Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vilnius University I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fish assemblages under climate change in Lithuanian rivers

Authors: Kriaučiūnienė, Jūratė; Virbickas, Tomas; Šarauskienė, Diana; Jakimavičius, Darius; Kažys, Justas; Bukantis, Arūnas; Kesminas, Vytautas; +6 Authors

Fish assemblages under climate change in Lithuanian rivers

Abstract

Alterations of abiotic factors (e.g., river water temperature and discharge) will definitely affect the fundamental processes of aquatic ecosystems. The purpose of this study was to examine the impact of climate change on the structure of fish assemblages in fast-flowing rivers belonging to the catchment of the major Eastern European river, the Nemunas. Five catchments of semi-natural rivers were selected for the study. Projections of abiotic factors were developed for the near (2016-2035) and far future (2081-2100) periods, according to four RCP scenarios and three climate models using the HBV hydrological modelling tool. Fish metric projections were developed based on a multiple regression using spatial data. No significant changes in projections of abiotic and biotic variables are generally expected in the near future. In the far future period, the abiotic factors are projected to change significantly, i.e., river water temperature is going to increase by 4.0-5.1 °C, and river discharge is projected to decrease by 16.7-40.6%, according to RCP8.5. By the end of century, the relative abundance of stenothermal fish is projected to decline from 24 to 51% in the reference period to 0-20% under RCP8.5. Eurythermal fish should benefit from climate change, and their abundance is likely to increase from 16 to 38% in the reference period to 38-65% under RCP8.5. Future alterations of river water temperature will have significantly more influence on the abundance of the analysed fish assemblages than river discharge.

Country
Lithuania
Keywords

climate change ; discharge ; water temperature ; fish metrics ; uncertainty, Hot Temperature, Climate Change, Salmo salar, water temperature, Rivers, discharge, fish metrics, Water Movements, Animals, uncertainty, Fishes, Lithuania, Models, Theoretical, Biota, climate change, Hydrology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Green