- home
- Advanced Search
- Energy Research
- ES
- Energies
- Energy Research
- ES
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG José M. Blanes; José A. Carrasco; Ausiàs Garrigós; David Marroquí; Cristian Torres;doi: 10.3390/en14020429
This paper presents a new control strategy for reducing the switching losses produced by the use of high parasitic capacitance solar arrays in the sequential switching shunt regulator. Instead of dividing the solar array into equal sections, the proposed strategy is based on two different sections types, low-capacitance and high-capacitance ones. In order to reduce the switching losses and to maintain the original closed-loop response, a novel parallel power processing control strategy is implemented. With this new technique the low-capacitance sections are the only ones that switch at high frequency to regulate the bus while the high-capacitance sections are only connected or disconnected under high load power changes. In addition, the control closed loop delay associated to the time needed to charge the parasitic capacitance has been modelled and a controller modification is proposed to reduce AC performance degradation.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/2/429/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/2/429/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Funded by:EC | LOCOMOTION, EC | MEDEASEC| LOCOMOTION ,EC| MEDEASAuthors: Castro Carranza, Carlos de; Capellán Pérez, Iñigo;doi: 10.3390/en13123036
Whether renewable energy sources (RES) will provide sufficient energy surplus to entirely power complex modern societies is under discussion. We contribute to this debate by estimating the current global average energy return on energy invested (EROI) for the five RES technologies with the highest potential of electricity generation from the comprehensive and internally consistent estimations of their material requirements at three distinct energy system boundaries: standard farm-gate (EROIst), final at consumer point-of-use (EROIfinal), and extended (including indirect investments, EROIext). EROIst levels found fall within the respective literature ranges. Expanding the boundaries closer to the system level, we find that only large hydroelectricity would currently have a high EROIext ~ 6.5:1, while the rest of variable RES would be below 3:1: onshore wind (2.9:1), offshore wind (2.3:1), solar Photovoltaic (PV) (1.8:1), and solar Concentrated Solar Power (CSP) (<1:1). These results indicate that, very likely, the global average EROIext levels of variable RES are currently below those of fossil fuel-fired electricity. It remains unknown if technological improvements will be able to compensate for factors, which will become increasingly important as the variable RES scale-up. Hence, without dynamically accounting for the evolution of the EROI of the system, the viability of sustainable energy systems cannot be ensured, especially for modern societies pursuing continuous economic growth.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3036/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3036/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Joaquín Luque; Benedikt Tepe; Diego Larios; Carlos León; Holger Hesse;doi: 10.3390/en16145548
Battery systems are extensively used in smart energy systems in many different applications, such as Frequency Containment Reserve or Self-Consumption Increase. The behavior of a battery in a particular operation scenario is usually summarized using different key performance indicators (KPIs). Some of these indicators such as efficiency indicate how much of the total electric power supplied to the battery is actually used. Other indicators, such as the number of charging-discharging cycles or the number of charging-discharging swaps, are of relevance for deriving the aging and degradation of a battery system. Obtaining these indicators is very time-demanding: either a set of lab experiments is run, or the battery system is simulated using a battery simulation model. This work instead proposes a machine learning (ML) estimation of battery performance indicators derived from time series input data. For this purpose, a random forest regressor has been trained using the real data of electricity grid frequency evolution, household power demand, and photovoltaic power generation. The results obtained in the research show that the required KPIs can be estimated rapidly with an average relative error of less than 10%. The article demonstrates that the machine learning approach is a suitable alternative to obtain a very fast rough approximation of the expected behavior of a battery system and can be scaled and adapted well for estimation queries of entire fleets of battery systems.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/14/5548/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16145548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/14/5548/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16145548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:MDPI AG Authors: Pedro J. Zarco-Periñán; Fco Javier Zarco-Soto; Irene M. Zarco-Soto; José L. Martínez-Ramos; +1 AuthorsPedro J. Zarco-Periñán; Fco Javier Zarco-Soto; Irene M. Zarco-Soto; José L. Martínez-Ramos; Rafael Sánchez-Durán;doi: 10.3390/en15186635
CO2 is the most emitted greenhouse gas and is mainly produced by human activity. In fact, about 75% is emitted in cities and 40% of global carbon emissions is produced by the building sector. Therefore, buildings are very important in terms of CO2 emissions. This importance is also reflected in the works that have been developed on this subject. This manuscript reviews the research that has shown or calculated the amounts of CO2 emitted in buildings. For a better understanding of the scope of the investigations, a classification is presented. With this, it is intended to help researchers interested in this area by summarizing the studies carried out to date on the amounts of CO2 emitted depending on the type of building.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BYData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BYData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:MDPI AG Authors: Naiara Uriarte-Gallastegi; Germán Arana-Landín; Beñat Landeta-Manzano; Iker Laskurain-Iturbe;doi: 10.3390/en17030649
This research addresses the increasing importance of understanding how Artificial Intelligence can facilitate the transition of companies to a Circular Economy model. This study focuses on energy management, examining its impact on efficiency and emissions across a multi-case analysis of 18 projects in diverse sectors. The findings indicate that Artificial Intelligence positively influences both variables, with variations across applications and sectors. Notably, Artificial Intelligence significantly enhances energy efficiency in four out of six sectors, achieving over 5% improvement in half of the projects. Regarding emissions, positive effects are observed in 15 out of 18 projects, resulting in over 5% reductions in seven cases. Artificial Intelligence plays a pivotal role in emissions reduction in the Design and Energy sectors, with some projects achieving over 20% reductions. Additionally, this study explores how improved energy efficiency positively affects strategic business variables, such as cost, quality, and delivery time. The impact on emissions contributes to reducing occupational risks, particularly those associated with chemical and biological agents. Although managers are satisfied, measures need to be taken to overcome the lack of employee acceptance. These findings are of great interest to the stakeholders involved in the integration of Artificial Intelligence into companies.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2024Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2024Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 EcuadorPublisher:MDPI AG Authors: Rodolfo Gordillo-Orquera ; Luis Lopez-Ramos; Sergio Muñoz-Romero; Paz Iglesias-Casarrubios; +3 AuthorsRodolfo Gordillo-Orquera ; Luis Lopez-Ramos; Sergio Muñoz-Romero; Paz Iglesias-Casarrubios; Diego Arcos-Avilés; Antonio Marques; José Rojo-Álvarez;doi: 10.3390/en11030493
Healthcare buildings exhibit a different electrical load predictability depending on their size and nature. Large hospitals behave similarly to small cities, whereas primary care centers are expected to have different consumption dynamics. In this work, we jointly analyze the electrical load predictability of a large hospital and that of its associated primary care center. An unsupervised load forecasting scheme using combined classic methods of principal component analysis (PCA) and autoregressive (AR) modeling, as well as a supervised scheme using orthonormal partial least squares (OPLS), are proposed. Both methods reduce the dimensionality of the data to create an efficient and low-complexity data representation and eliminate noise subspaces. Because the former method tended to underestimate the load and the latter tended to overestimate it in the large hospital, we also propose a convex combination of both to further reduce the forecasting error. The analysis of data from 7 years in the hospital and 3 years in the primary care center shows that the proposed low-complexity dynamic models are flexible enough to predict both types of consumption at practical accuracy levels.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/3/493/pdfData sources: Multidisciplinary Digital Publishing InstituteEscuela Politécnica del Ejércit: Repositorio Digital de la ESPEArticle . 2018Full-Text: https://doi.org/10.3390/en11030493Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11030493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/3/493/pdfData sources: Multidisciplinary Digital Publishing InstituteEscuela Politécnica del Ejércit: Repositorio Digital de la ESPEArticle . 2018Full-Text: https://doi.org/10.3390/en11030493Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11030493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Pujol Vázquez, Gisela; Acho Zuppa, Leonardo; Gibergans Bàguena, José;doi: 10.3390/en13112861
handle: 2117/190308
A fault detection innovation to wind turbines’ pitch actuators is an important subject to guarantee the efficiency wind energy conversion and long lifetime operation of these rotatory machines. Therefore, a recent and effective fault detection algorithm is conceived to detect faults on wind turbine pitch actuators. This approach is based on the interval observer framework theory that has proved to be an efficient tool to measure dynamic uncertainties in dynamical systems. It is evident that almost any fault in any actuator may affect its historical-time behavior. Hence, and properly conceptualized, a fault detection system can be successfully designed based on interval observer dynamics. This is precisely our main contribution. Additionally, we realize a numerical analysis to evaluate the performance of our approach by using a dynamic model of a pitch actuator device with faults. The numerical experiments support our main contribution.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2861/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BYFull-Text: https://www.mdpi.com/1996-1073/13/11/2861Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 33visibility views 33 download downloads 64 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2861/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BYFull-Text: https://www.mdpi.com/1996-1073/13/11/2861Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:MDPI AG Authors: Andrés Ortega-Ballesteros; David Muñoz-Rodríguez; Alberto-Jesus Perea-Moreno;doi: 10.3390/en15155484
handle: 10396/23740
Water is an essential element for life [...]
Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15155484Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15155484Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Cruz de la Torre, Carlos; Palomar González, Esther; Bravo Muñoz, Ignacio; Gardel Vicente, Alfredo;doi: 10.3390/en13112910
handle: 10017/43232
Demand response (DR) is emerging as the workhorse of achieving energy efficiency and reducing our carbon footprint, which persists as a major challenge amongst all the different energy-chain players, i.e., the utility providers, policy makers, consumers, and the technology sector. For instance, the Internet-of-Things (IoT) paradigm and network-enabled appliances/devices have escalated the expectations of what technology could do for the acceptance of DR programs. In this work, we design, deploy on a scalable pilot testbed, and evaluate a collaboration-based approach to the demand-side management of a community of electricity consumers that jointly targets green consumption. The design of the framework architecture is centralized via the so-called aggregator, which optimizes the demand scheduled by consumers along with their time frame preferences towards the maximization of the consumption of renewables. On the pilot, we opt for lightweight, yet efficient platforms such as Raspberry Pi boards, and evaluate them over a series of network protocols, i.e., MQTT-TLS and CoAP-DTLS, paying special attention to the security and privacy of the communications over Z-Wave, ZigBee, and WiFi. The experiments conducted are configured using two active Living Labs datasets from which we extract three community scenarios that vary according to the flexibility or rigidity of the appliances’ operation time frame demand. During the performance evaluation, processing and communication overheads lie within feasible ranges, i.e., the aggregator requires less than 2 s to schedule a small consumer community with four appliances, whereas the latency of its link to households’ controllers adds less than 100 ms. In addition, we demonstrate that our implementations running over WiFi links and UDP sockets on Raspberry Pi 4 boards are fast, though insecure. By contrast, secure CoAP (with DTLS) offers data encryption, automatic key management, and integrity protection, as well as authentication with acceptable overheads.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2910/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2020License: CC BY NC SAData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 187visibility views 187 download downloads 50 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2910/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2020License: CC BY NC SAData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:MDPI AG Authors: Ribó-Pérez, David Gabriel; Larrosa-López, Luis; Pecondón-Tricas, David; Alcázar-Ortega, Manuel;doi: 10.3390/en14040846
handle: 10251/176164
Demand response is a key element of future power systems due to its capacity to defer grid investments, improve demand participation in the market, and absorb renewable energy source variations. In this regard, demand response can play an important role in delivering ancillary services to power systems. The lack of standardization and ancillary services programs prepared for traditional generators have blocked the participation of demand in these services. Nowadays, increasing needs to ensure the security of supply, renewable fluctuations, and information and communication technology advances are boosting the interest in demand response products to deliver ancillary services. While countries have had lengthy experience with these programs, others are starting from almost zero to develop these programs. To our knowledge, no analysis or standardized comparison exists of the different parameters and prices of demand response in ancillary services among different countries. Our study reviews more than 20 power systems around the world and their programs to classify them according to standard demand response parameters. At the end of the paper we discuss the main characteristics and prices that face demand response in ancillary services markets and a series of policy recommendations to policymakers to improve the deployment on demand participation in ancillary services.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 101visibility views 101 download downloads 448 Powered bymore_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG José M. Blanes; José A. Carrasco; Ausiàs Garrigós; David Marroquí; Cristian Torres;doi: 10.3390/en14020429
This paper presents a new control strategy for reducing the switching losses produced by the use of high parasitic capacitance solar arrays in the sequential switching shunt regulator. Instead of dividing the solar array into equal sections, the proposed strategy is based on two different sections types, low-capacitance and high-capacitance ones. In order to reduce the switching losses and to maintain the original closed-loop response, a novel parallel power processing control strategy is implemented. With this new technique the low-capacitance sections are the only ones that switch at high frequency to regulate the bus while the high-capacitance sections are only connected or disconnected under high load power changes. In addition, the control closed loop delay associated to the time needed to charge the parasitic capacitance has been modelled and a controller modification is proposed to reduce AC performance degradation.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/2/429/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/2/429/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Funded by:EC | LOCOMOTION, EC | MEDEASEC| LOCOMOTION ,EC| MEDEASAuthors: Castro Carranza, Carlos de; Capellán Pérez, Iñigo;doi: 10.3390/en13123036
Whether renewable energy sources (RES) will provide sufficient energy surplus to entirely power complex modern societies is under discussion. We contribute to this debate by estimating the current global average energy return on energy invested (EROI) for the five RES technologies with the highest potential of electricity generation from the comprehensive and internally consistent estimations of their material requirements at three distinct energy system boundaries: standard farm-gate (EROIst), final at consumer point-of-use (EROIfinal), and extended (including indirect investments, EROIext). EROIst levels found fall within the respective literature ranges. Expanding the boundaries closer to the system level, we find that only large hydroelectricity would currently have a high EROIext ~ 6.5:1, while the rest of variable RES would be below 3:1: onshore wind (2.9:1), offshore wind (2.3:1), solar Photovoltaic (PV) (1.8:1), and solar Concentrated Solar Power (CSP) (<1:1). These results indicate that, very likely, the global average EROIext levels of variable RES are currently below those of fossil fuel-fired electricity. It remains unknown if technological improvements will be able to compensate for factors, which will become increasingly important as the variable RES scale-up. Hence, without dynamically accounting for the evolution of the EROI of the system, the viability of sustainable energy systems cannot be ensured, especially for modern societies pursuing continuous economic growth.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3036/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3036/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Joaquín Luque; Benedikt Tepe; Diego Larios; Carlos León; Holger Hesse;doi: 10.3390/en16145548
Battery systems are extensively used in smart energy systems in many different applications, such as Frequency Containment Reserve or Self-Consumption Increase. The behavior of a battery in a particular operation scenario is usually summarized using different key performance indicators (KPIs). Some of these indicators such as efficiency indicate how much of the total electric power supplied to the battery is actually used. Other indicators, such as the number of charging-discharging cycles or the number of charging-discharging swaps, are of relevance for deriving the aging and degradation of a battery system. Obtaining these indicators is very time-demanding: either a set of lab experiments is run, or the battery system is simulated using a battery simulation model. This work instead proposes a machine learning (ML) estimation of battery performance indicators derived from time series input data. For this purpose, a random forest regressor has been trained using the real data of electricity grid frequency evolution, household power demand, and photovoltaic power generation. The results obtained in the research show that the required KPIs can be estimated rapidly with an average relative error of less than 10%. The article demonstrates that the machine learning approach is a suitable alternative to obtain a very fast rough approximation of the expected behavior of a battery system and can be scaled and adapted well for estimation queries of entire fleets of battery systems.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/14/5548/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16145548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/14/5548/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16145548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:MDPI AG Authors: Pedro J. Zarco-Periñán; Fco Javier Zarco-Soto; Irene M. Zarco-Soto; José L. Martínez-Ramos; +1 AuthorsPedro J. Zarco-Periñán; Fco Javier Zarco-Soto; Irene M. Zarco-Soto; José L. Martínez-Ramos; Rafael Sánchez-Durán;doi: 10.3390/en15186635
CO2 is the most emitted greenhouse gas and is mainly produced by human activity. In fact, about 75% is emitted in cities and 40% of global carbon emissions is produced by the building sector. Therefore, buildings are very important in terms of CO2 emissions. This importance is also reflected in the works that have been developed on this subject. This manuscript reviews the research that has shown or calculated the amounts of CO2 emitted in buildings. For a better understanding of the scope of the investigations, a classification is presented. With this, it is intended to help researchers interested in this area by summarizing the studies carried out to date on the amounts of CO2 emitted depending on the type of building.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BYData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BYData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:MDPI AG Authors: Naiara Uriarte-Gallastegi; Germán Arana-Landín; Beñat Landeta-Manzano; Iker Laskurain-Iturbe;doi: 10.3390/en17030649
This research addresses the increasing importance of understanding how Artificial Intelligence can facilitate the transition of companies to a Circular Economy model. This study focuses on energy management, examining its impact on efficiency and emissions across a multi-case analysis of 18 projects in diverse sectors. The findings indicate that Artificial Intelligence positively influences both variables, with variations across applications and sectors. Notably, Artificial Intelligence significantly enhances energy efficiency in four out of six sectors, achieving over 5% improvement in half of the projects. Regarding emissions, positive effects are observed in 15 out of 18 projects, resulting in over 5% reductions in seven cases. Artificial Intelligence plays a pivotal role in emissions reduction in the Design and Energy sectors, with some projects achieving over 20% reductions. Additionally, this study explores how improved energy efficiency positively affects strategic business variables, such as cost, quality, and delivery time. The impact on emissions contributes to reducing occupational risks, particularly those associated with chemical and biological agents. Although managers are satisfied, measures need to be taken to overcome the lack of employee acceptance. These findings are of great interest to the stakeholders involved in the integration of Artificial Intelligence into companies.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2024Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2024Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 EcuadorPublisher:MDPI AG Authors: Rodolfo Gordillo-Orquera ; Luis Lopez-Ramos; Sergio Muñoz-Romero; Paz Iglesias-Casarrubios; +3 AuthorsRodolfo Gordillo-Orquera ; Luis Lopez-Ramos; Sergio Muñoz-Romero; Paz Iglesias-Casarrubios; Diego Arcos-Avilés; Antonio Marques; José Rojo-Álvarez;doi: 10.3390/en11030493
Healthcare buildings exhibit a different electrical load predictability depending on their size and nature. Large hospitals behave similarly to small cities, whereas primary care centers are expected to have different consumption dynamics. In this work, we jointly analyze the electrical load predictability of a large hospital and that of its associated primary care center. An unsupervised load forecasting scheme using combined classic methods of principal component analysis (PCA) and autoregressive (AR) modeling, as well as a supervised scheme using orthonormal partial least squares (OPLS), are proposed. Both methods reduce the dimensionality of the data to create an efficient and low-complexity data representation and eliminate noise subspaces. Because the former method tended to underestimate the load and the latter tended to overestimate it in the large hospital, we also propose a convex combination of both to further reduce the forecasting error. The analysis of data from 7 years in the hospital and 3 years in the primary care center shows that the proposed low-complexity dynamic models are flexible enough to predict both types of consumption at practical accuracy levels.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/3/493/pdfData sources: Multidisciplinary Digital Publishing InstituteEscuela Politécnica del Ejércit: Repositorio Digital de la ESPEArticle . 2018Full-Text: https://doi.org/10.3390/en11030493Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11030493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/3/493/pdfData sources: Multidisciplinary Digital Publishing InstituteEscuela Politécnica del Ejércit: Repositorio Digital de la ESPEArticle . 2018Full-Text: https://doi.org/10.3390/en11030493Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11030493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Pujol Vázquez, Gisela; Acho Zuppa, Leonardo; Gibergans Bàguena, José;doi: 10.3390/en13112861
handle: 2117/190308
A fault detection innovation to wind turbines’ pitch actuators is an important subject to guarantee the efficiency wind energy conversion and long lifetime operation of these rotatory machines. Therefore, a recent and effective fault detection algorithm is conceived to detect faults on wind turbine pitch actuators. This approach is based on the interval observer framework theory that has proved to be an efficient tool to measure dynamic uncertainties in dynamical systems. It is evident that almost any fault in any actuator may affect its historical-time behavior. Hence, and properly conceptualized, a fault detection system can be successfully designed based on interval observer dynamics. This is precisely our main contribution. Additionally, we realize a numerical analysis to evaluate the performance of our approach by using a dynamic model of a pitch actuator device with faults. The numerical experiments support our main contribution.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2861/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BYFull-Text: https://www.mdpi.com/1996-1073/13/11/2861Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 33visibility views 33 download downloads 64 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2861/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BYFull-Text: https://www.mdpi.com/1996-1073/13/11/2861Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:MDPI AG Authors: Andrés Ortega-Ballesteros; David Muñoz-Rodríguez; Alberto-Jesus Perea-Moreno;doi: 10.3390/en15155484
handle: 10396/23740
Water is an essential element for life [...]
Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15155484Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15155484Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Cruz de la Torre, Carlos; Palomar González, Esther; Bravo Muñoz, Ignacio; Gardel Vicente, Alfredo;doi: 10.3390/en13112910
handle: 10017/43232
Demand response (DR) is emerging as the workhorse of achieving energy efficiency and reducing our carbon footprint, which persists as a major challenge amongst all the different energy-chain players, i.e., the utility providers, policy makers, consumers, and the technology sector. For instance, the Internet-of-Things (IoT) paradigm and network-enabled appliances/devices have escalated the expectations of what technology could do for the acceptance of DR programs. In this work, we design, deploy on a scalable pilot testbed, and evaluate a collaboration-based approach to the demand-side management of a community of electricity consumers that jointly targets green consumption. The design of the framework architecture is centralized via the so-called aggregator, which optimizes the demand scheduled by consumers along with their time frame preferences towards the maximization of the consumption of renewables. On the pilot, we opt for lightweight, yet efficient platforms such as Raspberry Pi boards, and evaluate them over a series of network protocols, i.e., MQTT-TLS and CoAP-DTLS, paying special attention to the security and privacy of the communications over Z-Wave, ZigBee, and WiFi. The experiments conducted are configured using two active Living Labs datasets from which we extract three community scenarios that vary according to the flexibility or rigidity of the appliances’ operation time frame demand. During the performance evaluation, processing and communication overheads lie within feasible ranges, i.e., the aggregator requires less than 2 s to schedule a small consumer community with four appliances, whereas the latency of its link to households’ controllers adds less than 100 ms. In addition, we demonstrate that our implementations running over WiFi links and UDP sockets on Raspberry Pi 4 boards are fast, though insecure. By contrast, secure CoAP (with DTLS) offers data encryption, automatic key management, and integrity protection, as well as authentication with acceptable overheads.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2910/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2020License: CC BY NC SAData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 187visibility views 187 download downloads 50 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2910/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2020License: CC BY NC SAData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:MDPI AG Authors: Ribó-Pérez, David Gabriel; Larrosa-López, Luis; Pecondón-Tricas, David; Alcázar-Ortega, Manuel;doi: 10.3390/en14040846
handle: 10251/176164
Demand response is a key element of future power systems due to its capacity to defer grid investments, improve demand participation in the market, and absorb renewable energy source variations. In this regard, demand response can play an important role in delivering ancillary services to power systems. The lack of standardization and ancillary services programs prepared for traditional generators have blocked the participation of demand in these services. Nowadays, increasing needs to ensure the security of supply, renewable fluctuations, and information and communication technology advances are boosting the interest in demand response products to deliver ancillary services. While countries have had lengthy experience with these programs, others are starting from almost zero to develop these programs. To our knowledge, no analysis or standardized comparison exists of the different parameters and prices of demand response in ancillary services among different countries. Our study reviews more than 20 power systems around the world and their programs to classify them according to standard demand response parameters. At the end of the paper we discuss the main characteristics and prices that face demand response in ancillary services markets and a series of policy recommendations to policymakers to improve the deployment on demand participation in ancillary services.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 101visibility views 101 download downloads 448 Powered bymore_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu