosystem services (ES), little evidence is available with which to evaluate this contention. To address this knowledge gap, we conducted a questionnaire survey of business dependencies on twenty-six different ES in the English county of Dorset, where the environment supports a significant component of the local economy. Responses were received from 212 businesses across twenty-eight sectors. While virtually all businesses (98%) were familiar with the concept of ES, dependency on ES was highly divided with 50% of businesses surveyed claiming no dependence on any ES flows. The highest businesses dependencies reported in this study were for regulating services with the ES of water quality and waste water treatment being of particular importance to businesses. The results however, advised that greater efforts are needed in highlighting the indirect benefits provided by Dorset’s ecosystems, with eight business sectors (58% of respondents) claiming no or little dependence on supporting and habitat services including the ES of biodiversity, habitats for species and maintenance of genetic diversity. Many businesses also indicated little or no dependence on the globally important ES of pollination and soil condition, which may reflect a lack of awareness of dependencies occurring upstream of their value chains. At the sector level, businesses directly involved in protecting, extracting, or manufacturing raw materials were found to be more dependent on provisioning, regulatory and supporting ES than those operating in the service sector who favored cultural ES. These results highlight the value of assessing business dependencies on ES flows, which could usefully inform environmental management and accounting systems and improve monitoring of business performance, and thereby contribute to achievement of sustainability goals.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/5/1368/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/5/1368/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United KingdomPublisher:MDPI AG Funded by:UKRI | Mechanisms and consequenc...UKRI| Mechanisms and consequences of tipping points in lowland agricultural landscapesAuthors: Stephen C. L. Watson; Adrian C. Newton;doi: 10.3390/su10051368
Although it is widely assumed that business activity is dependent on flows of ecosystem services (ES), little evidence is available with which to evaluate this contention. To address this knowledge gap, we conducted a questionnaire survey of business dependencies on twenty-six different ES in the English county of Dorset, where the environment supports a significant component of the local economy. Responses were received from 212 businesses across twenty-eight sectors. While virtually all businesses (98%) were familiar with the concept of ES, dependency on ES was highly divided with 50% of businesses surveyed claiming no dependence on any ES flows. The highest businesses dependencies reported in this study were for regulating services with the ES of water quality and waste water treatment being of particular importance to businesses. The results however, advised that greater efforts are needed in highlighting the indirect benefits provided by Dorset’s ecosystems, with eight business sectors (58% of respondents) claiming no or little dependence on supporting and habitat services including the ES of biodiversity, habitats for species and maintenance of genetic diversity. Many businesses also indicated little or no dependence on the globally important ES of pollination and soil condition, which may reflect a lack of awareness of dependencies occurring upstream of their value chains. At the sector level, businesses directly involved in protecting, extracting, or manufacturing raw materials were found to be more dependent on provisioning, regulatory and supporting ES than those operating in the service sector who favored cultural ES. These results highlight the value of assessing business dependencies on ES flows, which could usefully inform environmental management and accounting systems and improve monitoring of business performance, and thereby contribute to achievement of sustainability goals.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/5/1368/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/5/1368/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Kuenzer, Claudia; Heimhuber, Valentin; Day, John; Varis, Olli; Bucx, Tom; Renaud, Fabrice; Gaohuan, Liu; Tuan, Vo Quoc; Schlurmann, Thorsten; Glamore; William;River deltas and estuaries are disproportionally-significant coastal landforms that are inhabited by nearly 600 M people globally. In recent history, rapid socio-economic development has dramatically changed many of the World's mega deltas, which have typically undergone agricultural intensification and expansion, land-use change, urbanization, water resources engineering and exploitation of natural resources. As a result, mega deltas have evolved into complex and potentially vulnerable socio-ecological systems with unique threats and coping capabilities. The goal of this research was to establish a holistic understanding of threats, resilience, and adaptation for four mega deltas of variable geography and levels of socio-economic development, namely the Mekong, Yellow River, Yangtze, and Rhine deltas. Compiling this kind of information is critical for managing and developing these complex coastal areas sustainably but is typically hindered by a lack of consistent quantitative data across the ecological, social and economic sectors. To overcome this limitation, we adopted a qualitative approach, where delta characteristics across all sectors were assessed through systematic expert surveys. This approach enabled us to generate a comparative assessment of threats, resilience, and resilience-strengthening adaptation across the four deltas. Our assessment provides novel insights into the various components that dominate the overall risk situation in each delta and, for the first time, illustrates how each of these components differ across the four mega deltas. As such, our findings can guide a more detailed, sector specific, risk assessment or assist in better targeting the implementation of risk mitigation and adaptation strategies.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Kuenzer, Claudia; Heimhuber, Valentin; Day, John; Varis, Olli; Bucx, Tom; Renaud, Fabrice; Gaohuan, Liu; Tuan, Vo Quoc; Schlurmann, Thorsten; Glamore; William;River deltas and estuaries are disproportionally-significant coastal landforms that are inhabited by nearly 600 M people globally. In recent history, rapid socio-economic development has dramatically changed many of the World's mega deltas, which have typically undergone agricultural intensification and expansion, land-use change, urbanization, water resources engineering and exploitation of natural resources. As a result, mega deltas have evolved into complex and potentially vulnerable socio-ecological systems with unique threats and coping capabilities. The goal of this research was to establish a holistic understanding of threats, resilience, and adaptation for four mega deltas of variable geography and levels of socio-economic development, namely the Mekong, Yellow River, Yangtze, and Rhine deltas. Compiling this kind of information is critical for managing and developing these complex coastal areas sustainably but is typically hindered by a lack of consistent quantitative data across the ecological, social and economic sectors. To overcome this limitation, we adopted a qualitative approach, where delta characteristics across all sectors were assessed through systematic expert surveys. This approach enabled us to generate a comparative assessment of threats, resilience, and resilience-strengthening adaptation across the four deltas. Our assessment provides novel insights into the various components that dominate the overall risk situation in each delta and, for the first time, illustrates how each of these components differ across the four mega deltas. As such, our findings can guide a more detailed, sector specific, risk assessment or assist in better targeting the implementation of risk mitigation and adaptation strategies.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 LithuaniaPublisher:Elsevier BV Authors: Kriaučiūnienė, Jūratė; Virbickas, Tomas; Šarauskienė, Diana; Jakimavičius, Darius; +9 AuthorsKriaučiūnienė, Jūratė; Virbickas, Tomas; Šarauskienė, Diana; Jakimavičius, Darius; Kažys, Justas; Bukantis, Arūnas; Kesminas, Vytautas; Povilaitis, Arvydas; Dainys, Justas; Akstinas, Vytautas; Jurgelėnaitė, Aldona; Meilutytė-Lukauskienė, Diana; Tomkevičienė, Aldona;pmid: 30682609
Alterations of abiotic factors (e.g., river water temperature and discharge) will definitely affect the fundamental processes of aquatic ecosystems. The purpose of this study was to examine the impact of climate change on the structure of fish assemblages in fast-flowing rivers belonging to the catchment of the major Eastern European river, the Nemunas. Five catchments of semi-natural rivers were selected for the study. Projections of abiotic factors were developed for the near (2016-2035) and far future (2081-2100) periods, according to four RCP scenarios and three climate models using the HBV hydrological modelling tool. Fish metric projections were developed based on a multiple regression using spatial data. No significant changes in projections of abiotic and biotic variables are generally expected in the near future. In the far future period, the abiotic factors are projected to change significantly, i.e., river water temperature is going to increase by 4.0-5.1 °C, and river discharge is projected to decrease by 16.7-40.6%, according to RCP8.5. By the end of century, the relative abundance of stenothermal fish is projected to decline from 24 to 51% in the reference period to 0-20% under RCP8.5. Eurythermal fish should benefit from climate change, and their abundance is likely to increase from 16 to 38% in the reference period to 38-65% under RCP8.5. Future alterations of river water temperature will have significantly more influence on the abundance of the analysed fish assemblages than river discharge.
Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2019Data sources: Vilnius University Institutional RepositoryInstitutional Repository of Nature Research CentreArticle . 2019Data sources: Institutional Repository of Nature Research CentreThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.01.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2019Data sources: Vilnius University Institutional RepositoryInstitutional Repository of Nature Research CentreArticle . 2019Data sources: Institutional Repository of Nature Research CentreThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.01.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 LithuaniaPublisher:Elsevier BV Authors: Kriaučiūnienė, Jūratė; Virbickas, Tomas; Šarauskienė, Diana; Jakimavičius, Darius; +9 AuthorsKriaučiūnienė, Jūratė; Virbickas, Tomas; Šarauskienė, Diana; Jakimavičius, Darius; Kažys, Justas; Bukantis, Arūnas; Kesminas, Vytautas; Povilaitis, Arvydas; Dainys, Justas; Akstinas, Vytautas; Jurgelėnaitė, Aldona; Meilutytė-Lukauskienė, Diana; Tomkevičienė, Aldona;pmid: 30682609
Alterations of abiotic factors (e.g., river water temperature and discharge) will definitely affect the fundamental processes of aquatic ecosystems. The purpose of this study was to examine the impact of climate change on the structure of fish assemblages in fast-flowing rivers belonging to the catchment of the major Eastern European river, the Nemunas. Five catchments of semi-natural rivers were selected for the study. Projections of abiotic factors were developed for the near (2016-2035) and far future (2081-2100) periods, according to four RCP scenarios and three climate models using the HBV hydrological modelling tool. Fish metric projections were developed based on a multiple regression using spatial data. No significant changes in projections of abiotic and biotic variables are generally expected in the near future. In the far future period, the abiotic factors are projected to change significantly, i.e., river water temperature is going to increase by 4.0-5.1 °C, and river discharge is projected to decrease by 16.7-40.6%, according to RCP8.5. By the end of century, the relative abundance of stenothermal fish is projected to decline from 24 to 51% in the reference period to 0-20% under RCP8.5. Eurythermal fish should benefit from climate change, and their abundance is likely to increase from 16 to 38% in the reference period to 38-65% under RCP8.5. Future alterations of river water temperature will have significantly more influence on the abundance of the analysed fish assemblages than river discharge.
Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2019Data sources: Vilnius University Institutional RepositoryInstitutional Repository of Nature Research CentreArticle . 2019Data sources: Institutional Repository of Nature Research CentreThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.01.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2019Data sources: Vilnius University Institutional RepositoryInstitutional Repository of Nature Research CentreArticle . 2019Data sources: Institutional Repository of Nature Research CentreThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.01.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United Kingdom, Australia, AustraliaPublisher:Cold Spring Harbor Laboratory Funded by:UKRI | 3D Printing of Pharmaceut..., ARC | Discovery Projects - Gran...UKRI| 3D Printing of Pharmaceutical Products for Bespoke Medicinal Delivery ,ARC| Discovery Projects - Grant ID: DP160103071Authors: Tessa M. Page; Carmel McDougall; Ido Bar; Guillermo Diaz-Pulido;AbstractCrustose coralline algae (CCA) are a group of calcifying red macroalgae crucial to tropical coral reefs because they form crusts that cement together the reef framework1. Previous research into the responses of CCA to ocean warming (OW) and ocean acidification (OA) have found reductions in calcification rates and survival2,3, with magnitude of effect being species-specific. Responses of CCA to OW and OA could be linked to evolutionary divergence time and/or their underlying molecular biology, the role of either being unknown in CCA. Here we showSporolithon durum, a species from an earlier diverged lineage that exhibits low sensitivity to climate stressors, had little change in metabolic performance and did not significantly alter the expression of any genes when exposed to temperature and pH perturbations. In contrast,Porolithon onkodes, a species from a recently diverged lineage, reduced photosynthetic rates and had over 400 significantly differentially expressed genes in response to experimental treatments, with differential regulation of genes relating to physiological processes. We suggest earlier diverged CCA may be resistant to OW and OA conditions predicted for 2100, whereas taxa from more recently diverged lineages with demonstrated high sensitivity to climate stressors may have limited ability for acclimatisation.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421564Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/27115Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.04.18.440109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421564Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/27115Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.04.18.440109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United Kingdom, Australia, AustraliaPublisher:Cold Spring Harbor Laboratory Funded by:UKRI | 3D Printing of Pharmaceut..., ARC | Discovery Projects - Gran...UKRI| 3D Printing of Pharmaceutical Products for Bespoke Medicinal Delivery ,ARC| Discovery Projects - Grant ID: DP160103071Authors: Tessa M. Page; Carmel McDougall; Ido Bar; Guillermo Diaz-Pulido;AbstractCrustose coralline algae (CCA) are a group of calcifying red macroalgae crucial to tropical coral reefs because they form crusts that cement together the reef framework1. Previous research into the responses of CCA to ocean warming (OW) and ocean acidification (OA) have found reductions in calcification rates and survival2,3, with magnitude of effect being species-specific. Responses of CCA to OW and OA could be linked to evolutionary divergence time and/or their underlying molecular biology, the role of either being unknown in CCA. Here we showSporolithon durum, a species from an earlier diverged lineage that exhibits low sensitivity to climate stressors, had little change in metabolic performance and did not significantly alter the expression of any genes when exposed to temperature and pH perturbations. In contrast,Porolithon onkodes, a species from a recently diverged lineage, reduced photosynthetic rates and had over 400 significantly differentially expressed genes in response to experimental treatments, with differential regulation of genes relating to physiological processes. We suggest earlier diverged CCA may be resistant to OW and OA conditions predicted for 2100, whereas taxa from more recently diverged lineages with demonstrated high sensitivity to climate stressors may have limited ability for acclimatisation.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421564Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/27115Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.04.18.440109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421564Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/27115Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.04.18.440109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Julia L. Blanchard; Peter J. Mumby; Peter J. Mumby; Alice Rogers; Alice Rogers;pmid: 24746794
Coral reefs face a diverse array of threats, from eutrophication and overfishing to climate change. As live corals are lost and their skeletons eroded, the structural complexity of reefs declines. This may have important consequences for the survival and growth of reef fish because complex habitats mediate predator-prey interactions [1, 2] and influence competition [3-5] through the provision of prey refugia. A positive correlation exists between structural complexity and reef fish abundance and diversity in both temperate and tropical ecosystems [6-10]. However, it is not clear how the diversity of available refugia interacts with individual predator-prey relationships to explain emergent properties at the community scale. Furthermore, we do not yet have the ability to predict how habitat loss might affect the productivity of whole reef communities and the fisheries they support. Using data from an unfished reserve in The Bahamas, we find that structural complexity is associated not only with increased fish biomass and abundance, but also with nonlinearities in the size spectra of fish, implying disproportionately high abundances of certain size classes. By developing a size spectrum food web model that links the vulnerability of prey to predation with the structural complexity of a reef, we show that these nonlinearities can be explained by size-structured prey refugia that reduce mortality rates and alter growth rates in different parts of the size spectrum. Fitting the model with data from a structurally complex habitat, we predict that a loss of complexity could cause more than a 3-fold reduction in fishery productivity.
Current Biology arrow_drop_down Current BiologyArticle . 2014License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2014 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2014.03.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 280 citations 280 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Current Biology arrow_drop_down Current BiologyArticle . 2014License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2014 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2014.03.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Julia L. Blanchard; Peter J. Mumby; Peter J. Mumby; Alice Rogers; Alice Rogers;pmid: 24746794
Coral reefs face a diverse array of threats, from eutrophication and overfishing to climate change. As live corals are lost and their skeletons eroded, the structural complexity of reefs declines. This may have important consequences for the survival and growth of reef fish because complex habitats mediate predator-prey interactions [1, 2] and influence competition [3-5] through the provision of prey refugia. A positive correlation exists between structural complexity and reef fish abundance and diversity in both temperate and tropical ecosystems [6-10]. However, it is not clear how the diversity of available refugia interacts with individual predator-prey relationships to explain emergent properties at the community scale. Furthermore, we do not yet have the ability to predict how habitat loss might affect the productivity of whole reef communities and the fisheries they support. Using data from an unfished reserve in The Bahamas, we find that structural complexity is associated not only with increased fish biomass and abundance, but also with nonlinearities in the size spectra of fish, implying disproportionately high abundances of certain size classes. By developing a size spectrum food web model that links the vulnerability of prey to predation with the structural complexity of a reef, we show that these nonlinearities can be explained by size-structured prey refugia that reduce mortality rates and alter growth rates in different parts of the size spectrum. Fitting the model with data from a structurally complex habitat, we predict that a loss of complexity could cause more than a 3-fold reduction in fishery productivity.
Current Biology arrow_drop_down Current BiologyArticle . 2014License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2014 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2014.03.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 280 citations 280 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Current Biology arrow_drop_down Current BiologyArticle . 2014License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Current BiologyArticle . 2014 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2014.03.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Editorial CSIC Authors: Rull, Valentí;handle: 10261/64624
El reciente e inesperado descubrimiento de que las Cycadales actuales no son relictos Jurásico-Cretácicos (200-65 Mya), ya que todos sus géneros iniciaron su diversificación durante el Mioceno Tardío (12 Mya), ha puesto en entredicho un mito evolutivo clásico. En esta nota se expone como este hallazgo puede, además, proporcionar nuevas pistas sobre el origen de la elevada biodiversidad tropical.
Collectanea Botanica arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/collectbot.2012.v31.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
visibility 32visibility views 32 download downloads 59 Powered bymore_vert Collectanea Botanica arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/collectbot.2012.v31.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Editorial CSIC Authors: Rull, Valentí;handle: 10261/64624
El reciente e inesperado descubrimiento de que las Cycadales actuales no son relictos Jurásico-Cretácicos (200-65 Mya), ya que todos sus géneros iniciaron su diversificación durante el Mioceno Tardío (12 Mya), ha puesto en entredicho un mito evolutivo clásico. En esta nota se expone como este hallazgo puede, además, proporcionar nuevas pistas sobre el origen de la elevada biodiversidad tropical.
Collectanea Botanica arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/collectbot.2012.v31.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
visibility 32visibility views 32 download downloads 59 Powered bymore_vert Collectanea Botanica arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/collectbot.2012.v31.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Jason M. Hall-Spencer; Jason M. Hall-Spencer; Shigeki Wada; Mayumi Kuroyama; Nicolas Floc’h; Ben P. Harvey; Marco Milazzo; Kosei Komatsu; Sylvain Agostini; Koetsu Kon;AbstractOcean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral‐dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral‐dominated ecosystems. We show that increased herbivory by warm‐water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf‐dominated ecosystems, rather than the complex coral‐dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Jason M. Hall-Spencer; Jason M. Hall-Spencer; Shigeki Wada; Mayumi Kuroyama; Nicolas Floc’h; Ben P. Harvey; Marco Milazzo; Kosei Komatsu; Sylvain Agostini; Koetsu Kon;AbstractOcean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral‐dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral‐dominated ecosystems. We show that increased herbivory by warm‐water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf‐dominated ecosystems, rather than the complex coral‐dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu