
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analyzing and Forecasting Electrical Load Consumption in Healthcare Buildings

doi: 10.3390/en11030493
Healthcare buildings exhibit a different electrical load predictability depending on their size and nature. Large hospitals behave similarly to small cities, whereas primary care centers are expected to have different consumption dynamics. In this work, we jointly analyze the electrical load predictability of a large hospital and that of its associated primary care center. An unsupervised load forecasting scheme using combined classic methods of principal component analysis (PCA) and autoregressive (AR) modeling, as well as a supervised scheme using orthonormal partial least squares (OPLS), are proposed. Both methods reduce the dimensionality of the data to create an efficient and low-complexity data representation and eliminate noise subspaces. Because the former method tended to underestimate the load and the latter tended to overestimate it in the large hospital, we also propose a convex combination of both to further reduce the forecasting error. The analysis of data from 7 years in the hospital and 3 years in the primary care center shows that the proposed low-complexity dynamic models are flexible enough to predict both types of consumption at practical accuracy levels.
electrical load forecasting, Technology, healthcare buildings, principal component analysis, Economics, T, ensemble, unsupervised processing, power consumption, orthonormal partial least squares, electrical load forecasting; principal component analysis; orthonormal partial least squares; unsupervised processing; ensemble; healthcare buildings; power consumption, Electricity, Costos y Análisis de Costo, Costs and Cost Analysis, /economía, Electricidad
electrical load forecasting, Technology, healthcare buildings, principal component analysis, Economics, T, ensemble, unsupervised processing, power consumption, orthonormal partial least squares, electrical load forecasting; principal component analysis; orthonormal partial least squares; unsupervised processing; ensemble; healthcare buildings; power consumption, Electricity, Costos y Análisis de Costo, Costs and Cost Analysis, /economía, Electricidad
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
