- home
- Advanced Search
- Energy Research
- 2021-2025
- US
- GB
- EU
- Energy Research
- 2021-2025
- US
- GB
- EU
Research data keyboard_double_arrow_right Dataset 2024Publisher:Biological and Chemical Oceanography Data Management Office (BCO-DMO) Dam, Hans G.; Baumann, Hannes; Finiguerra, Michael; Pespeni, Melissa; Brennan, Reid;These data include population fitness measurements collected for Acartia hudsonica during multigenerational exposure to ocean warming (OW), ocean acidification (OA), and combined ocean warming and acidification (OWA) including a benign ambient condition temperature and CO2 control (AM).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26008/1912/bco-dmo.923960.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26008/1912/bco-dmo.923960.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 01 Mar 2024Publisher:Dryad Authors: Fox, Trevor; Raka, Yash; Smith, Kirk; Harrison, Jon;From September of 2017, till August of 2019, water temperatures and A. aegypti larval presence was recorded in nine 19 liter buckets placed in the backyard of Jon Harrison’s home in Tempe, Arizona (33.339, -111.924), as it was known to experience high abundances of A. aegypti. Buckets were 5 – 10 m apart, and so should not be considered ecologically independent. Onset HOBO Pendant® UA-002-08 data loggers (Bourne, Massachusetts) were used to record temperature levels, and larval presence was observed every 1-10 days depending on season (frequently in the summer, less so in winter). If mosquito larvae were observed, they were collected from the bucket with a net and their species identity confirmed with a dissection scope. The data set labeled Figure 2 data provides the water temperatures in one representative bucket from 2017-2019 as shown in Fig. 2 of the manuscript. Larval rearing for mesocosm experiments The parents of larvae used in the mesocosm overwintering experiments were reared from Maricopa County, AZ, origin eggs collected by Maricopa County Vector Control from September to November of 2019. These eggs were placed in a 500 ml beaker, submerged, and hatched in a solution of 0.25 g/L baker’s yeast (Byttebier et al. 2014). As the 1st instar larvae emerged, they were fed TetraMin fish flakes every 1-2 days, making sure that an excess amount of food was visible in the container. The rearing density for the larvae was maintained at fewer than 500 animals per liter of water. As pupae began to appear, the beaker of larvae was placed in a 95-liter polymer-screened cage to contain the expected adults. Cotton balls saturated with 10% sucrose solution were made available for the adults as they began to emerge; these were taken away two days prior to blood feeding. One week after emerging, the adults were blood-fed using mice (IACUC protocol: 18-1662R). After a three-day gestation period, the females were supplied with moist seed-germinating paper to encourage oviposition. Once the females had finished ovipositing, the eggs were kept moist for an additional 48 hours before being dried, and placed in open zip lock sandwich bags which were stored at 100% humidity and 24°C. High humidity in the egg storage containers was achieved by storing damp paper towels along with the opened egg bags within a larger 3.8L bag. These eggs were kept for less than one month before the hatching procedure was repeated to produce the larvae for the experiment. In the lab, across all life stages, the mosquitoes were exposed to a 12:12 L/D photoperiod at 24°C. After hatching, the 2nd instar larvae were moved to their outdoor experimental mesocosms. The larvae were randomly distributed with 20 larvae supplied per each of three ambient mesocosms (Amb1, Amb2, Amb3) and six to warmed mesocosms (W1 – W6), which were warmed by varying amounts (W1 = least warmed, W6 = most warmed). The goal was to achieve a range of warming from very small warming (1-2°C in the least-warmed mesocosm (W1), to near-summer conditions in the most-warmed mesocosm (W6). Each mesocosm was a 150 ml clear plastic container, filled with 125 mL dechlorinated tap water. TetraMin fish flakes were supplied to each mesocosm, with more added every three days or when food was completely consumed. Although the mesocosms were open, we observed no mosquitoes flying in the field, and none were captured in local water buckets, and all A.a. in the mesocosms were of uniform stage, so we believe that this experiment was not affected by oviposition from wild mosquitoes. Manipulation of thermal conditions for larval outdoor rearing All mesocosms were placed on a table one meter above the ground and protected from rain, wind, and sunlight by a roof. The mesocosms were placed within individual lidless pine boxes (10x10x14 cm, 0.95 cm thick walls), and so were exposed to normal fluctuations in air temperature. Each warmed mesocosm was placed on 40mm2 thermoelectric plates with 40mm2 aluminum heatsinks attached using thermally conductive adhesive on each side. The warming orientation of the thermoelectric plate was positioned upwards, towards the mesocosms, to ensure adequate energy transfer from the heating units to the water. Each thermoelectric device was powered by two KORAD KD3005D 30V, 5A power supplies (Shenzhen, China). The thermoelectric plates were wired in parallel. Variable warming was produced by changing the supplied voltage. Temperatures were measured in the cups using HOBO Pendant® UA-002-08 data loggers submerged in the center of each cup. We did not measure temperature gradients within the mesocosms, but believe that they are likely to be small except possibly in the mesocosms that were maximally-warmed, as the mesocosms were small and mostly not strongly warmed above air temperature. Temperatures were logged each hour in each warmed mesocosm, and in one ambient treatment mesocosm. The data file labeled Figure 3 data provides the wate temperatures at hourly intervals during the experiment for one mesocosm at ambient temperature, mesocosm W1 (the least warmed mesocosm) and mesocosm W6 (the most warmed mesocosm) as shown in Fig. 3 of the manuscript. Global warming trends, human-assisted transport, and urbanization have allowed poleward expansion of many tropical vector species, but the specific mechanisms responsible for thermal mediation of range changes and ecological success of invaders remain poorly understood. Aedes aegypti (Diptera: Culicidae) is a tropical mosquito currently expanding into many higher-latitude regions including the urban desert region of Maricopa County, Arizona. Here, adult populations virtually disappear in winter and spring, and then increase exponentially through summer and fall, indicating that winter conditions remain a barrier to development of A. aegypti. To determine whether cold limits the winter development of A. aegypti larvae in Maricopa County, we surveyed for larval abundance, and tested their capacity to develop in ambient and warmed conditions. Aedes aegypti larvae were not observed in artificial aquatic habitats in winter and spring but were abundant in summer and fall, suggesting winter suppression of adults, larvae or both. Water temperatures in winter months fluctuated strongly; larvae were usually cold-paralyzed at night but active during the day. Despite daytime temperatures that allowed activity, larvae reared under ambient winter conditions were unable to develop to adulthood, perhaps due to repetitive cold damage. However, warming average temperature by 1.7°C allowed many larvae to successfully develop to adults. Because daytime highs in winter will often allow adult flight, it is possible that relatively minor additional winter warming may allow A. aegypti populations to develop and reproduce year-round in Maricopa County. # Data for Mesocosm studies suggest climate change may release Aedes aegypti (Diptera:Culicidae) larvae from cold-inhibition and enable year-round development in a desert city [https://doi.org/10.5061/dryad.nzs7h44z7](https://doi.org/10.5061/dryad.nzs7h44z7) Most of the data for this study are provided as supplementary files in the submitted manuscript. Here we provide representative thermal data. One file (Figure 2 data) contains the temperature data for the bucket kept under ambient conditions as shown in Figure 2, which also shows when Aedes aegypti larvae were found in the bucket. From to October 18 -November 29 2017, water temperatures were recorded every 6 minutes. Thereafter, water temperatures were recorded hourly until August 2, 2019. Another file (Figure 3 data) contains water temperatures for three of the mesocosms used in this study, as shown in the manuscript figure 3. This experiment ran from Jan 31, 2020 - March 1, 2020. One column sW1 was and ## Description of the data and file structure Figure 2 data has two columns, column A gives the date and column B the temperature of the ambient bucket in degrees Centigrade. Figure 3 data has four columns; column A gives the hours since the start of the experiment. Column B shows temperatures for an unheated mesocosm kept at ambient conditions. Column C shows temperatures for W6, the most warmed mesocosm (mean temperature 12C higher than the ambient mesocosm, to represent near-summer conditions). Column D shows temperatures for the least-warmed mesocosm (W1, mean temperature 1.8C higher than the ambient mesocosm). All temperatures are in degrees Centigrade.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.nzs7h44z7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.nzs7h44z7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 05 Aug 2024Publisher:Dryad Larocca Conte, Gabriele; Aleksinski, Adam; Liao, Ashley; Kriwet, Jürgen; Mörs, Thomas; Trayler, Robin; Ivany, Linda; Huber, Matthew; Kim, Sora;# Data from: Eocene Shark Teeth from Peninsular Antarctica: Windows to Habitat Use and Paleoceanography. [https://doi.org/10.5061/dryad.qz612jmq2](https://doi.org/10.5061/dryad.qz612jmq2) The repository folder includes scripts and spreadsheets for phosphate oxygen stable isotope (δ18Op) analysis measured from shark tooth biogenic apatite collected from the Eocene deposits of the La Meseta and Submeseta formations (West Antarctica, Seymour Island). It also contains Fourier-Transform Infrared Spectroscopy (FTIR) analysis, a Bayesian model for temperature estimates, and model output extraction scripts from the iCESM simulation for the Early Eocene (Zhu et al., 2020). Scripts and data are stored in specific folders on the type of analysis. All scripts are in R or Python language. **Usage notes** **1 "iCESM modeling scripts" directory** The folder includes scripts in Jupiter Notebook format for extracting and plotting iCESM seawater outputs for the Eocene. The folder includes two files: 1) “d18Ow Analysis Script.ipynb” - This is a Python script primarily using the XArray library, to import iCESM output from Zhu et al. (2020), calculating δ18Ow, and reorganizing the output into monthly time intervals along 25 m and 115 m depth slices, while also averaging output down to these depths; 2) “NetCDF Plotting.ipynb” - this is a Python script primarily using the XArray, Matplotlib, and Cartopy libraries. The script writes a single callable function that creates Matplotlib contour plots from iCESM history output. Variables include temperature, salinity, ideal age, oxygen isotopes, and neodymium isotopes, and map projections include Plate Carree, Mollweide, and orthographic (centering on the Drake Passage). Options are built to enable scale normalization or to set maximum and minimum values for data and select colormaps from a predefined selection of Matplotlib’s “Spectral”, “Viridis”, “Coolwarm”, “GNUplot2”, “PiYG”, “RdYlBu”, and “RdYlGn”. For further questions on model output scripts, please email Adam Aleksinski at [aaleksin@purdue.edu](https://datadryad.org/stash/dataset/doi:10.5061/aaleksin@purdue.edu). **2 "d18O data and maps" directory** The folder includes δ18Op of shark tooth bioapatite and other datasets to interpret shark paleoecology. These datasets include: · δ18Op of shark tooth bioapatite (“shark FEST d18Op.csv”). Isotope measurements were run at the Stable Isotope Ecosystem Laboratory of (SIELO) University of California, Merced (California, USA). · Reference silver phosphate material δ18Op for analytical accuracy and precision (“TCEA reference materials.csv"). Isotope measurements were run at the Stable Isotope Ecosystem Laboratory of (SIELO) University of California, Merced (California, USA). · Bulk and serially sampled δ18Oc data of co-occurring bivalves (Ivany et al., 2008; Judd et al., 2019) (“Ivany et al. 2008_bulk.csv” and “Judd et al., 2019_serial sampling.csv"). · iCESM model temperature and δ18Ow outputs at 3x and 6x pre-industrial CO2 levels for the Early Eocene (Zhu et al., 2020) (“SpinupX3_25m_Mean_Monthly.nc”, “SpinupX6_25m_Mean_Monthly.nc.”, and “CA_x3CO2.csv”). Simulations are integrated from the surface to 25 m. · δ18O values of invertebrate species published in Longinelli (1965) and Longinelli & Nuti (1973), used to convert bulk δ18Oc (V-SMOW) data of bivalves into δ18Op (V-SMOW) values after δ18Oc (V-PDB) - δ18Oc (V-SMOW) conversion found in Kim et al. (2015) (“d18O carbonate and phosphate references.csv”). · R script for data analysis ("d18O data and maps.Rmd”). The script provides annotation through libraries, instrumental accuracy and precision tests, tables, statistical analysis, figures, and model output extractions. . ("TELM_diversity.csv") displays diversity trends of chondrichthyans across TELMs in one of the main figures of the manuscript. **2.1 Dataset description** **shark FEST d18Op.csv** · *Sample_ID*: Identification number of tooth specimens. · *Other_ID*: Temporary identification number of tooth specimens. · *Taxon*: Species assigned to shark tooth specimens. · *TELM*: Stratigraphic units of La Meseta (TELM 2-5; ~45 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). · *d18Op*: Mean δ18Op values of silver phosphate crystals precipitated from shark tooth bioapatite. Specimens were run in triplicates, corrected, and standardized on the V-SMOW scale. · *sd*: Standard deviation of silver phosphate triplicate samples per specimen. · *Protocol*: Silver phosphate protocols used to precipitate crystals from shark tooth bioapatite. We adopted the Rapid UC (“UC_Rapid”) and the SPORA (“SPORA”) protocols after Mine et al. and (2017) Larocca Conte et al. (2024) based on the tooth specimen size and sampling strategy. Descriptions of the methods are included in the main manuscript. · *Environment*: Inferred shark habitat based on taxonomy classified as benthic or pelagic environment. · *Collection*: Institutional abbreviations of museum collections from which shark tooth specimens are housed. NRM-PZ is the abbreviation for the Swedish Natural History Museum (Stockholm, Sweden), PRI is the abbreviation for the Paleontological Research Institute (Ithaca, New York, United States), and UCMP is the University of California Museum of Paleontology (Berkeley, California, United States). **TCEA reference materials.csv** · *Identifier_1*: unique identifier number per sample. · *sample*: reference silver phosphate materials (USGS 80 and USGS 81). · *amount*: weight of samples in mg. · *Area 28*: peak area of mass 28 (12C16O). · *Area 30*: peak area of mass 30 (12C18O). · *d18O_corrected*: corrected δ18Op value of reference materials following drift correction, linearity correction, and 2-point calibration to report values on the V-SMOW scale. **Ivany et al. 2008_bulk.csv** · *Telm*: Stratigraphic units of La Meseta (TELM 2-5; ~45 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). · *Locality*: Locality code from which bivalves were collected. · *Genus*: Genera of bivalves. Specimens are assigned to *Cucullaea* and *Eurhomalea* genera. · *Line*: Sampling areas of specimens. The sampling strategy is described in Ivany et al. (2008). · *d13C*: δ13C values of specimens from sampled lines. Values are reported in the V-PDB scale. · *d18Oc_PDB*: δ18Oc values of specimens from sampled lines. Values are reported in the V-PDB scale. **Judd et al., 2019_serial sampling.csv** · *Horizon:* horizons of the TELM 5 unit (La Meseta Formation) from which bivalves were collected. Horizon 1 is stratigraphically the lowest, while horizon 4 is the highest (Judd et al., 2019). · *ID*: Identification number of specimens. · *Latitude*: Geographic coordinate where bivalve specimens were collected. · *Longitude*: Geographic coordinate where bivalve specimens were collected. · *Surface sampled*: Specific sampling area, indicating whether sampling occurred in the interior or exterior portion of shells. · *distance*: The distance from the umbo in mm from which sampling occurred along a single shell. · *d18Oc_PDB*: δ18Oc values of specimens from sampled areas of shells. Values are reported on the V-PDB scale. **SpinupX3_25m_Mean_Monthly.nc** See section 1 ("iCESM modeling scripts" directory, “d18Ow Analysis Script.ipynb” script) for a full description of the iCESM model output extraction. **SpinupX6_25m_Mean_Monthly.nc** See section 1 ("iCESM modeling scripts" directory, “d18Ow Analysis Script.ipynb” script) for a full description of the iCESM model output extraction. **CA_x3CO2.csv** · *lat*: Geographic coordinate where temperature and δ18Ow model values are extracted from the iCESM simulation scaled at 3x preindustrial CO2 levels (values averaged within a seawater column depth of 25 m). · *long*: Geographic coordinate where temperature and δ18Ow model values are extracted from the iCESM simulation scaled at 3x preindustrial CO2 levels (values averaged within a seawater column depth of 25 m). · *T_mean*: Simulated seawater temperature values in °C. · *d18Ow*: Simulated seawater δ18Ow values (V-SMOW). · *d18Op*: Simulated seawater δ18Op values (V-SMOW). Values were calculated by using seawater temperature and δ18Ow arrays following the paleothermometer equation after Lécuyer et al. (2013). **d18O carbonate and phosphate references.csv** · *species*: Species of invertebrate taxa. · *type*: Specimen type, including barnacles, brachiopods, crabs, and mollusks. · *depth*: Depth of seawater column where specimens were collected, reported in meters below sea level when specified. · *d18Op*: δ18Op values of invertebrate specimens (V-SMOW). · *d18Oc_PDB*: δ18Oc values of invertebrate specimens (V-PDB). · *Reference*: Citations from which data were taken to build the dataset (Longinelli, 1965; Longinelli & Nuti, 1973). **TELM diversity.csv** · *genus:* genera of sharks and rays compiled from literature (Engelbrecht et al., 2016a, 2016b, 2017a, 2017b, 2019; Kriwet, 2005; Kriwet et al., 2016; Long, 1992; Marramá et al., 2018). · *species*: species of sharks and rays compiled from literature (Engelbrecht et al., 2016a, 2016b, 2017a, 2017b, 2019; Kriwet, 2005; Kriwet et al., 2016; Long, 1992; Marramá et al., 2018). · *Environment*: Inferred shark habitat based on taxonomy classified as benthic or pelagic environment. · *TELM*: Stratigraphic units of La Meseta (TELM 1-5; ~44 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). **3 “FTIR data” directory** The folder includes FTIR acquisitions and data analysis scripts on reference materials and shark tooth bioapatite for quality checks to test diagenesis effects on δ18Op of sharks. The folder includes: · The R project file “apatite_ftir.Rproj”. This project file navigates through scripts for raw data processing and data analysis. The background of the raw data was processed following custom R functions from Trayler et al. (2023; [https://github.com/robintrayler/collagen_demineralization](https://github.com/robintrayler/collagen_demineralization)). · The “.Rproj.user” folder includes project-specific temporary files (e.g. auto-saved source documents, window-state, etc.) stored by the R project file “apatite_ftir.Rproj”. The folder may be hidden depending on directory view options. · The “raw data” directory stores spectra acquisitions as .dpt files. Spectra files are stored in the folders “apatite” and “calcite” based on the material type. Spectra were obtained in the 400 – 4000 cm⁻¹ range using a Bruker Vertex 70 Far-Infrared in ATR located at the Nuclear Magnetic Resonance Facility at the University of California Merced (California, USA). · The “processed” directory includes processed spectra stored as .csv files (“apatite_data.csv” and “calcite_data.csv”) following the background correction (Trayler et al., 2023) and processed infrared data from Larocca Conte et al. (2024) (“Larocca Conte et al._SPORA_apatite_data.csv”) from which the NIST SRM 120c spectrum was filtered. Infrared spectra data in “Larocca Conte et al._SPORA_apatite_data.csv” were obtained and corrected following the same methodologies mentioned above. · The “R” directory includes R scripts of customized source functions for background correction (Trayler et al., 2023; inspect the "functions" directory and the R script "0_process_data.R") and data analysis (“data_analysis.R”). The scripts provide annotation through libraries and functions used for data processing and analysis. · Additional datasets. The “data_FTIR_d18O.csv” includes infrared data and δ18Op values of specimens, while the “Grunenwald et al., 2014_CO3.csv” is the dataset after Grunenwald et al. (2014) used to predict carbonate content from the materials featured in this work. **3.1 Dataset description** Spreadsheets included in the “processed” directory The datasets “apatite_data.csv”, “calcite_data.csv”, and “Larocca Conte et al._SPORA_apatite_data.csv” are structured with the following variables: · *wavenumber*: infrared wavenumber in cm-1. · *absorbance*: infrared absorbance value. · *file_name:* .dpt file name from which infrared wavenumber and absorbance values were obtained following the background correction. **data_FTIR_d18O.csv** · *file_name:* .dpt file name from which infrared wavenumber and absorbance values were obtained following the background correction. · *v4PO4_565_wavenumber*: Wavenumber of maximum infrared absorbance around the first νPO4 band, usually at 565 cm-1. · *v4PO4_565*: Peak absorbance value of the first ν4PO4 band (~565 cm-1). · *v4PO4_valley_wavenumber*: Wavenumber of valley between ν4PO4 bands. · *v4PO4_valley*: Absorbance value of the valley between ν4PO4 bands. · *v4PO4_603_wavenumber*: Wavenumber of maximum infrared absorbance around the second ν4PO4 band, usually at 603 cm-1. · *v4PO4_603*: Peak absorbance value of the second ν4PO4 band (~603 cm-1). · *CI*: Crystallinity index calculated after equation provided in (Shemesh, 1990) as (*v4PO4_565* + *v4PO4_603* / *v4PO4_valley*) (i.e., the sum of peak absorbance of νPO4 bands divided by the absorbance value of the valley between peaks). · *material*: Material type of samples (i.e., standard material, enameloid, dentin sampled from the crown or root area of shark teeth, and enameloid mixed with dentin). · *AUC_v3PO4*: Area under the curve of the ν3PO4 and ν1PO4 bands where maximum absorbance is at ~1025 cm-1 and ~960 cm-1, respectively. · *AUC_v3CO3*: Area under the curves of Type-A and Type-B carbonate bands having maximum infrared absorbance at ~1410 (Type-B), ~1456 (Type-B), and ~1545 cm-1 (Type-A). · *v3CO3_v3PO4_ratio*: Ratio between area under the curves of carbonate and phosphate bands (i.e., *AUC_v3CO3* / *AUC_v3PO4*). · *CO3_wt*: Estimated mean carbonate content following the equation in Grunenwald et al. (2014) (i.e. *CO3_wt* = 28.4793 (±1.4803) *v3CO3_v3PO4_ratio* + 0.1808(±0.2710); R2 = 0.985). · *CO3_wt_sd*: Standard deviation of estimated carbonate content calculated by propagating the error around coefficients provided in the Grunenwald et al. (2014) equation (see full equation in *CO3_wt*). · *Taxon*: Species assigned to shark tooth specimens. · *TELM*: Stratigraphic units of La Meseta (TELM 2-5; ~45 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). · *d18Op*: Mean δ18Op values of silver phosphate crystals precipitated from shark tooth bioapatite. Specimens were run in triplicates, corrected, and standardized on the V-SMOW scale. · *sd*: Standard deviation of silver phosphate triplicate samples per specimen. · *Collection*: Institutional abbreviations of museum collections where shark tooth specimens are housed. Infrared spectra were obtained from a selected subset of tooth specimens in the care of the Swedish Natural History Museum (NRM-PZ; Stockholm, Sweden). **Grunenwald et al., 2014_CO3.csv** · *sample*: Sample code. · *material*: Material type of samples (i.e., standard material, bone, and enamel). · *v3CO3*: Area under the curves of Type-A and Type-B carbonate bands having maximum infrared absorbance at ~1410 (Type-B), ~1456 (Type-B), and ~1545 cm-1 (Type-A). · *v3PO4*: *AUC_v3PO4*: Area under the curve of the ν3PO4 and ν1PO4 bands where maximum absorbance is at ~1025 cm-1 and ~960 cm-1, respectively. · *v3CO3_v3PO4_ratio*: *v3CO3_v3PO4_ratio*: Ratio between area under the curves of carbonate and phosphate bands (i.e., *v3CO3* /*v3PO4*). · *CO3_wt*: Carbonate content measured via CO2 coulometry. Further details about the analytical measurements are found in Grunenwald et al. (2014). **4 “Bayes_FEST_Temperautre Estimates” directory** The folder includes the Bayesian approach used to estimate posterior seawater temperature, δ18Ow values from δ18Op of sharks bioapatite using a Bayesian approach modified after Griffiths et al. (2023). The original scripts used in Griffiths et al. (2023) are reposited here: [https://github.com/robintrayler/bayesian_phosphate](https://github.com/robintrayler/bayesian_phosphate). The directory includes: · The R project file “Bayes_FEST.Rproj”. This project file navigates through scripts for raw data analysis. · The “.Rproj.user” folder includes project-specific temporary files (e.g. auto-saved source documents, window-state, etc.) stored by the R project file “Bayes_FEST.Rproj”. The folder may be hidden depending on directory view options. · The “data” folder includes the spreadsheets for modeled seawater temperature and δ18Ow values (“CA_x3CO2.csv”) and δ18Op values of shark tooth bioapatite (“shark FEST d18Op.csv”) used as prior information for the Bayesian model. We refer to section 2.1 for the full description of spreadsheets. · The “R” folder includes customized functions for the Bayesian model stored in the “functions” directory and the script for data analysis (“01_model_sharks.R”). The script includes a comparison of paleothermometer equations after Kolodny et al. (1983), Lécuyer et al. (2013), Longinelli & Nuti (1973), and (Pucéat et al. (2010) using the bulk δ18Op shark tooth bioapatite, simulated seawater temperature and δ18Ow values as prior inputs. While all paleothermometers estimate similar posterior bulk δ18Op close to empirical values, temperature estimates using the Pucéat et al. (2010) method are often the highest, generating estimates ~8°C higher than other equations. We therefore used the Lécuyer et al. (2013) paleothermomether for temperature estimates using δ18Op of shark bioapatite grouped by taxa because it: 1\) Provides consistent posterior temperature estimates relative to other equations (Longinelli & Nuti, 1973, Kolodny et al., 1983). 2\) provides temperature values from fish tooth specimens consistent with estimates of co-existing bivalves or brachiopod carbonate shells. The script provides annotation through libraries, statistical analysis, figures, and tables. **4 Software** **4.1 R** R and R Studio (R Development Core Team, 2024; RStudio Team, 2024) are required to run scripts included in the "d18O data and maps", “FTIR data”, and “Bayes_FEST_Temperautre Estimates” directories, which were created using versions 4.4.1 and 2024.04.02, respectively. Install the following libraries before running scripts: “cowplot” (Wilke, 2024), “colorspace” (Zeileis et al., 2020), “DescTools” (Signorell, 2024), “lattice” (Sarkar, 2008), “flextable” (Gohel & Skintzos, 2024), “ggh4x” (van den Brand, 2024), “ggnewscale” (Campitelli, 2024), “ggpubr” (Kassambara, 2023a), “ggspatial” (Dunnington, 2023), “ggstance” (Henry et al., 2024), “ggstar” (Xu, 2022), “greekLetters” (Kévin Allan Sales Rodrigues, 2023), “gridExtra” (Auguie, 2017), “mapdata” (code by Richard A. Becker & version by Ray Brownrigg., 2022); “mapproj” (for R by Ray Brownrigg et al., 2023), “maps” (code by Richard A. Becker et al., 2023), “ncdf4” (Pierce, 2023), “oce” (Kelley & Richards, 2023), “rasterVis” (Oscar Perpiñán & Robert Hijmans, 2023), “RColorBrewer” (Neuwirth, 2022), “rnaturalearth” (Massicotte & South, 2023), “rnaturalearthhires” (South et al., 2024),”rstatix” (Kassambara, 2023b), “scales” (Wickham et al., 2023), “tidyverse” (Wickham et al., 2019), “viridisLite” (Garnier et al., 2023). **4.2 Python** Python scripts, including “d18O Analysis Script.ipynb” and “NetCDF Plotting.ipynb”, utilize the Jupyter Notebook interactive ‘platform and are executed using Python version 3.9.16. Install the following libraries before running scripts: “xarray” (Hoyer & Joseph, 2017), “matplotlib” (Hunter, 2007), “cartopy” (Met Office, 2015). **5 References** Amenábar, C. R., Montes, M., Nozal, F., & Santillana, S. (2020). Dinoflagellate cysts of the la Meseta Formation (middle to late Eocene), Antarctic Peninsula: Implications for biostratigraphy, palaeoceanography and palaeoenvironment. *Geological Magazine*, *157*(3), 351–366. [https://doi.org/10.1017/S0016756819000591](https://doi.org/10.1017/S0016756819000591) Auguie, B. (2017). gridExtra: Miscellaneous Functions for “Grid” Graphics. Retrieved from [https://cran.r-project.org/package=gridExtra](https://cran.r-project.org/package=gridExtra) van den Brand, T. (2024). ggh4x: Hacks for “ggplot2.” Retrieved from [https://cran.r-project.org/package=ggh4x](https://cran.r-project.org/package=ggh4x) Campitelli, E. (2024). ggnewscale: Multiple Fill and Colour Scales in “ggplot2.” Retrieved from [https://cran.r-project.org/package=ggnewscale](https://cran.r-project.org/package=ggnewscale) code by Richard A. Becker, O. S., & version by Ray Brownrigg., A. R. W. R. (2022). mapdata: Extra Map Databases. Retrieved from [https://cran.r-project.org/package=mapdata](https://cran.r-project.org/package=mapdata) code by Richard A. Becker, O. S., version by Ray Brownrigg. Enhancements by Thomas P Minka, A. R. W. R., & Deckmyn., A. (2023). maps: Draw Geographical Maps. Retrieved from [https://cran.r-project.org/package=maps](https://cran.r-project.org/package=maps) Douglas, P. M. J., Affek, H. P., Ivany, L. C., Houben, A. J. P., Sijp, W. P., Sluijs, A., et al. (2014). Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. *Proceedings of the National Academy of Sciences of the United States of America*, *111*(18), 6582–6587. [https://doi.org/10.1073/pnas.1321441111](https://doi.org/10.1073/pnas.1321441111) Dunnington, D. (2023). ggspatial: Spatial Data Framework for ggplot2. Retrieved from [https://cran.r-project.org/package=ggspatial](https://cran.r-project.org/package=ggspatial) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2016a). A new sawshark, Pristiophorus laevis, from the Eocene of Antarctica with comments on Pristiophorus lanceolatus. *Historical Biology*, *29*(6), 841–853. [https://doi.org/10.1080/08912963.2016.1252761](https://doi.org/10.1080/08912963.2016.1252761) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2016b). Revision of Eocene Antarctic carpet sharks (Elasmobranchii, Orectolobiformes) from Seymour Island, Antarctic Peninsula. *Journal of Systematic Palaeontology*, *15*(12), 969–990. [https://doi.org/10.1080/14772019.2016.1266048](https://doi.org/10.1080/14772019.2016.1266048) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2017a). Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica. *Journal of South American Earth Sciences*, *78*, 175–189. [https://doi.org/10.1016/j.jsames.2017.07.006](https://doi.org/10.1016/j.jsames.2017.07.006) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2017b). New carcharhiniform sharks (Chondrichthyes, Elasmobranchii) from the early to middle Eocene of Seymour Island, Antarctic Peninsula. *Journal of Vertebrate Paleontology*, *37*(6). [https://doi.org/10.1080/02724634.2017.1371724](https://doi.org/10.1080/02724634.2017.1371724) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2019). Skates and rays (Elasmobranchii, Batomorphii) from the Eocene La Meseta and Submeseta formations, Seymour Island, Antarctica. *Historical Biology*, *31*(8), 1028–1044. [https://doi.org/10.1080/08912963.2017.1417403](https://doi.org/10.1080/08912963.2017.1417403) for R by Ray Brownrigg, D. M. P., Minka, T. P., & transition to Plan 9 codebase by Roger Bivand. (2023). mapproj: Map Projections. Retrieved from [https://cran.r-project.org/package=mapproj](https://cran.r-project.org/package=mapproj) Garnier, Simon, Ross, Noam, Rudis, Robert, et al. (2023). {viridis(Lite)} - Colorblind-Friendly Color Maps for R. [https://doi.org/10.5281/zenodo.4678327](https://doi.org/10.5281/zenodo.4678327) Gohel, D., & Skintzos, P. (2024). flextable: Functions for Tabular Reporting. Retrieved from [https://cran.r-project.org/package=flextable](https://cran.r-project.org/package=flextable) Griffiths, M. L., Eagle, R. A., Kim, S. L., Flores, R. J., Becker, M. A., IV, H. M. M., et al. (2023). Endothermic physiology of extinct megatooth sharks. *Proceedings of the National Academy of Sciences*, *120*(27), e2218153120. [https://doi.org/10.1073/PNAS.2218153120](https://doi.org/10.1073/PNAS.2218153120) Grunenwald, A., Keyser, C., Sautereau, A. M., Crubézy, E., Ludes, B., & Drouet, C. (2014). Revisiting carbonate quantification in apatite (bio)minerals: A validated FTIR methodology. *Journal of Archaeological Science*, *49*(1), 134–141. [https://doi.org/10.1016/j.jas.2014.05.004](https://doi.org/10.1016/j.jas.2014.05.004) Henry, L., Wickham, H., & Chang, W. (2024). ggstance: Horizontal “ggplot2” Components. Retrieved from [https://cran.r-project.org/package=ggstance](https://cran.r-project.org/package=ggstance) Hoyer, S., & Joseph, H. (2017). xarray: N-D labeled Arrays and Datasets in Python. *Journal of Open Research Software*, *5*(1), 17. [https://doi.org/10.5334/jors.148](https://doi.org/10.5334/jors.148) Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. *Computing in Science & Engineering*, *9*(3), 90–95. [https://doi.org/10.1109/MCSE.2007.55](https://doi.org/10.1109/MCSE.2007.55) Ivany, L. C., Lohmann, K. C., Hasiuk, F., Blake, D. B., Glass, A., Aronson, R. B., & Moody, R. M. (2008). Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. *Bulletin of the Geological Society of America*, *120*(5–6), 659–678. [https://doi.org/10.1130/B26269.1](https://doi.org/10.1130/B26269.1) Judd, E. J., Ivany, L. C., DeConto, R. M., Halberstadt, A. R. W., Miklus, N. M., Junium, C. K., & Uveges, B. T. (2019). Seasonally Resolved Proxy Data From the Antarctic Peninsula Support a Heterogeneous Middle Eocene Southern Ocean. *Paleoceanography and Paleoclimatology*, *34*(5), 787–799. [https://doi.org/10.1029/2019PA003581](https://doi.org/10.1029/2019PA003581) Kassambara, A. (2023a). ggpubr: “ggplot2” Based Publication Ready Plots. Retrieved from [https://cran.r-project.org/package=ggpubr](https://cran.r-project.org/package=ggpubr) Kassambara, A. (2023b). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. Retrieved from [https://cran.r-project.org/package=rstatix](https://cran.r-project.org/package=rstatix) Kelley, D., & Richards, C. (2023). oce: Analysis of Oceanographic Data. Retrieved from [https://cran.r-project.org/package=oce](https://cran.r-project.org/package=oce) Kévin Allan Sales Rodrigues. (2023). greekLetters: routines for writing Greek letters and mathematical symbols on the RStudio and RGui. Retrieved from [https://cran.r-project.org/package=greekLetters](https://cran.r-project.org/package=greekLetters) Kolodny, Y., Luz, B., & Navon, O. (1983). Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite-rechecking the rules of the game. *Earth and Planetary Science Letters*, *64*(3), 398–404. [https://doi.org/10.1016/0012-821X(83)90100-0](https://doi.org/10.1016/0012-821X\(83\)90100-0) Kriwet, J. (2005). Additions to the Eocene selachian fauna of Antarctica with comments on Antarctic selachian diversity. *Journal of Vertebrate Paleontology*, *25*(1), 1–7. [https://doi.org/10.1671/0272-4634(2005)025\[0001:ATTESF\]2.0.CO;2](https://doi.org/10.1671/0272-4634\(2005\)025[0001:ATTESF]2.0.CO;2) Kriwet, J., Engelbrecht, A., Mörs, T., Reguero, M., & Pfaff, C. (2016). Ultimate Eocene (Priabonian) chondrichthyans (Holocephali, Elasmobranchii) of Antarctica. *Journal of Vertebrate Paleontology*, *36*(4). [https://doi.org/10.1080/02724634.2016.1160911](https://doi.org/10.1080/02724634.2016.1160911) Larocca Conte, G., Lopes, L. E., Mine, A. H., Trayler, R. B., & Kim, S. L. (2024). SPORA, a new silver phosphate precipitation protocol for oxygen isotope analysis of small, organic-rich bioapatite samples. *Chemical Geology*, *651*, 122000. [https://doi.org/10.1016/J.CHEMGEO.2024.122000](https://doi.org/10.1016/J.CHEMGEO.2024.122000) Lécuyer, C., Amiot, R., Touzeau, A., & Trotter, J. (2013). Calibration of the phosphate δ18O thermometer with carbonate-water oxygen isotope fractionation equations. *Chemical Geology*, *347*, 217–226. [https://doi.org/10.1016/j.chemgeo.2013.03.008](https://doi.org/10.1016/j.chemgeo.2013.03.008) Long, D. J. (1992). Sharks from the La Meseta Formation (Eocene), Seymour Island, Antarctic Peninsula. *Journal of Vertebrate Paleontology*, *12*(1), 11–32. [https://doi.org/10.1080/02724634.1992.10011428](https://doi.org/10.1080/02724634.1992.10011428) Longinelli, A. (1965). Oxygen isotopic composition of orthophosphate from shells of living marine organisms. *Nature*, *207*(4998), 716–719. [https://doi.org/10.1038/207716a0](https://doi.org/10.1038/207716a0) Longinelli, A., & Nuti, S. (1973). Revised phosphate-water isotopic temperature scale. *Earth and Planetary Science Letters*, *19*(3), 373–376. [https://doi.org/10.1016/0012-821X(73)90088-5](https://doi.org/10.1016/0012-821X\(73\)90088-5) Marramá, G., Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2018). The southernmost occurrence of Brachycarcharias (Lamniformes, Odontaspididae) from the Eocene of Antarctica provides new information about the paleobiogeography and paleobiology of Paleogene sand tiger sharks. *Rivista Italiana Di Paleontologia e Stratigrafia*, *124*(2), 283–297. Massicotte, P., & South, A. (2023). rnaturalearth: World Map Data from Natural Earth. Retrieved from [https://cran.r-project.org/package=rnaturalearth](https://cran.r-project.org/package=rnaturalearth) Met Office. (2015). Cartopy: a cartographic python library with a Matplotlib interface. Exeter, Devon. Retrieved from [https://scitools.org.uk/cartopy](https://scitools.org.uk/cartopy) Mine, A. H., Waldeck, A., Olack, G., Hoerner, M. E., Alex, S., & Colman, A. S. (2017). Microprecipitation and δ18O analysis of phosphate for paleoclimate and biogeochemistry research. *Chemical Geology*, *460*(March), 1–14. [https://doi.org/10.1016/j.chemgeo.2017.03.032](https://doi.org/10.1016/j.chemgeo.2017.03.032) Montes, M., Nozal, F., Santillana, S., Marenssi, S., & Olivero, E. (2013). Mapa Geológico de Isla Marambio (Seymour), Antártida, escala 1:20,000. *Serie Cartográfica*. Neuwirth, E. (2022). RColorBrewer: ColorBrewer Palettes. Retrieved from [https://cran.r-project.org/package=RColorBrewer](https://cran.r-project.org/package=RColorBrewer) Oscar Perpiñán, & Robert Hijmans. (2023). rasterVis. Retrieved from [https://oscarperpinan.github.io/rastervis/](https://oscarperpinan.github.io/rastervis/) Pierce, D. (2023). ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. Retrieved from [https://cran.r-project.org/package=ncdf4](https://cran.r-project.org/package=ncdf4) Pucéat, E., Joachimski, M. M., Bouilloux, A., Monna, F., Bonin, A., Motreuil, S., et al. (2010). Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite. *Earth and Planetary Science Letters*, *298*(1–2), 135–142. [https://doi.org/10.1016/j.epsl.2010.07.034](https://doi.org/10.1016/j.epsl.2010.07.034) R Development Core Team. (2024). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Vienna, Austria. RStudio Team. (2024). RStudio: Integrated Development for R. Boston, MA: RStudio, PBC. Retrieved from [http://www.rstudio.com/](http://www.rstudio.com/). Sarkar, D. (2008). *Lattice: Multivariate Data Visualization with R*. New York: Springer. Retrieved from [http://lmdvr.r-forge.r-project.org](http://lmdvr.r-forge.r-project.org) Shemesh, A. (1990). Crystallinity and diagenesis of sedimentary apatites. *Geochimica et Cosmochimica Acta*, *54*(9), 2433–2438. [https://doi.org/10.1016/0016-7037(90)90230-I](https://doi.org/10.1016/0016-7037\(90\)90230-I) Signorell, A. (2024). DescTools: Tools for Descriptive Statistics. Retrieved from [https://cran.r-project.org/package=DescTools](https://cran.r-project.org/package=DescTools) South, A., Michael, S., & Massicotte, P. (2024). rnaturalearthhires: High Resolution World Vector Map Data from Natural Earth used in rnaturalearth. Retrieved from [https://github.com/ropensci/rnaturalearthhires](https://github.com/ropensci/rnaturalearthhires) Trayler, R. B., Landa, P. V., & Kim, S. L. (2023). Evaluating the efficacy of collagen isolation using stable isotope analysis and infrared spectroscopy. *Journal of Archaeological Science*, *151*, 105727. [https://doi.org/10.1016/j.jas.2023.105727](https://doi.org/10.1016/j.jas.2023.105727) Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., et al. (2019). Welcome to the {tidyverse}. *Journal of Open Source Software*, *4*(43), 1686. [https://doi.org/10.21105/joss.01686](https://doi.org/10.21105/joss.01686) Wickham, H., Pedersen, T. L., & Seidel, D. (2023). scales: Scale Functions for Visualization. Retrieved from [https://cran.r-project.org/package=scales](https://cran.r-project.org/package=scales) Wilke, C. O. (2024). cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2.” Retrieved from [https://cran.r-project.org/package=cowplot](https://cran.r-project.org/package=cowplot) Xu, S. (2022). ggstar: Multiple Geometric Shape Point Layer for “ggplot2.” Retrieved from [https://cran.r-project.org/package=ggstar](https://cran.r-project.org/package=ggstar) Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P., et al. (2020). {colorspace}: A Toolbox for Manipulating and Assessing Colors and Palettes. *Journal of Statistical Software*, *96*(1), 1–49. [https://doi.org/10.18637/jss.v096.i01](https://doi.org/10.18637/jss.v096.i01) Zhu, J., Poulsen, C. J., Otto-Bliesner, B. L., Liu, Z., Brady, E. C., & Noone, D. C. (2020). Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction. *Earth and Planetary Science Letters*, *537*, 116164. [https://doi.org/10.1016/j.epsl.2020.116164](https://doi.org/10.1016/j.epsl.2020.116164) Eocene climate cooling, driven by the falling pCO2 and tectonic changes in the Southern Ocean, impacted marine ecosystems. Sharks in high-latitude oceans, sensitive to these changes, offer insights into both environmental shifts and biological responses, yet few paleoecological studies exist. The Middle-to-Late Eocene units on Seymour Island, Antarctica, provide a rich, diverse fossil record, including sharks. We analyzed the oxygen isotope composition of phosphate from shark tooth bioapatite (δ18Op) and compared our results to co-occurring bivalves and predictions from an isotope-enabled global climate model to investigate habitat use and environmental conditions. Bulk δ18Op values (mean 22.0 ± 1.3‰) show no significant changes through the Eocene. Furthermore, the variation in bulk δ18Op values often exceeds that in simulated seasonal and regional values. Pelagic and benthic sharks exhibit similar δ18Op values across units but are offset relative to bivalve and modeled values. Some taxa suggest movements into warmer or more brackish waters (e.g., Striatolamia, Carcharias) or deeper, colder waters (e.g., Pristiophorus). Taxa like Raja and Squalus display no shift, tracking local conditions in Seymour Island. The lack of difference in δ18Op values between pelagic and benthic sharks in the Late Eocene could suggest a poorly stratified water column, inconsistent with a fully opened Drake Passage. Our findings demonstrate that shark tooth bioapatite tracks the preferred habitat conditions for individual taxa rather than recording environmental conditions where they are found. A lack of secular variation in δ18Op values says more about species ecology than the absence of regional or global environmental changes. See methods in Larocca Conte, G., Aleksinski, A., Liao, A., Kriwet, J., Mörs, T., Trayler, R. B., Ivany, L. C., Huber, M., Kim, S. L. (2024). Eocene Shark Teeth From Peninsular Antarctica: Windows to Habitat Use and Paleoceanography. Paleoceanography and Paleoclimatology, 39, e2024PA004965.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qz612jmq2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qz612jmq2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 16 Jan 2024Publisher:Dryad Authors: Pérez-Navarro, María Ángeles;This repository contains a series of .csv files developed for the study titled "Plant canopies promote climatic disequilibrium in Mediterranean recruit communities", authored by: Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcántara JM and Verdú M. The author of these files is Perez-Navarro MA. These files are used to characterize species niches, estimate climatic disequilibrium for recruit communities growing under plant canopies and open spaces, and conduct statistical analyses. Variables description of each table is compiled in the METADATA.txt file. Please visit Github readme () to correctly place these files in the folder tree and check for the corresponding scripts where they are required. Please notice that although alternative approaches were calibrated to estimate species niche (accordingly producing multiple niche, distances and disequilibrium dataframes), only niche centroid calibrated discarding 95 percentile of lowest niche density was used for paper results and figures. Also, in case of univariate analyses only bio01, bio06 and bio12 were used in analyses, though species niche and further niche and community estimations were obtained for all 19 variables. This is version 2 (v2) and include extra intermediate .csv required to run all the R scripts included in the abovementioned Github repository. NAs or empty cells present in the .csv files of this repository means no data and do not contribute to the analyses. Visit METADATA.txt file for variables description. These data are under CC0 license. It is possible to share, copy and redistribute the material in any medium or format, and adapt, remix, transform, and build upon the material for any purpose. Studies using R scripts or any data files from these study should cite the abovementioned paper (Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcantara JM, Verdu M. (2024). Plant canopies promote climatic disequilibrium in Mediterranean recruit communities). Please contact m.angeles582@gmail.com in case of having doubts or problems with the existing files and scripts. Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyze differences in climatic disequilibrium between understory and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favor warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023 European UnionLes conditions géothermiques souterraines, quelle que soit la position des aquifères, sont montrées avec des cartes géothermiques appropriées. Cette carte représente les lignes de température attendues à une profondeur de 3 000 m de la carte de la distribution spatiale de la température attendue à une profondeur de 3 000 m (carte géothermique), qui est faite avec des données de 214 forages. Il est fabriqué sur la base des températures mesurées dans des puits accessibles dans tout le pays. Cependant, puisque le champ de température dépend de la composition géologique en profondeur et des caractéristiques tectoniques, le cours des isothermes est le résultat de nombreuses influences telles que la conductivité thermique des roches, la perméabilité et la fissuration des roches, qui se reflètent toutes dans les températures mesurées des puits. À cette profondeur, la chaleur radiogénique dans les roches a également une influence mineure. La répartition des puits, utiles pour les mesures de température, est très inégale et varie en profondeur. Après des températures à une profondeur de 3 000 m, il y a une anomalie positive plus forte dans la partie nord-est de la Slovénie, de la ligne Maribor-Rogatec à l’est, alors qu’il n’y a pas d’anomalie dans la partie orientale du bassin de Krško. Dans la partie nord-est du pays, cela est dû à la croûte terrestre plus mince et au flux de chaleur conductif plus élevé du manteau terrestre. Ailleurs, les températures sont beaucoup plus basses. Las condiciones geotérmicas subterráneas, independientemente de la posición de los acuíferos, se muestran con mapas geotérmicos adecuados. Este mapa representa las líneas de temperatura esperadas a una profundidad de 3 000 m del mapa de la distribución espacial de la temperatura esperada a una profundidad de 3 000 m (Mapa Geotérmico), que se realiza con datos de 214 pozos. Se realiza sobre la base de temperaturas medidas en pozos accesibles en todo el país. Sin embargo, dado que el campo de temperatura depende de la composición geológica en profundidades y características tectónicas, el curso de las isotermas es el resultado de numerosas influencias, como la conductividad térmica de las rocas, la permeabilidad y el agrietamiento de las rocas, todas las cuales se reflejan en temperaturas bien medidas. A esta profundidad, el calor radiogénico en las rocas también tiene una influencia menor. La distribución de los pozos, que fueron útiles para las mediciones de temperatura, es muy desigual y varía en profundidad. Después de temperaturas a una profundidad de 3 000 m, hay una anomalía positiva más fuerte en la parte noreste de Eslovenia, desde la línea Maribor-Rogatec hacia el este, mientras que no hay anomalía en la parte oriental de la cuenca de Krško. En la parte noreste del país, esto se debe a la corteza terrestre más delgada y al mayor flujo de calor conductor del manto de la Tierra. En otros lugares, las temperaturas son mucho más bajas. Die unterirdischen Geothermiebedingungen, unabhängig von der Lage der Grundwasserleiter, werden mit geeigneten geothermischen Karten dargestellt. Diese Karte stellt die erwarteten Temperaturlinien in einer Tiefe von 3 000 m von der Karte der räumlichen Verteilung der erwarteten Temperatur in einer Tiefe von 3 000 m (Geothermiekarte) dar, die mit Daten aus 214 Bohrlöchern erstellt wird. Es wird auf der Grundlage der gemessenen Temperaturen in zugänglichen Brunnen im ganzen Land gemacht. Da das Temperaturfeld jedoch von der geologischen Zusammensetzung in Tiefen und tektonischen Eigenschaften abhängt, ist der Verlauf der Isothermen das Ergebnis zahlreicher Einflüsse wie Wärmeleitfähigkeit von Gesteinen, Durchlässigkeit und Rissbildung von Gesteinen, die alle in gemessenen Brunnentemperaturen reflektiert werden. In dieser Tiefe hat auch radiogene Hitze in Gesteinen einen geringen Einfluss. Die Verteilung der Brunnen, die für Temperaturmessungen nützlich waren, ist sehr ungleichmäßig und variiert in der Tiefe. Nach Temperaturen in einer Tiefe von 3 000 m gibt es eine stärkere positive Anomalie im nordöstlichen Teil Sloweniens, von der Linie Maribor-Rogatec nach Osten, während es im östlichen Teil des Krško-Beckens keine Anomalie gibt. Im Nordosten des Landes ist dies auf die dünnere Erdkruste und die höhere leitfähige Wärmeströmung aus dem Erdmantel zurückzuführen. Anderswo sind die Temperaturen viel niedriger. Le condizioni geotermiche sotterranee, indipendentemente dalla posizione delle falde acquifere, sono mostrate con adeguate mappe geotermiche. Questa mappa rappresenta le linee di temperatura previste ad una profondità di 3 000 m dalla mappa della distribuzione spaziale della temperatura prevista ad una profondità di 3 000 m (Carta geotermica), che è fatta con i dati di 214 pozzi. È realizzato sulla base delle temperature misurate in pozzi accessibili in tutto il paese. Tuttavia, poiché il campo di temperatura dipende dalla composizione geologica in profondità e caratteristiche tettoniche, il decorso delle isoterme è il risultato di numerose influenze come la conducibilità termica delle rocce, la permeabilità e la fessura delle rocce, che si riflettono tutte in temperature misurate bene. A questa profondità, anche il calore radiogenico nelle rocce ha un'influenza minore. La distribuzione dei pozzi, utili per le misurazioni della temperatura, è molto irregolare e varia in profondità. Dopo temperature a una profondità di 3 000 m, c'è un'anomalia positiva più forte nella parte nord-orientale della Slovenia, dalla linea Maribor-Rogatec a est, mentre non vi è alcuna anomalia nella parte orientale del bacino di Krško. Nella parte nord-orientale del paese, questo è dovuto alla crosta terrestre più sottile e al più alto flusso di calore conduttivo dal mantello terrestre. Altrove, le temperature sono molto più basse. De ondergrondse geothermische omstandigheden, ongeacht de positie van de watervoerende lagen, worden weergegeven met geschikte geothermische kaarten. Deze kaart geeft de verwachte temperatuurlijnen weer op een diepte van 3 000 m van de kaart van de ruimtelijke verdeling van de verwachte temperatuur op een diepte van 3 000 m (Geothermiekaart), die wordt gemaakt met gegevens van 214 boorgaten. Het wordt gemaakt op basis van gemeten temperaturen in toegankelijke putten in het hele land. Aangezien het temperatuurveld echter afhankelijk is van de geologische samenstelling in diepten en tektonische kenmerken, is het verloop van isothermen het resultaat van talrijke invloeden zoals thermische geleidbaarheid van gesteenten, doorlaatbaarheid en kraken van gesteenten, die allemaal worden weerspiegeld in gemeten goedtemperaturen. Op deze diepte heeft radiogene warmte in rotsen ook een kleine invloed. De verdeling van putten, die nuttig waren voor temperatuurmetingen, is zeer ongelijk en varieert in diepte. Na temperaturen op een diepte van 3 000 m is er een sterkere positieve anomalie in het noordoosten van Slovenië, van de lijn Maribor-Rogatec naar het oosten, terwijl er geen anomalie is in het oostelijke deel van het Krško-bekken. In het noordoosten van het land is dit te wijten aan de dunnere aardkorst en de hogere geleidende warmtestroom uit de mantel van de aarde. Elders zijn de temperaturen veel lager. Οι υπόγειες γεωθερμικές συνθήκες, ανεξάρτητα από τη θέση των υδροφόρων οριζόντων, παρουσιάζονται με κατάλληλους γεωθερμικούς χάρτες. Ο χάρτης αυτός αναπαριστά τις αναμενόμενες γραμμές θερμοκρασίας σε βάθος 3 000 m από τον χάρτη της χωρικής κατανομής της αναμενόμενης θερμοκρασίας σε βάθος 3 000 m (Γεωθερμικός Χάρτης), ο οποίος γίνεται με δεδομένα από 214 γεωτρήσεις. Γίνεται με βάση τις μετρούμενες θερμοκρασίες σε προσβάσιμα πηγάδια σε όλη τη χώρα. Ωστόσο, δεδομένου ότι το πεδίο θερμοκρασίας εξαρτάται από τη γεωλογική σύνθεση σε βάθη και τεκτονικά χαρακτηριστικά, η πορεία των ισοθερμικών είναι το αποτέλεσμα πολυάριθμων επιδράσεων όπως η θερμική αγωγιμότητα των πετρωμάτων, η διαπερατότητα και η ρωγμή των πετρωμάτων, οι οποίες αντανακλώνται σε μετρημένες θερμοκρασίες φρεατίων. Σε αυτό το βάθος, η ραδιογενής θερμότητα στους βράχους έχει επίσης μια μικρή επιρροή. Η κατανομή των φρεάτων, τα οποία ήταν χρήσιμα για μετρήσεις θερμοκρασίας, είναι πολύ άνιση και ποικίλλει σε βάθος. Μετά από θερμοκρασίες σε βάθος 3000 μέτρων, υπάρχει μια ισχυρότερη θετική ανωμαλία στο βορειοανατολικό τμήμα της Σλοβενίας, από τη γραμμή Maribor-Rogatec προς τα ανατολικά, ενώ δεν υπάρχει ανωμαλία στο ανατολικό τμήμα της λεκάνης Krško. Στο βορειοανατολικό τμήμα της χώρας, αυτό οφείλεται στον λεπτότερο φλοιό της Γης και την υψηλότερη αγώγιμη ροή θερμότητας από τον μανδύα της Γης. Αλλού, οι θερμοκρασίες είναι πολύ χαμηλότερες. The underground geothermal conditions can be presented, irrespective of the aquifers' position, with the appropriate geothermal maps. This map represents the expected temperature lines at a depth of 3000 m and is derived from Geothermal map - Expected temperatures at a depth of 3000 m, which is made with data from 214 boreholes. It is made on the basis of measured temperatures in accessible boreholes throughout the country. However, since the temperature field depends on the geological structure in the depths and tectonic characteristics, the course of the isotherms is a result of many influences, such as thermal conductivity of rocks, permeability and fracturing of rocks, all of which are reflected in the measured temperatures in boreholes. In this depth also a radiogenic heat production in the rocks has smaller influence. The distribution of boreholes, which were useful for the measurement of temperature, is very uneven and different as regard the depths. Following the expected temperatures at a depth of 3000 m a stronger positive anomaly is in the northeastern part of Slovenia, from the line Maribor-Rogatec to the east, while in the eastern part of the Krka basin there is no anomaly any more. In the northeastern part of the country the anomaly is the result of the thinning of the Earth's crust and greater conductive heat flow from the Earth's mantle. Elsewhere temperatures are much lower. Condițiile geotermale subterane, indiferent de poziția acviferelor, sunt afișate cu hărți geotermale adecvate. Această hartă reprezintă liniile de temperatură așteptate la o adâncime de 3 000 m de la harta distribuției spațiale a temperaturii așteptate la o adâncime de 3 000 m (Harta geotermală), care este realizată cu date de la 214 găuri de foraj. Se face pe baza temperaturilor măsurate în puțuri accesibile din întreaga țară. Cu toate acestea, deoarece câmpul de temperatură depinde de compoziția geologică în adâncimi și caracteristici tectonice, cursul izotermelor este rezultatul a numeroase influențe, cum ar fi conductivitatea termică a rocilor, permeabilitatea și fisurarea rocilor, toate acestea fiind reflectate în temperaturile sondei măsurate. La această adâncime, căldura radiogenică din roci are, de asemenea, o influență minoră. Distribuția puțurilor, care au fost utile pentru măsurarea temperaturii, este foarte inegală și variază în profunzime. După temperaturi la o adâncime de 3 000 m, există o anomalie pozitivă mai puternică în partea de nord-est a Sloveniei, de la linia Maribor-Rogatec la est, în timp ce nu există nicio anomalie în partea estică a bazinului Krško. În partea de nord-est a țării, acest lucru se datorează scoarței mai subțiri a Pământului și fluxului de căldură mai mare din mantaua Pământului. În alte părți, temperaturile sunt mult mai scăzute. Il-kundizzjonijiet ġeotermali taħt l-art, irrispettivament mill-pożizzjoni tal-akwiferi, huma murija b’mapep ġeotermali adattati. Din il-mappa tirrappreżenta l-linji tat-temperatura mistennija f’fond ta’ 3 000 m mill-mappa tad-distribuzzjoni spazjali tat-temperatura mistennija f’fond ta’ 3 000 m (Mappa Ġeotermali), li hija magħmula b’data minn 214 boreholes. Dan isir fuq il-bażi ta’ temperaturi mkejla fi bjar aċċessibbli fil-pajjiż kollu. Madankollu, peress li l-kamp tat-temperatura jiddependi fuq il-kompożizzjoni ġeoloġika fil-fond u l-karatteristiċi tettoniċi, il-kors tal-isotermi huwa r-riżultat ta’ bosta influwenzi bħall-konduttività termali tal-blat, il-permeabilità u l-qsim tal-blat, li kollha huma riflessi f’temperaturi mkejla tal-bjar. F’dan il-fond, sħana radjoġenika fil-blat għandha wkoll influwenza minuri. Id-distribuzzjoni tal-bjar, li kienu utli għall-kejl tat-temperatura, hija irregolari ħafna u tvarja fil-fond. Wara temperaturi f’fond ta’ 3 000 m, hemm anomalija pożittiva aktar qawwija fil-parti tal-Grigal tas-Slovenja, mil-linja Maribor-Rogatec lejn il-Lvant, filwaqt li ma hemm l-ebda anomalija fil-parti tal-Lvant tal-baċir ta’ Krško. Fil-parti tal-grigal tal-pajjiż, dan huwa dovut għall-qoxra tad-Dinja irqaq u l-fluss tas-sħana konduttiv ogħla mill-mantell tad-Dinja. Band’oħra, it-temperaturi huma ħafna aktar baxxi. As condições geotérmicas subterrâneas, independentemente da posição dos aquíferos, são mostradas com mapas geotérmicos adequados. Este mapa representa as linhas de temperatura esperadas a uma profundidade de 3 000 m do mapa da distribuição espacial da temperatura esperada a uma profundidade de 3 000 m (Mapa geotérmico), que é feita com dados de 214 furos. É feita com base nas temperaturas medidas em poços acessíveis em todo o país. No entanto, uma vez que o campo de temperatura depende da composição geológica em profundidades e características tectónicas, o curso das isotérmicas é o resultado de inúmeras influências, tais como condutividade térmica das rochas, permeabilidade e rachadura de rochas, todas elas refletidas em temperaturas medidas. A esta profundidade, o calor radiogénico nas rochas também tem uma pequena influência. A distribuição dos poços, que foram úteis para medições de temperatura, é muito desigual e varia em profundidade. Depois de temperaturas a uma profundidade de 3 000 m, há uma anomalia positiva mais forte na parte nordeste da Eslovénia, da linha Maribor-Rogatec ao leste, enquanto não há anomalia na parte oriental da bacia de Krško. Na parte nordeste do país, isto é devido à crosta mais fina da Terra e ao maior fluxo de calor condutor do manto da Terra. Em outros locais, as temperaturas são muito mais baixas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::bd4d5e05a1bf0a84c839ae71ca1b9f7f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::bd4d5e05a1bf0a84c839ae71ca1b9f7f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | PARIS REINFORCEEC| PARIS REINFORCEDoukas, Haris; Spiliotis, Evangelos; Jafari, Mohsen A.; Giarola, Sara; Nikas, Alexandros;This dataset contains the underlying data for the following publication: Doukas, H., Spiliotis, E., Jafari, M. A., Giarola, S. & Nikas, A. (2021). Low-cost emissions cuts in container shipping: Thinking inside the box. Transportation Research Part D: Transport and Environment, 94, 102815, https://doi.org/10.1016/j.trd.2021.102815.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Ferreira, Igor José Malfetoni; Campanharo, Wesley Augusto; Fonseca, Marisa Gesteira; Escada, Maria Isabel Sobral; +7 AuthorsFerreira, Igor José Malfetoni; Campanharo, Wesley Augusto; Fonseca, Marisa Gesteira; Escada, Maria Isabel Sobral; Nascimento, Marcelo Trindade; Villela, Dora M.; Brancalion, Pedro; Magnago, Luiz Fernando Silva; Anderson, Liana O.; Nagy, Laszlo; Aragão, Luiz E. O. C;This file collection contains the estimated spatial distribution of the above-ground biomass density (AGB) by the end of the 21st century across the Brazilian Atlantic Forest domain and the respective uncertanty. To develop the models, we used the maximum entropy method with projected climate data to 2100, based on the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) 4.5 from the fifth Assessment Report (AR5). The dataset is composed of four files in GeoTIFF format: calibrated-AGB-distribution.tif: raster file representing the present spatial distribution of the above-ground biomass density in the Atlantic Forest from the calibrated model. Unit: Mg/ha estimated-uncertanty-for-calibrated-agb-distribution.tif: raster file representing the estimated spatial uncertanty distribution of the calibrated above-ground biomass density. Unit: percentage. projected-AGB-distribution-under-rcp45.tif: raster file representing the projected spatial distribution of the above-ground biomass density in the Atlantic Forest by the end of 2100 under RCP 4.5 scenario. Unit: Mg/ha estimated-uncertanty-for-projected-agb-distribution.tif: raster file representing the estimated spatial uncertanty distribution of the projected above-ground biomass density. Unit: percentage. Spatial resolution: 0.0083 degree (ca. 1 km) Coordinate reference system: Geographic Coordinate System - Datum WGS84
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7684744&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7684744&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 European UnionPublisher:kanton-thurgau Το σύνολο δεδομένων περιλαμβάνει την τελική κατανάλωση ενέργειας στον κτιριακό τομέα για τη θερμότητα δωματίου και το ζεστό νερό σύμφωνα με τις πηγές ενέργειας στο καντόνι του Thurgau από το 2015.Η τελική ενέργεια είναι η ενέργεια που φτάνει στον τελικό καταναλωτή. Η τελική κατανάλωση ενέργειας στον κτιριακό τομέα περιλαμβάνει την κατανάλωση κατοικιών και κτιρίων παροχής υπηρεσιών — εξαιρουμένων των βιομηχανικών και γεωργικών κτιρίων — στο έδαφος του καντόνι Thurgau.Πηγή δεδομένων: Γραφείο Ενέργειας Το σύνολο δεδομένων περιλαμβάνει την τελική κατανάλωση ενέργειας στον κτιριακό τομέα για τη θερμότητα δωματίου και το ζεστό νερό σύμφωνα με τις πηγές ενέργειας στο καντόνι του Thurgau από το 2015.Η τελική ενέργεια είναι η ενέργεια που φτάνει στον τελικό καταναλωτή. Η τελική κατανάλωση ενέργειας στον κτιριακό τομέα περιλαμβάνει την κατανάλωση κατοικιών και κτιρίων παροχής υπηρεσιών — εξαιρουμένων των βιομηχανικών και γεωργικών κτιρίων — στο έδαφος του καντόνι Thurgau.Πηγή δεδομένων: Γραφείο Ενέργειας Το σύνολο δεδομένων περιλαμβάνει την τελική κατανάλωση ενέργειας στον κτιριακό τομέα για τη θερμότητα δωματίου και το ζεστό νερό σύμφωνα με τις πηγές ενέργειας στο καντόνι του Thurgau από το 2015.Η τελική ενέργεια είναι η ενέργεια που φτάνει στον τελικό καταναλωτή. Η τελική κατανάλωση ενέργειας στον κτιριακό τομέα περιλαμβάνει την κατανάλωση κατοικιών και κτιρίων παροχής υπηρεσιών — εξαιρουμένων των βιομηχανικών και γεωργικών κτιρίων — στο έδαφος του καντόνι Thurgau.Πηγή δεδομένων: Γραφείο Ενέργειας Το σύνολο δεδομένων περιλαμβάνει την τελική κατανάλωση ενέργειας στον κτιριακό τομέα για τη θερμότητα δωματίου και το ζεστό νερό σύμφωνα με τις πηγές ενέργειας στο καντόνι του Thurgau από το 2015.Η τελική ενέργεια είναι η ενέργεια που φτάνει στον τελικό καταναλωτή. Η τελική κατανάλωση ενέργειας στον κτιριακό τομέα περιλαμβάνει την κατανάλωση κατοικιών και κτιρίων παροχής υπηρεσιών — εξαιρουμένων των βιομηχανικών και γεωργικών κτιρίων — στο έδαφος του καντόνι Thurgau.Πηγή δεδομένων: Γραφείο Ενέργειας Il set di dati include il consumo di energia finale nel settore edilizio per il calore ambiente e l'acqua calda secondo fonti energetiche nel Canton Turgovia dal 2015.L'energia finale è l'energia che raggiunge il consumatore finale. Il consumo di energia finale nel settore edilizio comprende il consumo di edifici residenziali e di servizi — esclusi gli edifici industriali e agricoli — sul territorio del cantone di Thurgau. Ufficio dell'energia Il set di dati include il consumo di energia finale nel settore edilizio per il calore ambiente e l'acqua calda secondo fonti energetiche nel Canton Turgovia dal 2015.L'energia finale è l'energia che raggiunge il consumatore finale. Il consumo di energia finale nel settore edilizio comprende il consumo di edifici residenziali e di servizi — esclusi gli edifici industriali e agricoli — sul territorio del cantone di Thurgau. Ufficio dell'energia Il set di dati include il consumo di energia finale nel settore edilizio per il calore ambiente e l'acqua calda secondo fonti energetiche nel Canton Turgovia dal 2015.L'energia finale è l'energia che raggiunge il consumatore finale. Il consumo di energia finale nel settore edilizio comprende il consumo di edifici residenziali e di servizi — esclusi gli edifici industriali e agricoli — sul territorio del cantone di Thurgau. Ufficio dell'energia Il set di dati include il consumo di energia finale nel settore edilizio per il calore ambiente e l'acqua calda secondo fonti energetiche nel Canton Turgovia dal 2015.L'energia finale è l'energia che raggiunge il consumatore finale. Il consumo di energia finale nel settore edilizio comprende il consumo di edifici residenziali e di servizi — esclusi gli edifici industriali e agricoli — sul territorio del cantone di Thurgau. Ufficio dell'energia Zbiór danych obejmuje końcowe zużycie energii w sektorze budowlanym do ogrzewania pomieszczeń i ciepłej wody zgodnie ze źródłami energii w kantonie Thurgau od 2015 r. Energia końcowa to energia, która dociera do konsumenta końcowego. Końcowe zużycie energii w sektorze budowlanym obejmuje zużycie budynków mieszkalnych i usługowych – z wyłączeniem budynków przemysłowych i rolniczych – na terytorium kantonu Thurgau.Źródło danych: Urząd Energetyki Zbiór danych obejmuje końcowe zużycie energii w sektorze budowlanym do ogrzewania pomieszczeń i ciepłej wody zgodnie ze źródłami energii w kantonie Thurgau od 2015 r. Energia końcowa to energia, która dociera do konsumenta końcowego. Końcowe zużycie energii w sektorze budowlanym obejmuje zużycie budynków mieszkalnych i usługowych – z wyłączeniem budynków przemysłowych i rolniczych – na terytorium kantonu Thurgau.Źródło danych: Urząd Energetyki Zbiór danych obejmuje końcowe zużycie energii w sektorze budowlanym do ogrzewania pomieszczeń i ciepłej wody zgodnie ze źródłami energii w kantonie Thurgau od 2015 r. Energia końcowa to energia, która dociera do konsumenta końcowego. Końcowe zużycie energii w sektorze budowlanym obejmuje zużycie budynków mieszkalnych i usługowych – z wyłączeniem budynków przemysłowych i rolniczych – na terytorium kantonu Thurgau.Źródło danych: Urząd Energetyki Zbiór danych obejmuje końcowe zużycie energii w sektorze budowlanym do ogrzewania pomieszczeń i ciepłej wody zgodnie ze źródłami energii w kantonie Thurgau od 2015 r. Energia końcowa to energia, która dociera do konsumenta końcowego. Końcowe zużycie energii w sektorze budowlanym obejmuje zużycie budynków mieszkalnych i usługowych – z wyłączeniem budynków przemysłowych i rolniczych – na terytorium kantonu Thurgau.Źródło danych: Urząd Energetyki Набір даних включає в себе кінцеве споживання енергії в будівельному секторі для кімнатного тепла і гарячої води відповідно до джерел енергії в кантоні Тургау з 2015 року. Кінцеве споживання енергії в будівельному секторі включає споживання житлових і службових будівель — без урахування промислових і сільськогосподарських будівель — на території кантону Тургау. Офіс енергетики Набір даних включає в себе кінцеве споживання енергії в будівельному секторі для кімнатного тепла і гарячої води відповідно до джерел енергії в кантоні Тургау з 2015 року. Кінцеве споживання енергії в будівельному секторі включає споживання житлових і службових будівель — без урахування промислових і сільськогосподарських будівель — на території кантону Тургау. Офіс енергетики Набір даних включає в себе кінцеве споживання енергії в будівельному секторі для кімнатного тепла і гарячої води відповідно до джерел енергії в кантоні Тургау з 2015 року. Кінцеве споживання енергії в будівельному секторі включає споживання житлових і службових будівель — без урахування промислових і сільськогосподарських будівель — на території кантону Тургау. Офіс енергетики Набір даних включає в себе кінцеве споживання енергії в будівельному секторі для кімнатного тепла і гарячої води відповідно до джерел енергії в кантоні Тургау з 2015 року. Кінцеве споживання енергії в будівельному секторі включає споживання житлових і службових будівель — без урахування промислових і сільськогосподарських будівель — на території кантону Тургау. Офіс енергетики O conjunto de dados inclui o consumo final de energia no setor da construção para calor ambiente e água quente de acordo com as fontes de energia no cantão de Thurgau a partir de 2015. A energia final é a energia que chega ao consumidor final. O consumo final de energia no setor da construção inclui o consumo de edifícios residenciais e de serviços — excluindo edifícios industriais e agrícolas — no território do cantão de Thurgau.Fonte de dados: Escritório de Energia O conjunto de dados inclui o consumo final de energia no setor da construção para calor ambiente e água quente de acordo com as fontes de energia no cantão de Thurgau a partir de 2015. A energia final é a energia que chega ao consumidor final. O consumo final de energia no setor da construção inclui o consumo de edifícios residenciais e de serviços — excluindo edifícios industriais e agrícolas — no território do cantão de Thurgau.Fonte de dados: Escritório de Energia Súbor údajov zahŕňa konečnú spotrebu energie v stavebníctve na vykurovanie miestností a teplú vodu podľa zdrojov energie v kantóne Thurgau od roku 2015. Konečná energia je energia, ktorá sa dostáva ku konečnému spotrebiteľovi. Konečná spotreba energie v stavebníctve zahŕňa spotrebu bytových a servisných budov – okrem priemyselných a poľnohospodárskych budov – na území kantónu Thurgau.Zdroj údajov: Úrad pre energetiku Súbor údajov zahŕňa konečnú spotrebu energie v stavebníctve na vykurovanie miestností a teplú vodu podľa zdrojov energie v kantóne Thurgau od roku 2015. Konečná energia je energia, ktorá sa dostáva ku konečnému spotrebiteľovi. Konečná spotreba energie v stavebníctve zahŕňa spotrebu bytových a servisných budov – okrem priemyselných a poľnohospodárskych budov – na území kantónu Thurgau.Zdroj údajov: Úrad pre energetiku Datasetet omfattar den slutliga energianvändningen inom byggsektorn för rumsvärme och varmvatten enligt energikällor i Thurgaus kanton från 2015. Den slutliga energin är den energi som når slutkonsumenten. Den slutliga energianvändningen inom byggsektorn omfattar förbrukningen av bostads- och servicebyggnader – utom industri- och jordbruksbyggnader – i kantonen Thurgau.Datakälla: Energikontoret Datasetet omfattar den slutliga energianvändningen inom byggsektorn för rumsvärme och varmvatten enligt energikällor i Thurgaus kanton från 2015. Den slutliga energin är den energi som når slutkonsumenten. Den slutliga energianvändningen inom byggsektorn omfattar förbrukningen av bostads- och servicebyggnader – utom industri- och jordbruksbyggnader – i kantonen Thurgau.Datakälla: Energikontoret L’ensemble de données comprend la consommation finale d’énergie dans le secteur des bâtiments pour la chaleur ambiante et l’eau chaude par source d’énergie dans le canton de Thurgovie à partir de 2015.L’énergie finale est l’énergie qui arrive au consommateur final. La consommation finale d’énergie dans le secteur du bâtiment comprend la consommation des bâtiments résidentiels et de services, à l’exclusion des bâtiments industriels et agricoles, sur le territoire du canton de Thurgovie.Source de données: Office de l’énergie El conjunto de datos incluye el consumo final de energía en el sector de la construcción para el calor ambiente y el agua caliente según fuentes de energía en el cantón de Thurgau a partir de 2015.La energía final es la energía que llega al consumidor final. El consumo final de energía en el sector de la construcción incluye el consumo de edificios residenciales y de servicio, excluidos los edificios industriales y agrícolas, en el territorio del cantón de Thurgau.Fuente de datos: Oficina de Energía Áirítear sa tacar sonraí tomhaltas deiridh fuinnimh in earnáil na bhfoirgneamh le haghaidh teas seomra agus uisce te de réir foinsí fuinnimh i gcantún Thurgau ó 2015. Is é an fuinneamh deiridh an fuinneamh a shroicheann an tomhaltóir deiridh. Áirítear leis an tomhaltas deiridh fuinnimh san earnáil tógála tomhaltas foirgneamh cónaithe agus foirgneamh seirbhíse — gan foirgnimh thionsclaíocha agus talmhaíochta a áireamh — ar chríoch chantún Thurgau.Foinse sonraí: Oifig an Fhuinnimh
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::3acc71dfb8a9887f039f8887ca6a6cf8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::3acc71dfb8a9887f039f8887ca6a6cf8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 European UnionPublisher:Environmental Information Data Centre Cet ensemble de données présente un recueil de sources de données sur les vers de terre sur le terrain et de métadonnées associées provenant de l’ensemble du Royaume-Uni et de l’Irlande («source Worm»). Celles-ci ont été compilées jusqu’en 2021 et comprennent 257 sources de données, la plus ancienne datant de 1891. Les métadonnées sources couvrent le type de données quantitatives sur les vers de terre (c.-à-d. l’incidence, l’abondance, la biomasse, les taxons), les détails méthodologiques (par exemple, méthode/s d’échantillonnage, localisation/s, si les parcelles échantillonnées étaient naturelles ou expérimentales, année(s) d’échantillonnage) et des informations environnementales (p. ex. habitat/utilisation des terres, inclusion de données climatiques et propriétés fondamentales du sol). Les sources de données ont été recueillies par le biais de recherches documentaires sur Web of Science et Google Scholar, ainsi que directement auprès d’auteurs/détenteurs de données originaux dans la mesure du possible.Les sources de données ont été compilées dans le but de recueillir des données quantitatives sur les espèces et les populations de vers de terre pour développer l’abondance des vers de terre et des modèles de niche, et vers un cadre de modélisation des impacts des vers de terre sur les processus du sol. Ce travail s’inscrit dans le cadre du projet Soil Organic Carbon Dynamics (SOC-D) financé par le programme NERC UK-SCAPE (Grant référence NE/R016429/1). Vous trouverez tous les détails sur cet ensemble de données à l’adresse suivante: https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Cet ensemble de données présente un recueil de sources de données sur les vers de terre sur le terrain et de métadonnées associées provenant de l’ensemble du Royaume-Uni et de l’Irlande («source Worm»). Celles-ci ont été compilées jusqu’en 2021 et comprennent 257 sources de données, la plus ancienne datant de 1891. Les métadonnées sources couvrent le type de données quantitatives sur les vers de terre (c.-à-d. l’incidence, l’abondance, la biomasse, les taxons), les détails méthodologiques (par exemple, méthode/s d’échantillonnage, localisation/s, si les parcelles échantillonnées étaient naturelles ou expérimentales, année(s) d’échantillonnage) et des informations environnementales (p. ex. habitat/utilisation des terres, inclusion de données climatiques et propriétés fondamentales du sol). Les sources de données ont été recueillies par le biais de recherches documentaires sur Web of Science et Google Scholar, ainsi que directement auprès d’auteurs/détenteurs de données originaux dans la mesure du possible. Les sources de données ont été compilées dans le but de recueillir des données quantitatives sur les espèces et les populations de vers de terre pour développer l’abondance des vers de terre et des modèles de niche, et vers un cadre de modélisation des impacts des vers de terre sur les processus du sol. Ce travail s’inscrit dans le cadre du projet Soil Organic Carbon Dynamics (SOC-D) financé par le programme NERC UK-SCAPE (Grant référence NE/R016429/1). Vous trouverez tous les détails sur cet ensemble de données à l’adresse suivante: https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Is éard atá sa tacar sonraí seo coimre d’fhoinsí sonraí péisteanna talún allamuigh agus de mheiteashonraí gaolmhara ar fud na Ríochta Aontaithe agus na hÉireann (‘foinse Worm’). Tiomsaíodh iad sin go dtí 2021 lena n-áirítear 257 foinse sonraí, an ceann is luaithe ó 1891. Cumhdaítear le meiteashonraí foinseacha na cineálacha sonraí cainníochtúla péisteanna (i.e. minicíocht, flúirse, bithmhais, tacsóin), sonraí modheolaíochta (e.g. modh/modhanna samplála, suíomh/suíomhanna, cibé an raibh na ceapacha sampláilte nádúrtha nó turgnamhach, bliain/bhlianta samplála), agus faisnéis faoin gcomhshaol (e.g. gnáthóg/úsáid talún, sonraí aeráide agus airíonna bunúsacha ithreach a chur san áireamh). Bailíodh foinsí sonraí trí chuardaigh litríochta ar Web of Science agus Google Scoláire, chomh maith le go díreach ó bhunúdair/sealbhóirí sonraí nuair ab fhéidir.Tiomsaíodh na foinsí sonraí d’fhonn sonraí cainníochtúla a bhailiú ar speicis agus ar dhaonraí péisteanna talún chun raidhse péisteanna talún agus samhlacha nideoige a fhorbairt, agus i dtreo creata samhaltaithe do thionchair péisteanna talún ar phróisis ithreach. Tá an obair seo mar chuid den tionscadal Dynamics Carbóin Orgánach Ithreach (SOC-D) atá á mhaoiniú ag clár NERC UK-SCAPE (Tagairt deontais NE/R016429/1). Tá sonraí iomlána faoin tacar sonraí seo ar fáil ag https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Is éard atá sa tacar sonraí seo coimre d’fhoinsí sonraí péisteanna talún allamuigh agus de mheiteashonraí gaolmhara ar fud na Ríochta Aontaithe agus na hÉireann (‘foinse Worm’). Tiomsaíodh iad sin go dtí 2021 lena n-áirítear 257 foinse sonraí, an ceann is luaithe ó 1891. Cumhdaítear le meiteashonraí foinseacha na cineálacha sonraí cainníochtúla péisteanna (i.e. minicíocht, flúirse, bithmhais, tacsóin), sonraí modheolaíochta (e.g. modh/modhanna samplála, suíomh/suíomhanna, cibé an raibh na ceapacha sampláilte nádúrtha nó turgnamhach, bliain/bhlianta samplála), agus faisnéis faoin gcomhshaol (e.g. gnáthóg/úsáid talún, sonraí aeráide agus airíonna bunúsacha ithreach a chur san áireamh). Bailíodh foinsí sonraí trí chuardaigh litríochta ar Web of Science agus Google Scoláire, chomh maith le go díreach ó bhunúdair/sealbhóirí sonraí nuair ab fhéidir. Tiomsaíodh na foinsí sonraí d’fhonn sonraí cainníochtúla a bhailiú ar speicis agus ar dhaonraí péisteanna talún chun raidhse péisteanna talún agus samhlacha nideoige a fhorbairt, agus i dtreo creata samhaltaithe do thionchair péisteanna talún ar phróisis ithreach. Tá an obair seo mar chuid den tionscadal Dynamics Carbóin Orgánach Ithreach (SOC-D) atá á mhaoiniú ag clár NERC UK-SCAPE (Tagairt deontais NE/R016429/1). Tá sonraí iomlána faoin tacar sonraí seo ar fáil ag https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Ovaj skup podataka predstavlja zbirku izvora podataka o gujavicama na terenu i povezanih metapodataka iz cijele Ujedinjene Kraljevine i Irske („izvor crva”). Oni su sastavljeni do 2021. godine i uključuju 257 izvora podataka, najranije 1891. godine. Metapodaci o izvorima obuhvaćaju vrstu kvantitativnih podataka o gujavicama (tj. učestalost, brojnost, biomasa, taksona), metodološke pojedinosti (npr. metode uzorkovanja, lokacije/lokacije, jesu li uzorkovane plohe bile prirodne ili eksperimentalne, godina uzorkovanja) i informacije o okolišu (npr. stanište/korištenje zemljišta, uključivanje klimatskih podataka i osnovnih svojstava tla). Izvori podataka prikupljeni su pretraživanjem literature na Web of Science i Google Scholar, kao i izravno od izvornih autora/nositelja podataka gdje je to moguće.Izvori podataka prikupljeni su s ciljem prikupljanja kvantitativnih podataka o vrstama i populacijama gujavica radi razvoja brojnosti gujavica i modela niša, te prema modeliranju okvira za modeliranje utjecaja gujavica na procese u tlu. Ovaj rad je dio projekta Soil Organic Carbon Dynamics (SOC-D) financiranog iz NERC UK-SCAPE programa (Grant reference NE/R016429/1). Sve pojedinosti o ovom skupu podataka možete pronaći na https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Ovaj skup podataka predstavlja zbirku izvora podataka o gujavicama na terenu i povezanih metapodataka iz cijele Ujedinjene Kraljevine i Irske („izvor crva”). Oni su sastavljeni do 2021. godine i uključuju 257 izvora podataka, najranije 1891. godine. Metapodaci o izvorima obuhvaćaju vrstu kvantitativnih podataka o gujavicama (tj. učestalost, brojnost, biomasa, taksona), metodološke pojedinosti (npr. metode uzorkovanja, lokacije/lokacije, jesu li uzorkovane plohe bile prirodne ili eksperimentalne, godina uzorkovanja) i informacije o okolišu (npr. stanište/korištenje zemljišta, uključivanje klimatskih podataka i osnovnih svojstava tla). Izvori podataka prikupljeni su pretraživanjem literature na Web of Science i Google Scholar, kao i izravno od izvornih autora/nositelja podataka gdje je to moguće. Izvori podataka prikupljeni su s ciljem prikupljanja kvantitativnih podataka o vrstama i populacijama gujavica radi razvoja brojnosti gujavica i modela niša, te prema modeliranju okvira za modeliranje utjecaja gujavica na procese u tlu. Ovaj rad je dio projekta Soil Organic Carbon Dynamics (SOC-D) financiranog iz NERC UK-SCAPE programa (Grant reference NE/R016429/1). Sve pojedinosti o ovom skupu podataka možete pronaći na https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Šajā datu kopā ir apkopoti lauka slieku datu avoti un saistītie metadati no visas Apvienotās Karalistes un Īrijas (“Worm avots”). Tie tika apkopoti līdz 2021. gadam un ietver 257 datu avotus, kas agrāk bija 1891. gadā. Avota metadati ietver kvantitatīvos datus par sliekām (t. i., sastopamību, sastopamību, biomasu, taksonus), metodoloģiskos datus (piemēram, paraugu ņemšanas metodi(-es), atrašanās vietu(-as), to, vai parauglaukumi ir dabiski vai eksperimentāli, paraugu ņemšanas gads(-i)) un vides informāciju (piemēram, dzīvotne/zemes izmantošana, klimata datu un augsnes pamatīpašību iekļaušana). Datu avoti tika vākti, meklējot literatūru Web of Science un Google Scholar, kā arī, ja iespējams, tieši no autoriem/datu turētājiem.Datu avoti tika apkopoti ar mērķi apkopot kvantitatīvus datus par slieku sugām un populācijām, lai izstrādātu slieku daudzuma un nišas modeļus, un lai izstrādātu modelēšanas sistēmu slieku ietekmei uz augsnes procesiem. Šis darbs ir daļa no augsnes organiskā oglekļa dinamikas (SOC-D) projekta, ko finansē no NERC UK-SCAPE programmas (dotācijas atsauce NE/R016429/1). Pilnu informāciju par šo datu kopu var atrast https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Šajā datu kopā ir apkopoti lauka slieku datu avoti un saistītie metadati no visas Apvienotās Karalistes un Īrijas (“Worm avots”). Tie tika apkopoti līdz 2021. gadam un ietver 257 datu avotus, kas agrāk bija 1891. gadā. Avota metadati ietver kvantitatīvos datus par sliekām (t. i., sastopamību, sastopamību, biomasu, taksonus), metodoloģiskos datus (piemēram, paraugu ņemšanas metodi(-es), atrašanās vietu(-as), to, vai parauglaukumi ir dabiski vai eksperimentāli, paraugu ņemšanas gads(-i)) un vides informāciju (piemēram, dzīvotne/zemes izmantošana, klimata datu un augsnes pamatīpašību iekļaušana). Datu avoti tika vākti, meklējot literatūru Web of Science un Google Scholar, kā arī, ja iespējams, tieši no autoriem/datu turētājiem. Datu avoti tika apkopoti ar mērķi apkopot kvantitatīvus datus par slieku sugām un populācijām, lai izstrādātu slieku daudzuma un nišas modeļus, un lai izstrādātu modelēšanas sistēmu slieku ietekmei uz augsnes procesiem. Šis darbs ir daļa no augsnes organiskā oglekļa dinamikas (SOC-D) projekta, ko finansē no NERC UK-SCAPE programmas (dotācijas atsauce NE/R016429/1). Pilnu informāciju par šo datu kopu var atrast https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Αυτό το σύνολο δεδομένων παρουσιάζει μια σύνοψη των πηγών δεδομένων για τους γαιοσκώληκες που βασίζονται σε αγρούς και των συναφών μεταδεδομένων από ολόκληρο το Ηνωμένο Βασίλειο και την Ιρλανδία («πηγή Worm»). Αυτά καταρτίστηκαν μέχρι το 2021 και περιλαμβάνουν 257 πηγές δεδομένων, οι πρώτες που χρονολογούνται από το 1891.Τα μεταδεδομένα πηγής καλύπτουν το είδος των ποσοτικών δεδομένων για τους γαιοσκώληκες (π.χ. επίπτωση, αφθονία, βιομάζα, ταξινομικές κατηγορίες), μεθοδολογικές λεπτομέρειες (π.χ. μέθοδος/-ες δειγματοληψίας, θέση/-εις, εάν τα δειγματοληπτικά αγροτεμάχια ήταν φυσικά ή πειραματικά, έτος/-α δειγματοληψίας) και περιβαλλοντικές πληροφορίες (π.χ. ενδιαιτήματα/χρήση γης, συμπερίληψη κλιματικών δεδομένων και βασικών ιδιοτήτων του εδάφους). Οι πηγές δεδομένων συλλέχθηκαν μέσω αναζητήσεων βιβλιογραφίας στο Web of Science και στο Google Scholar, καθώς και απευθείας από τους αρχικούς συγγραφείς/κάτοχους δεδομένων, όπου ήταν δυνατόν. Οι πηγές δεδομένων συγκεντρώθηκαν με στόχο τη συλλογή ποσοτικών δεδομένων σχετικά με τα είδη και τους πληθυσμούς των γαιοσκωλήκων για την ανάπτυξη της αφθονίας των γαιοσκωλήκων και των εξειδικευμένων μοντέλων, καθώς και για ένα πλαίσιο μοντελοποίησης για τις επιπτώσεις των γαιοσκωλήκων στις διεργασίες του εδάφους. Το έργο αυτό αποτελεί μέρος του έργου Soil Organic Carbon Dynamics (SOC-D) που χρηματοδοτείται από το πρόγραμμα NERC UK-SCAPE (αναφορά επιχορήγησης NE/R016429/1). Πλήρεις λεπτομέρειες σχετικά με αυτό το σύνολο δεδομένων μπορείτε να βρείτε στη διεύθυνση https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Dan is-sett ta’ data jippreżenta kompendju ta’ sorsi ta’ data dwar il-ħniex ibbażati fuq il-post u metadata assoċjata minn madwar ir-Renju Unit u l-Irlanda (“sors Worm”). Dawn ġew ikkumpilati sal-2021 u jinkludu 257 sors ta’ data, bl-aktar data bikrija tmur lura għall-1891.Il-metadata tas-sors tkopri t-tip ta’ data kwantitattiva dwar il-ħniex (jiġifieri l-inċidenza, l-abbundanza, il-bijomassa, il-gruppi tassonomiċi), id-dettalji metodoloġiċi (eż. il-metodu/i tat-teħid tal-kampjuni, il-post/ijiet, jekk l-irqajja’ tal-art kinux naturali jew sperimentali, is-sena/snin tat-teħid tal-kampjuni), u l-informazzjoni ambjentali (eż. il-ħabitat/l-użu tal-art, l-inklużjoni tad-data dwar il-klima u l-proprjetajiet bażiċi tal-ħamrija). Is-sorsi tad-data nġabru permezz ta’ tfittxijiet fil-letteratura fuq il-Web of Science u Google Scholar, kif ukoll direttament mill-awturi oriġinali/id-detenturi tad-data fejn possibbli. Is-sorsi tad-data ġew ikkumpilati bil-għan li tinġabar data kwantitattiva dwar l-ispeċijiet u l-popolazzjonijiet tal-ħniex biex jiġu żviluppati abbundanza ta’ ħniex u mudelli speċjalizzati, u lejn qafas ta’ mmudellar għall-impatti tal-ħniex fuq il-proċessi tal-ħamrija. Din il-ħidma hija parti mill-proġett Dynamics Organic Carbon Dynamics tal-Ħamrija (SOC-D) iffinanzjat mill-programm NERC UK-SCAPE (Referenza tal-għotja NE/R016429/1). Id-dettalji kollha dwar dan is-sett ta’ data jinsabu fuq https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Este conjunto de datos presenta un compendio de fuentes de datos de lombrices de tierra y metadatos asociados de todo el Reino Unido e Irlanda («fuente de Worm»). Estos se compilaron hasta 2021 e incluyen 257 fuentes de datos, las primeras que datan de 1891.Los metadatos fuente abarcan el tipo de datos cuantitativos de lombrices de tierra (es decir, incidencia, abundancia, biomasa, taxones), detalles metodológicos (por ejemplo, métodos de muestreo, ubicación/s, si las parcelas muestreadas eran naturales o experimentales, año/s de muestreo) e información ambiental (por ejemplo, hábitat/uso de la tierra, inclusión de datos climáticos y propiedades básicas del suelo). Las fuentes de datos se recopilaron a través de búsquedas bibliográficas en Web of Science y Google Scholar, así como directamente de autores/poseedores de datos originales siempre que sea posible. Las fuentes de datos se compilaron con el objetivo de recopilar datos cuantitativos sobre especies y poblaciones de lombrices de tierra para desarrollar modelos de abundancia y nicho de lombrices de tierra, y hacia un marco de modelado para los impactos de lombrices de tierra en los procesos del suelo. Este trabajo forma parte del proyecto Soil Organic Carbon Dynamics (SOC-D) financiado por el programa NERC UK-SCAPE (referencia de la subvención NE/R016429/1). Los detalles completos sobre este conjunto de datos se pueden encontrar en https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Acest set de date prezintă un compendiu de surse de date privind râmele bazate pe câmpuri și metadate asociate din Regatul Unit și Irlanda („sursa viermilor”). Acestea au fost compilate până în 2021 și includ 257 de surse de date, cele mai vechi date datând din 1891. Metadatele sursă acoperă tipul de date cantitative privind râmele (de exemplu, incidența, abundența, biomasa, taxonii), detaliile metodologice (de exemplu, metoda/metodele de eșantionare, localizarea/locurile, dacă parcelele eșantionate au fost naturale sau experimentale, anul/anii de eșantionare) și informațiile despre mediu (de exemplu, utilizarea habitatului/terenurilor, includerea datelor climatice și a proprietăților de bază ale solului). Sursele de date au fost colectate prin căutări în literatura de specialitate pe Web of Science și Google Scholar, precum și direct de la autorii originali/deținătorii de date, acolo unde a fost posibil. Sursele de date au fost compilate cu scopul de a colecta date cantitative privind speciile de râme și populațiile de râme pentru a dezvolta abundența râmelor și modele de nișă, precum și spre un cadru de modelare pentru impactul râmelor asupra proceselor solului. Această activitate face parte din proiectul Soil Organic Carbon Dynamics (SOC-D) finanțat prin programul NERC UK-SCAPE (referința grant NE/R016429/1). Detalii complete despre acest set de date pot fi găsite la adresa https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Questo insieme di dati presenta un compendio di fonti di dati sui lombrichi basati sul campo e di metadati associati provenienti da tutto il Regno Unito e dall'Irlanda ("fonte delle parole"). Questi sono stati compilati fino al 2021 e comprendono 257 fonti di dati, le prime risalenti al 1891.I metadati della fonte riguardano il tipo di dati quantitativi di lombrichi (incidenza, abbondanza, biomassa, taxa), i dettagli metodologici (ad esempio il metodo/i di campionamento, l'ubicazione/i, se le parcelle campionate erano naturali o sperimentali, gli anni/i di campionamento) e le informazioni ambientali (ad esempio habitat/uso del suolo, inclusione dei dati climatici e proprietà del suolo di base). Le fonti di dati sono state raccolte attraverso ricerche di letteratura su Web of Science e Google Scholar, nonché direttamente da autori/detentori di dati originali, ove possibile. Le fonti di dati sono state compilate con l'obiettivo di raccogliere dati quantitativi sulle specie e sulle popolazioni di lombrichi per sviluppare l'abbondanza di lombrichi e modelli di nicchia e verso un quadro di modellazione per gli impatti dei lombrichi sui processi del suolo. Questo lavoro fa parte del progetto Soil Organic Carbon Dynamics (SOC-D) finanziato dal programma NERC UK-SCAPE (Grant reference NE/R016429/1). Tutti i dettagli su questo set di dati possono essere trovati all'indirizzo https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Този набор от данни представя сборник от полеви източници на данни за земни червеи и свързани метаданни от Обединеното кралство и Ирландия („източник на червеи“). Те са събрани до 2021 г. и включват 257 източника на данни, най-ранните датиращи от 1891 г. Метаданните от източника обхващат вида на количествените данни за земни червеи (т.е. заболеваемост, изобилие, биомаса, таксони), методологични подробности (напр. метод/и за вземане на проби, местоположение/места, дали от които са взети проби парцелите са естествени или експериментални, година/и на вземане на проби) и информация за околната среда (напр. местообитание/употреба на земята, включване на данни за климата и основни почвени свойства). Източниците на данни са събрани чрез търсене на литература в Web of Science и Google Scholar, както и директно от оригинални автори/притежатели на данни, когато е възможно. Източниците на данни са събрани с цел събиране на количествени данни за видовете и популациите на земни червеи, за да се развият изобилието на земни червеи и нишовите модели, както и да се постигне рамка за моделиране на въздействието на земните червеи върху почвените процеси. Тази работа е част от проекта Soil Organic Carbon Dynamics (SOC-D), финансиран от програмата NERC UK-SCAPE (Grant reference NE/R016429/1). Пълни подробности за този набор от данни можете да намерите на https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::91844a97989c63be945aa653eb82fa6d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::91844a97989c63be945aa653eb82fa6d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | REINFORCEEC| REINFORCEAuthors: Mina, Marco;Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2024Publisher:Biological and Chemical Oceanography Data Management Office (BCO-DMO) Dam, Hans G.; Baumann, Hannes; Finiguerra, Michael; Pespeni, Melissa; Brennan, Reid;These data include population fitness measurements collected for Acartia hudsonica during multigenerational exposure to ocean warming (OW), ocean acidification (OA), and combined ocean warming and acidification (OWA) including a benign ambient condition temperature and CO2 control (AM).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26008/1912/bco-dmo.923960.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26008/1912/bco-dmo.923960.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 01 Mar 2024Publisher:Dryad Authors: Fox, Trevor; Raka, Yash; Smith, Kirk; Harrison, Jon;From September of 2017, till August of 2019, water temperatures and A. aegypti larval presence was recorded in nine 19 liter buckets placed in the backyard of Jon Harrison’s home in Tempe, Arizona (33.339, -111.924), as it was known to experience high abundances of A. aegypti. Buckets were 5 – 10 m apart, and so should not be considered ecologically independent. Onset HOBO Pendant® UA-002-08 data loggers (Bourne, Massachusetts) were used to record temperature levels, and larval presence was observed every 1-10 days depending on season (frequently in the summer, less so in winter). If mosquito larvae were observed, they were collected from the bucket with a net and their species identity confirmed with a dissection scope. The data set labeled Figure 2 data provides the water temperatures in one representative bucket from 2017-2019 as shown in Fig. 2 of the manuscript. Larval rearing for mesocosm experiments The parents of larvae used in the mesocosm overwintering experiments were reared from Maricopa County, AZ, origin eggs collected by Maricopa County Vector Control from September to November of 2019. These eggs were placed in a 500 ml beaker, submerged, and hatched in a solution of 0.25 g/L baker’s yeast (Byttebier et al. 2014). As the 1st instar larvae emerged, they were fed TetraMin fish flakes every 1-2 days, making sure that an excess amount of food was visible in the container. The rearing density for the larvae was maintained at fewer than 500 animals per liter of water. As pupae began to appear, the beaker of larvae was placed in a 95-liter polymer-screened cage to contain the expected adults. Cotton balls saturated with 10% sucrose solution were made available for the adults as they began to emerge; these were taken away two days prior to blood feeding. One week after emerging, the adults were blood-fed using mice (IACUC protocol: 18-1662R). After a three-day gestation period, the females were supplied with moist seed-germinating paper to encourage oviposition. Once the females had finished ovipositing, the eggs were kept moist for an additional 48 hours before being dried, and placed in open zip lock sandwich bags which were stored at 100% humidity and 24°C. High humidity in the egg storage containers was achieved by storing damp paper towels along with the opened egg bags within a larger 3.8L bag. These eggs were kept for less than one month before the hatching procedure was repeated to produce the larvae for the experiment. In the lab, across all life stages, the mosquitoes were exposed to a 12:12 L/D photoperiod at 24°C. After hatching, the 2nd instar larvae were moved to their outdoor experimental mesocosms. The larvae were randomly distributed with 20 larvae supplied per each of three ambient mesocosms (Amb1, Amb2, Amb3) and six to warmed mesocosms (W1 – W6), which were warmed by varying amounts (W1 = least warmed, W6 = most warmed). The goal was to achieve a range of warming from very small warming (1-2°C in the least-warmed mesocosm (W1), to near-summer conditions in the most-warmed mesocosm (W6). Each mesocosm was a 150 ml clear plastic container, filled with 125 mL dechlorinated tap water. TetraMin fish flakes were supplied to each mesocosm, with more added every three days or when food was completely consumed. Although the mesocosms were open, we observed no mosquitoes flying in the field, and none were captured in local water buckets, and all A.a. in the mesocosms were of uniform stage, so we believe that this experiment was not affected by oviposition from wild mosquitoes. Manipulation of thermal conditions for larval outdoor rearing All mesocosms were placed on a table one meter above the ground and protected from rain, wind, and sunlight by a roof. The mesocosms were placed within individual lidless pine boxes (10x10x14 cm, 0.95 cm thick walls), and so were exposed to normal fluctuations in air temperature. Each warmed mesocosm was placed on 40mm2 thermoelectric plates with 40mm2 aluminum heatsinks attached using thermally conductive adhesive on each side. The warming orientation of the thermoelectric plate was positioned upwards, towards the mesocosms, to ensure adequate energy transfer from the heating units to the water. Each thermoelectric device was powered by two KORAD KD3005D 30V, 5A power supplies (Shenzhen, China). The thermoelectric plates were wired in parallel. Variable warming was produced by changing the supplied voltage. Temperatures were measured in the cups using HOBO Pendant® UA-002-08 data loggers submerged in the center of each cup. We did not measure temperature gradients within the mesocosms, but believe that they are likely to be small except possibly in the mesocosms that were maximally-warmed, as the mesocosms were small and mostly not strongly warmed above air temperature. Temperatures were logged each hour in each warmed mesocosm, and in one ambient treatment mesocosm. The data file labeled Figure 3 data provides the wate temperatures at hourly intervals during the experiment for one mesocosm at ambient temperature, mesocosm W1 (the least warmed mesocosm) and mesocosm W6 (the most warmed mesocosm) as shown in Fig. 3 of the manuscript. Global warming trends, human-assisted transport, and urbanization have allowed poleward expansion of many tropical vector species, but the specific mechanisms responsible for thermal mediation of range changes and ecological success of invaders remain poorly understood. Aedes aegypti (Diptera: Culicidae) is a tropical mosquito currently expanding into many higher-latitude regions including the urban desert region of Maricopa County, Arizona. Here, adult populations virtually disappear in winter and spring, and then increase exponentially through summer and fall, indicating that winter conditions remain a barrier to development of A. aegypti. To determine whether cold limits the winter development of A. aegypti larvae in Maricopa County, we surveyed for larval abundance, and tested their capacity to develop in ambient and warmed conditions. Aedes aegypti larvae were not observed in artificial aquatic habitats in winter and spring but were abundant in summer and fall, suggesting winter suppression of adults, larvae or both. Water temperatures in winter months fluctuated strongly; larvae were usually cold-paralyzed at night but active during the day. Despite daytime temperatures that allowed activity, larvae reared under ambient winter conditions were unable to develop to adulthood, perhaps due to repetitive cold damage. However, warming average temperature by 1.7°C allowed many larvae to successfully develop to adults. Because daytime highs in winter will often allow adult flight, it is possible that relatively minor additional winter warming may allow A. aegypti populations to develop and reproduce year-round in Maricopa County. # Data for Mesocosm studies suggest climate change may release Aedes aegypti (Diptera:Culicidae) larvae from cold-inhibition and enable year-round development in a desert city [https://doi.org/10.5061/dryad.nzs7h44z7](https://doi.org/10.5061/dryad.nzs7h44z7) Most of the data for this study are provided as supplementary files in the submitted manuscript. Here we provide representative thermal data. One file (Figure 2 data) contains the temperature data for the bucket kept under ambient conditions as shown in Figure 2, which also shows when Aedes aegypti larvae were found in the bucket. From to October 18 -November 29 2017, water temperatures were recorded every 6 minutes. Thereafter, water temperatures were recorded hourly until August 2, 2019. Another file (Figure 3 data) contains water temperatures for three of the mesocosms used in this study, as shown in the manuscript figure 3. This experiment ran from Jan 31, 2020 - March 1, 2020. One column sW1 was and ## Description of the data and file structure Figure 2 data has two columns, column A gives the date and column B the temperature of the ambient bucket in degrees Centigrade. Figure 3 data has four columns; column A gives the hours since the start of the experiment. Column B shows temperatures for an unheated mesocosm kept at ambient conditions. Column C shows temperatures for W6, the most warmed mesocosm (mean temperature 12C higher than the ambient mesocosm, to represent near-summer conditions). Column D shows temperatures for the least-warmed mesocosm (W1, mean temperature 1.8C higher than the ambient mesocosm). All temperatures are in degrees Centigrade.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.nzs7h44z7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.nzs7h44z7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 05 Aug 2024Publisher:Dryad Larocca Conte, Gabriele; Aleksinski, Adam; Liao, Ashley; Kriwet, Jürgen; Mörs, Thomas; Trayler, Robin; Ivany, Linda; Huber, Matthew; Kim, Sora;# Data from: Eocene Shark Teeth from Peninsular Antarctica: Windows to Habitat Use and Paleoceanography. [https://doi.org/10.5061/dryad.qz612jmq2](https://doi.org/10.5061/dryad.qz612jmq2) The repository folder includes scripts and spreadsheets for phosphate oxygen stable isotope (δ18Op) analysis measured from shark tooth biogenic apatite collected from the Eocene deposits of the La Meseta and Submeseta formations (West Antarctica, Seymour Island). It also contains Fourier-Transform Infrared Spectroscopy (FTIR) analysis, a Bayesian model for temperature estimates, and model output extraction scripts from the iCESM simulation for the Early Eocene (Zhu et al., 2020). Scripts and data are stored in specific folders on the type of analysis. All scripts are in R or Python language. **Usage notes** **1 "iCESM modeling scripts" directory** The folder includes scripts in Jupiter Notebook format for extracting and plotting iCESM seawater outputs for the Eocene. The folder includes two files: 1) “d18Ow Analysis Script.ipynb” - This is a Python script primarily using the XArray library, to import iCESM output from Zhu et al. (2020), calculating δ18Ow, and reorganizing the output into monthly time intervals along 25 m and 115 m depth slices, while also averaging output down to these depths; 2) “NetCDF Plotting.ipynb” - this is a Python script primarily using the XArray, Matplotlib, and Cartopy libraries. The script writes a single callable function that creates Matplotlib contour plots from iCESM history output. Variables include temperature, salinity, ideal age, oxygen isotopes, and neodymium isotopes, and map projections include Plate Carree, Mollweide, and orthographic (centering on the Drake Passage). Options are built to enable scale normalization or to set maximum and minimum values for data and select colormaps from a predefined selection of Matplotlib’s “Spectral”, “Viridis”, “Coolwarm”, “GNUplot2”, “PiYG”, “RdYlBu”, and “RdYlGn”. For further questions on model output scripts, please email Adam Aleksinski at [aaleksin@purdue.edu](https://datadryad.org/stash/dataset/doi:10.5061/aaleksin@purdue.edu). **2 "d18O data and maps" directory** The folder includes δ18Op of shark tooth bioapatite and other datasets to interpret shark paleoecology. These datasets include: · δ18Op of shark tooth bioapatite (“shark FEST d18Op.csv”). Isotope measurements were run at the Stable Isotope Ecosystem Laboratory of (SIELO) University of California, Merced (California, USA). · Reference silver phosphate material δ18Op for analytical accuracy and precision (“TCEA reference materials.csv"). Isotope measurements were run at the Stable Isotope Ecosystem Laboratory of (SIELO) University of California, Merced (California, USA). · Bulk and serially sampled δ18Oc data of co-occurring bivalves (Ivany et al., 2008; Judd et al., 2019) (“Ivany et al. 2008_bulk.csv” and “Judd et al., 2019_serial sampling.csv"). · iCESM model temperature and δ18Ow outputs at 3x and 6x pre-industrial CO2 levels for the Early Eocene (Zhu et al., 2020) (“SpinupX3_25m_Mean_Monthly.nc”, “SpinupX6_25m_Mean_Monthly.nc.”, and “CA_x3CO2.csv”). Simulations are integrated from the surface to 25 m. · δ18O values of invertebrate species published in Longinelli (1965) and Longinelli & Nuti (1973), used to convert bulk δ18Oc (V-SMOW) data of bivalves into δ18Op (V-SMOW) values after δ18Oc (V-PDB) - δ18Oc (V-SMOW) conversion found in Kim et al. (2015) (“d18O carbonate and phosphate references.csv”). · R script for data analysis ("d18O data and maps.Rmd”). The script provides annotation through libraries, instrumental accuracy and precision tests, tables, statistical analysis, figures, and model output extractions. . ("TELM_diversity.csv") displays diversity trends of chondrichthyans across TELMs in one of the main figures of the manuscript. **2.1 Dataset description** **shark FEST d18Op.csv** · *Sample_ID*: Identification number of tooth specimens. · *Other_ID*: Temporary identification number of tooth specimens. · *Taxon*: Species assigned to shark tooth specimens. · *TELM*: Stratigraphic units of La Meseta (TELM 2-5; ~45 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). · *d18Op*: Mean δ18Op values of silver phosphate crystals precipitated from shark tooth bioapatite. Specimens were run in triplicates, corrected, and standardized on the V-SMOW scale. · *sd*: Standard deviation of silver phosphate triplicate samples per specimen. · *Protocol*: Silver phosphate protocols used to precipitate crystals from shark tooth bioapatite. We adopted the Rapid UC (“UC_Rapid”) and the SPORA (“SPORA”) protocols after Mine et al. and (2017) Larocca Conte et al. (2024) based on the tooth specimen size and sampling strategy. Descriptions of the methods are included in the main manuscript. · *Environment*: Inferred shark habitat based on taxonomy classified as benthic or pelagic environment. · *Collection*: Institutional abbreviations of museum collections from which shark tooth specimens are housed. NRM-PZ is the abbreviation for the Swedish Natural History Museum (Stockholm, Sweden), PRI is the abbreviation for the Paleontological Research Institute (Ithaca, New York, United States), and UCMP is the University of California Museum of Paleontology (Berkeley, California, United States). **TCEA reference materials.csv** · *Identifier_1*: unique identifier number per sample. · *sample*: reference silver phosphate materials (USGS 80 and USGS 81). · *amount*: weight of samples in mg. · *Area 28*: peak area of mass 28 (12C16O). · *Area 30*: peak area of mass 30 (12C18O). · *d18O_corrected*: corrected δ18Op value of reference materials following drift correction, linearity correction, and 2-point calibration to report values on the V-SMOW scale. **Ivany et al. 2008_bulk.csv** · *Telm*: Stratigraphic units of La Meseta (TELM 2-5; ~45 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). · *Locality*: Locality code from which bivalves were collected. · *Genus*: Genera of bivalves. Specimens are assigned to *Cucullaea* and *Eurhomalea* genera. · *Line*: Sampling areas of specimens. The sampling strategy is described in Ivany et al. (2008). · *d13C*: δ13C values of specimens from sampled lines. Values are reported in the V-PDB scale. · *d18Oc_PDB*: δ18Oc values of specimens from sampled lines. Values are reported in the V-PDB scale. **Judd et al., 2019_serial sampling.csv** · *Horizon:* horizons of the TELM 5 unit (La Meseta Formation) from which bivalves were collected. Horizon 1 is stratigraphically the lowest, while horizon 4 is the highest (Judd et al., 2019). · *ID*: Identification number of specimens. · *Latitude*: Geographic coordinate where bivalve specimens were collected. · *Longitude*: Geographic coordinate where bivalve specimens were collected. · *Surface sampled*: Specific sampling area, indicating whether sampling occurred in the interior or exterior portion of shells. · *distance*: The distance from the umbo in mm from which sampling occurred along a single shell. · *d18Oc_PDB*: δ18Oc values of specimens from sampled areas of shells. Values are reported on the V-PDB scale. **SpinupX3_25m_Mean_Monthly.nc** See section 1 ("iCESM modeling scripts" directory, “d18Ow Analysis Script.ipynb” script) for a full description of the iCESM model output extraction. **SpinupX6_25m_Mean_Monthly.nc** See section 1 ("iCESM modeling scripts" directory, “d18Ow Analysis Script.ipynb” script) for a full description of the iCESM model output extraction. **CA_x3CO2.csv** · *lat*: Geographic coordinate where temperature and δ18Ow model values are extracted from the iCESM simulation scaled at 3x preindustrial CO2 levels (values averaged within a seawater column depth of 25 m). · *long*: Geographic coordinate where temperature and δ18Ow model values are extracted from the iCESM simulation scaled at 3x preindustrial CO2 levels (values averaged within a seawater column depth of 25 m). · *T_mean*: Simulated seawater temperature values in °C. · *d18Ow*: Simulated seawater δ18Ow values (V-SMOW). · *d18Op*: Simulated seawater δ18Op values (V-SMOW). Values were calculated by using seawater temperature and δ18Ow arrays following the paleothermometer equation after Lécuyer et al. (2013). **d18O carbonate and phosphate references.csv** · *species*: Species of invertebrate taxa. · *type*: Specimen type, including barnacles, brachiopods, crabs, and mollusks. · *depth*: Depth of seawater column where specimens were collected, reported in meters below sea level when specified. · *d18Op*: δ18Op values of invertebrate specimens (V-SMOW). · *d18Oc_PDB*: δ18Oc values of invertebrate specimens (V-PDB). · *Reference*: Citations from which data were taken to build the dataset (Longinelli, 1965; Longinelli & Nuti, 1973). **TELM diversity.csv** · *genus:* genera of sharks and rays compiled from literature (Engelbrecht et al., 2016a, 2016b, 2017a, 2017b, 2019; Kriwet, 2005; Kriwet et al., 2016; Long, 1992; Marramá et al., 2018). · *species*: species of sharks and rays compiled from literature (Engelbrecht et al., 2016a, 2016b, 2017a, 2017b, 2019; Kriwet, 2005; Kriwet et al., 2016; Long, 1992; Marramá et al., 2018). · *Environment*: Inferred shark habitat based on taxonomy classified as benthic or pelagic environment. · *TELM*: Stratigraphic units of La Meseta (TELM 1-5; ~44 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). **3 “FTIR data” directory** The folder includes FTIR acquisitions and data analysis scripts on reference materials and shark tooth bioapatite for quality checks to test diagenesis effects on δ18Op of sharks. The folder includes: · The R project file “apatite_ftir.Rproj”. This project file navigates through scripts for raw data processing and data analysis. The background of the raw data was processed following custom R functions from Trayler et al. (2023; [https://github.com/robintrayler/collagen_demineralization](https://github.com/robintrayler/collagen_demineralization)). · The “.Rproj.user” folder includes project-specific temporary files (e.g. auto-saved source documents, window-state, etc.) stored by the R project file “apatite_ftir.Rproj”. The folder may be hidden depending on directory view options. · The “raw data” directory stores spectra acquisitions as .dpt files. Spectra files are stored in the folders “apatite” and “calcite” based on the material type. Spectra were obtained in the 400 – 4000 cm⁻¹ range using a Bruker Vertex 70 Far-Infrared in ATR located at the Nuclear Magnetic Resonance Facility at the University of California Merced (California, USA). · The “processed” directory includes processed spectra stored as .csv files (“apatite_data.csv” and “calcite_data.csv”) following the background correction (Trayler et al., 2023) and processed infrared data from Larocca Conte et al. (2024) (“Larocca Conte et al._SPORA_apatite_data.csv”) from which the NIST SRM 120c spectrum was filtered. Infrared spectra data in “Larocca Conte et al._SPORA_apatite_data.csv” were obtained and corrected following the same methodologies mentioned above. · The “R” directory includes R scripts of customized source functions for background correction (Trayler et al., 2023; inspect the "functions" directory and the R script "0_process_data.R") and data analysis (“data_analysis.R”). The scripts provide annotation through libraries and functions used for data processing and analysis. · Additional datasets. The “data_FTIR_d18O.csv” includes infrared data and δ18Op values of specimens, while the “Grunenwald et al., 2014_CO3.csv” is the dataset after Grunenwald et al. (2014) used to predict carbonate content from the materials featured in this work. **3.1 Dataset description** Spreadsheets included in the “processed” directory The datasets “apatite_data.csv”, “calcite_data.csv”, and “Larocca Conte et al._SPORA_apatite_data.csv” are structured with the following variables: · *wavenumber*: infrared wavenumber in cm-1. · *absorbance*: infrared absorbance value. · *file_name:* .dpt file name from which infrared wavenumber and absorbance values were obtained following the background correction. **data_FTIR_d18O.csv** · *file_name:* .dpt file name from which infrared wavenumber and absorbance values were obtained following the background correction. · *v4PO4_565_wavenumber*: Wavenumber of maximum infrared absorbance around the first νPO4 band, usually at 565 cm-1. · *v4PO4_565*: Peak absorbance value of the first ν4PO4 band (~565 cm-1). · *v4PO4_valley_wavenumber*: Wavenumber of valley between ν4PO4 bands. · *v4PO4_valley*: Absorbance value of the valley between ν4PO4 bands. · *v4PO4_603_wavenumber*: Wavenumber of maximum infrared absorbance around the second ν4PO4 band, usually at 603 cm-1. · *v4PO4_603*: Peak absorbance value of the second ν4PO4 band (~603 cm-1). · *CI*: Crystallinity index calculated after equation provided in (Shemesh, 1990) as (*v4PO4_565* + *v4PO4_603* / *v4PO4_valley*) (i.e., the sum of peak absorbance of νPO4 bands divided by the absorbance value of the valley between peaks). · *material*: Material type of samples (i.e., standard material, enameloid, dentin sampled from the crown or root area of shark teeth, and enameloid mixed with dentin). · *AUC_v3PO4*: Area under the curve of the ν3PO4 and ν1PO4 bands where maximum absorbance is at ~1025 cm-1 and ~960 cm-1, respectively. · *AUC_v3CO3*: Area under the curves of Type-A and Type-B carbonate bands having maximum infrared absorbance at ~1410 (Type-B), ~1456 (Type-B), and ~1545 cm-1 (Type-A). · *v3CO3_v3PO4_ratio*: Ratio between area under the curves of carbonate and phosphate bands (i.e., *AUC_v3CO3* / *AUC_v3PO4*). · *CO3_wt*: Estimated mean carbonate content following the equation in Grunenwald et al. (2014) (i.e. *CO3_wt* = 28.4793 (±1.4803) *v3CO3_v3PO4_ratio* + 0.1808(±0.2710); R2 = 0.985). · *CO3_wt_sd*: Standard deviation of estimated carbonate content calculated by propagating the error around coefficients provided in the Grunenwald et al. (2014) equation (see full equation in *CO3_wt*). · *Taxon*: Species assigned to shark tooth specimens. · *TELM*: Stratigraphic units of La Meseta (TELM 2-5; ~45 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). · *d18Op*: Mean δ18Op values of silver phosphate crystals precipitated from shark tooth bioapatite. Specimens were run in triplicates, corrected, and standardized on the V-SMOW scale. · *sd*: Standard deviation of silver phosphate triplicate samples per specimen. · *Collection*: Institutional abbreviations of museum collections where shark tooth specimens are housed. Infrared spectra were obtained from a selected subset of tooth specimens in the care of the Swedish Natural History Museum (NRM-PZ; Stockholm, Sweden). **Grunenwald et al., 2014_CO3.csv** · *sample*: Sample code. · *material*: Material type of samples (i.e., standard material, bone, and enamel). · *v3CO3*: Area under the curves of Type-A and Type-B carbonate bands having maximum infrared absorbance at ~1410 (Type-B), ~1456 (Type-B), and ~1545 cm-1 (Type-A). · *v3PO4*: *AUC_v3PO4*: Area under the curve of the ν3PO4 and ν1PO4 bands where maximum absorbance is at ~1025 cm-1 and ~960 cm-1, respectively. · *v3CO3_v3PO4_ratio*: *v3CO3_v3PO4_ratio*: Ratio between area under the curves of carbonate and phosphate bands (i.e., *v3CO3* /*v3PO4*). · *CO3_wt*: Carbonate content measured via CO2 coulometry. Further details about the analytical measurements are found in Grunenwald et al. (2014). **4 “Bayes_FEST_Temperautre Estimates” directory** The folder includes the Bayesian approach used to estimate posterior seawater temperature, δ18Ow values from δ18Op of sharks bioapatite using a Bayesian approach modified after Griffiths et al. (2023). The original scripts used in Griffiths et al. (2023) are reposited here: [https://github.com/robintrayler/bayesian_phosphate](https://github.com/robintrayler/bayesian_phosphate). The directory includes: · The R project file “Bayes_FEST.Rproj”. This project file navigates through scripts for raw data analysis. · The “.Rproj.user” folder includes project-specific temporary files (e.g. auto-saved source documents, window-state, etc.) stored by the R project file “Bayes_FEST.Rproj”. The folder may be hidden depending on directory view options. · The “data” folder includes the spreadsheets for modeled seawater temperature and δ18Ow values (“CA_x3CO2.csv”) and δ18Op values of shark tooth bioapatite (“shark FEST d18Op.csv”) used as prior information for the Bayesian model. We refer to section 2.1 for the full description of spreadsheets. · The “R” folder includes customized functions for the Bayesian model stored in the “functions” directory and the script for data analysis (“01_model_sharks.R”). The script includes a comparison of paleothermometer equations after Kolodny et al. (1983), Lécuyer et al. (2013), Longinelli & Nuti (1973), and (Pucéat et al. (2010) using the bulk δ18Op shark tooth bioapatite, simulated seawater temperature and δ18Ow values as prior inputs. While all paleothermometers estimate similar posterior bulk δ18Op close to empirical values, temperature estimates using the Pucéat et al. (2010) method are often the highest, generating estimates ~8°C higher than other equations. We therefore used the Lécuyer et al. (2013) paleothermomether for temperature estimates using δ18Op of shark bioapatite grouped by taxa because it: 1\) Provides consistent posterior temperature estimates relative to other equations (Longinelli & Nuti, 1973, Kolodny et al., 1983). 2\) provides temperature values from fish tooth specimens consistent with estimates of co-existing bivalves or brachiopod carbonate shells. The script provides annotation through libraries, statistical analysis, figures, and tables. **4 Software** **4.1 R** R and R Studio (R Development Core Team, 2024; RStudio Team, 2024) are required to run scripts included in the "d18O data and maps", “FTIR data”, and “Bayes_FEST_Temperautre Estimates” directories, which were created using versions 4.4.1 and 2024.04.02, respectively. Install the following libraries before running scripts: “cowplot” (Wilke, 2024), “colorspace” (Zeileis et al., 2020), “DescTools” (Signorell, 2024), “lattice” (Sarkar, 2008), “flextable” (Gohel & Skintzos, 2024), “ggh4x” (van den Brand, 2024), “ggnewscale” (Campitelli, 2024), “ggpubr” (Kassambara, 2023a), “ggspatial” (Dunnington, 2023), “ggstance” (Henry et al., 2024), “ggstar” (Xu, 2022), “greekLetters” (Kévin Allan Sales Rodrigues, 2023), “gridExtra” (Auguie, 2017), “mapdata” (code by Richard A. Becker & version by Ray Brownrigg., 2022); “mapproj” (for R by Ray Brownrigg et al., 2023), “maps” (code by Richard A. Becker et al., 2023), “ncdf4” (Pierce, 2023), “oce” (Kelley & Richards, 2023), “rasterVis” (Oscar Perpiñán & Robert Hijmans, 2023), “RColorBrewer” (Neuwirth, 2022), “rnaturalearth” (Massicotte & South, 2023), “rnaturalearthhires” (South et al., 2024),”rstatix” (Kassambara, 2023b), “scales” (Wickham et al., 2023), “tidyverse” (Wickham et al., 2019), “viridisLite” (Garnier et al., 2023). **4.2 Python** Python scripts, including “d18O Analysis Script.ipynb” and “NetCDF Plotting.ipynb”, utilize the Jupyter Notebook interactive ‘platform and are executed using Python version 3.9.16. Install the following libraries before running scripts: “xarray” (Hoyer & Joseph, 2017), “matplotlib” (Hunter, 2007), “cartopy” (Met Office, 2015). **5 References** Amenábar, C. R., Montes, M., Nozal, F., & Santillana, S. (2020). Dinoflagellate cysts of the la Meseta Formation (middle to late Eocene), Antarctic Peninsula: Implications for biostratigraphy, palaeoceanography and palaeoenvironment. *Geological Magazine*, *157*(3), 351–366. [https://doi.org/10.1017/S0016756819000591](https://doi.org/10.1017/S0016756819000591) Auguie, B. (2017). gridExtra: Miscellaneous Functions for “Grid” Graphics. Retrieved from [https://cran.r-project.org/package=gridExtra](https://cran.r-project.org/package=gridExtra) van den Brand, T. (2024). ggh4x: Hacks for “ggplot2.” Retrieved from [https://cran.r-project.org/package=ggh4x](https://cran.r-project.org/package=ggh4x) Campitelli, E. (2024). ggnewscale: Multiple Fill and Colour Scales in “ggplot2.” Retrieved from [https://cran.r-project.org/package=ggnewscale](https://cran.r-project.org/package=ggnewscale) code by Richard A. Becker, O. S., & version by Ray Brownrigg., A. R. W. R. (2022). mapdata: Extra Map Databases. Retrieved from [https://cran.r-project.org/package=mapdata](https://cran.r-project.org/package=mapdata) code by Richard A. Becker, O. S., version by Ray Brownrigg. Enhancements by Thomas P Minka, A. R. W. R., & Deckmyn., A. (2023). maps: Draw Geographical Maps. Retrieved from [https://cran.r-project.org/package=maps](https://cran.r-project.org/package=maps) Douglas, P. M. J., Affek, H. P., Ivany, L. C., Houben, A. J. P., Sijp, W. P., Sluijs, A., et al. (2014). Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. *Proceedings of the National Academy of Sciences of the United States of America*, *111*(18), 6582–6587. [https://doi.org/10.1073/pnas.1321441111](https://doi.org/10.1073/pnas.1321441111) Dunnington, D. (2023). ggspatial: Spatial Data Framework for ggplot2. Retrieved from [https://cran.r-project.org/package=ggspatial](https://cran.r-project.org/package=ggspatial) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2016a). A new sawshark, Pristiophorus laevis, from the Eocene of Antarctica with comments on Pristiophorus lanceolatus. *Historical Biology*, *29*(6), 841–853. [https://doi.org/10.1080/08912963.2016.1252761](https://doi.org/10.1080/08912963.2016.1252761) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2016b). Revision of Eocene Antarctic carpet sharks (Elasmobranchii, Orectolobiformes) from Seymour Island, Antarctic Peninsula. *Journal of Systematic Palaeontology*, *15*(12), 969–990. [https://doi.org/10.1080/14772019.2016.1266048](https://doi.org/10.1080/14772019.2016.1266048) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2017a). Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica. *Journal of South American Earth Sciences*, *78*, 175–189. [https://doi.org/10.1016/j.jsames.2017.07.006](https://doi.org/10.1016/j.jsames.2017.07.006) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2017b). New carcharhiniform sharks (Chondrichthyes, Elasmobranchii) from the early to middle Eocene of Seymour Island, Antarctic Peninsula. *Journal of Vertebrate Paleontology*, *37*(6). [https://doi.org/10.1080/02724634.2017.1371724](https://doi.org/10.1080/02724634.2017.1371724) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2019). Skates and rays (Elasmobranchii, Batomorphii) from the Eocene La Meseta and Submeseta formations, Seymour Island, Antarctica. *Historical Biology*, *31*(8), 1028–1044. [https://doi.org/10.1080/08912963.2017.1417403](https://doi.org/10.1080/08912963.2017.1417403) for R by Ray Brownrigg, D. M. P., Minka, T. P., & transition to Plan 9 codebase by Roger Bivand. (2023). mapproj: Map Projections. Retrieved from [https://cran.r-project.org/package=mapproj](https://cran.r-project.org/package=mapproj) Garnier, Simon, Ross, Noam, Rudis, Robert, et al. (2023). {viridis(Lite)} - Colorblind-Friendly Color Maps for R. [https://doi.org/10.5281/zenodo.4678327](https://doi.org/10.5281/zenodo.4678327) Gohel, D., & Skintzos, P. (2024). flextable: Functions for Tabular Reporting. Retrieved from [https://cran.r-project.org/package=flextable](https://cran.r-project.org/package=flextable) Griffiths, M. L., Eagle, R. A., Kim, S. L., Flores, R. J., Becker, M. A., IV, H. M. M., et al. (2023). Endothermic physiology of extinct megatooth sharks. *Proceedings of the National Academy of Sciences*, *120*(27), e2218153120. [https://doi.org/10.1073/PNAS.2218153120](https://doi.org/10.1073/PNAS.2218153120) Grunenwald, A., Keyser, C., Sautereau, A. M., Crubézy, E., Ludes, B., & Drouet, C. (2014). Revisiting carbonate quantification in apatite (bio)minerals: A validated FTIR methodology. *Journal of Archaeological Science*, *49*(1), 134–141. [https://doi.org/10.1016/j.jas.2014.05.004](https://doi.org/10.1016/j.jas.2014.05.004) Henry, L., Wickham, H., & Chang, W. (2024). ggstance: Horizontal “ggplot2” Components. Retrieved from [https://cran.r-project.org/package=ggstance](https://cran.r-project.org/package=ggstance) Hoyer, S., & Joseph, H. (2017). xarray: N-D labeled Arrays and Datasets in Python. *Journal of Open Research Software*, *5*(1), 17. [https://doi.org/10.5334/jors.148](https://doi.org/10.5334/jors.148) Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. *Computing in Science & Engineering*, *9*(3), 90–95. [https://doi.org/10.1109/MCSE.2007.55](https://doi.org/10.1109/MCSE.2007.55) Ivany, L. C., Lohmann, K. C., Hasiuk, F., Blake, D. B., Glass, A., Aronson, R. B., & Moody, R. M. (2008). Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. *Bulletin of the Geological Society of America*, *120*(5–6), 659–678. [https://doi.org/10.1130/B26269.1](https://doi.org/10.1130/B26269.1) Judd, E. J., Ivany, L. C., DeConto, R. M., Halberstadt, A. R. W., Miklus, N. M., Junium, C. K., & Uveges, B. T. (2019). Seasonally Resolved Proxy Data From the Antarctic Peninsula Support a Heterogeneous Middle Eocene Southern Ocean. *Paleoceanography and Paleoclimatology*, *34*(5), 787–799. [https://doi.org/10.1029/2019PA003581](https://doi.org/10.1029/2019PA003581) Kassambara, A. (2023a). ggpubr: “ggplot2” Based Publication Ready Plots. Retrieved from [https://cran.r-project.org/package=ggpubr](https://cran.r-project.org/package=ggpubr) Kassambara, A. (2023b). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. Retrieved from [https://cran.r-project.org/package=rstatix](https://cran.r-project.org/package=rstatix) Kelley, D., & Richards, C. (2023). oce: Analysis of Oceanographic Data. Retrieved from [https://cran.r-project.org/package=oce](https://cran.r-project.org/package=oce) Kévin Allan Sales Rodrigues. (2023). greekLetters: routines for writing Greek letters and mathematical symbols on the RStudio and RGui. Retrieved from [https://cran.r-project.org/package=greekLetters](https://cran.r-project.org/package=greekLetters) Kolodny, Y., Luz, B., & Navon, O. (1983). Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite-rechecking the rules of the game. *Earth and Planetary Science Letters*, *64*(3), 398–404. [https://doi.org/10.1016/0012-821X(83)90100-0](https://doi.org/10.1016/0012-821X\(83\)90100-0) Kriwet, J. (2005). Additions to the Eocene selachian fauna of Antarctica with comments on Antarctic selachian diversity. *Journal of Vertebrate Paleontology*, *25*(1), 1–7. [https://doi.org/10.1671/0272-4634(2005)025\[0001:ATTESF\]2.0.CO;2](https://doi.org/10.1671/0272-4634\(2005\)025[0001:ATTESF]2.0.CO;2) Kriwet, J., Engelbrecht, A., Mörs, T., Reguero, M., & Pfaff, C. (2016). Ultimate Eocene (Priabonian) chondrichthyans (Holocephali, Elasmobranchii) of Antarctica. *Journal of Vertebrate Paleontology*, *36*(4). [https://doi.org/10.1080/02724634.2016.1160911](https://doi.org/10.1080/02724634.2016.1160911) Larocca Conte, G., Lopes, L. E., Mine, A. H., Trayler, R. B., & Kim, S. L. (2024). SPORA, a new silver phosphate precipitation protocol for oxygen isotope analysis of small, organic-rich bioapatite samples. *Chemical Geology*, *651*, 122000. [https://doi.org/10.1016/J.CHEMGEO.2024.122000](https://doi.org/10.1016/J.CHEMGEO.2024.122000) Lécuyer, C., Amiot, R., Touzeau, A., & Trotter, J. (2013). Calibration of the phosphate δ18O thermometer with carbonate-water oxygen isotope fractionation equations. *Chemical Geology*, *347*, 217–226. [https://doi.org/10.1016/j.chemgeo.2013.03.008](https://doi.org/10.1016/j.chemgeo.2013.03.008) Long, D. J. (1992). Sharks from the La Meseta Formation (Eocene), Seymour Island, Antarctic Peninsula. *Journal of Vertebrate Paleontology*, *12*(1), 11–32. [https://doi.org/10.1080/02724634.1992.10011428](https://doi.org/10.1080/02724634.1992.10011428) Longinelli, A. (1965). Oxygen isotopic composition of orthophosphate from shells of living marine organisms. *Nature*, *207*(4998), 716–719. [https://doi.org/10.1038/207716a0](https://doi.org/10.1038/207716a0) Longinelli, A., & Nuti, S. (1973). Revised phosphate-water isotopic temperature scale. *Earth and Planetary Science Letters*, *19*(3), 373–376. [https://doi.org/10.1016/0012-821X(73)90088-5](https://doi.org/10.1016/0012-821X\(73\)90088-5) Marramá, G., Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2018). The southernmost occurrence of Brachycarcharias (Lamniformes, Odontaspididae) from the Eocene of Antarctica provides new information about the paleobiogeography and paleobiology of Paleogene sand tiger sharks. *Rivista Italiana Di Paleontologia e Stratigrafia*, *124*(2), 283–297. Massicotte, P., & South, A. (2023). rnaturalearth: World Map Data from Natural Earth. Retrieved from [https://cran.r-project.org/package=rnaturalearth](https://cran.r-project.org/package=rnaturalearth) Met Office. (2015). Cartopy: a cartographic python library with a Matplotlib interface. Exeter, Devon. Retrieved from [https://scitools.org.uk/cartopy](https://scitools.org.uk/cartopy) Mine, A. H., Waldeck, A., Olack, G., Hoerner, M. E., Alex, S., & Colman, A. S. (2017). Microprecipitation and δ18O analysis of phosphate for paleoclimate and biogeochemistry research. *Chemical Geology*, *460*(March), 1–14. [https://doi.org/10.1016/j.chemgeo.2017.03.032](https://doi.org/10.1016/j.chemgeo.2017.03.032) Montes, M., Nozal, F., Santillana, S., Marenssi, S., & Olivero, E. (2013). Mapa Geológico de Isla Marambio (Seymour), Antártida, escala 1:20,000. *Serie Cartográfica*. Neuwirth, E. (2022). RColorBrewer: ColorBrewer Palettes. Retrieved from [https://cran.r-project.org/package=RColorBrewer](https://cran.r-project.org/package=RColorBrewer) Oscar Perpiñán, & Robert Hijmans. (2023). rasterVis. Retrieved from [https://oscarperpinan.github.io/rastervis/](https://oscarperpinan.github.io/rastervis/) Pierce, D. (2023). ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. Retrieved from [https://cran.r-project.org/package=ncdf4](https://cran.r-project.org/package=ncdf4) Pucéat, E., Joachimski, M. M., Bouilloux, A., Monna, F., Bonin, A., Motreuil, S., et al. (2010). Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite. *Earth and Planetary Science Letters*, *298*(1–2), 135–142. [https://doi.org/10.1016/j.epsl.2010.07.034](https://doi.org/10.1016/j.epsl.2010.07.034) R Development Core Team. (2024). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Vienna, Austria. RStudio Team. (2024). RStudio: Integrated Development for R. Boston, MA: RStudio, PBC. Retrieved from [http://www.rstudio.com/](http://www.rstudio.com/). Sarkar, D. (2008). *Lattice: Multivariate Data Visualization with R*. New York: Springer. Retrieved from [http://lmdvr.r-forge.r-project.org](http://lmdvr.r-forge.r-project.org) Shemesh, A. (1990). Crystallinity and diagenesis of sedimentary apatites. *Geochimica et Cosmochimica Acta*, *54*(9), 2433–2438. [https://doi.org/10.1016/0016-7037(90)90230-I](https://doi.org/10.1016/0016-7037\(90\)90230-I) Signorell, A. (2024). DescTools: Tools for Descriptive Statistics. Retrieved from [https://cran.r-project.org/package=DescTools](https://cran.r-project.org/package=DescTools) South, A., Michael, S., & Massicotte, P. (2024). rnaturalearthhires: High Resolution World Vector Map Data from Natural Earth used in rnaturalearth. Retrieved from [https://github.com/ropensci/rnaturalearthhires](https://github.com/ropensci/rnaturalearthhires) Trayler, R. B., Landa, P. V., & Kim, S. L. (2023). Evaluating the efficacy of collagen isolation using stable isotope analysis and infrared spectroscopy. *Journal of Archaeological Science*, *151*, 105727. [https://doi.org/10.1016/j.jas.2023.105727](https://doi.org/10.1016/j.jas.2023.105727) Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., et al. (2019). Welcome to the {tidyverse}. *Journal of Open Source Software*, *4*(43), 1686. [https://doi.org/10.21105/joss.01686](https://doi.org/10.21105/joss.01686) Wickham, H., Pedersen, T. L., & Seidel, D. (2023). scales: Scale Functions for Visualization. Retrieved from [https://cran.r-project.org/package=scales](https://cran.r-project.org/package=scales) Wilke, C. O. (2024). cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2.” Retrieved from [https://cran.r-project.org/package=cowplot](https://cran.r-project.org/package=cowplot) Xu, S. (2022). ggstar: Multiple Geometric Shape Point Layer for “ggplot2.” Retrieved from [https://cran.r-project.org/package=ggstar](https://cran.r-project.org/package=ggstar) Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P., et al. (2020). {colorspace}: A Toolbox for Manipulating and Assessing Colors and Palettes. *Journal of Statistical Software*, *96*(1), 1–49. [https://doi.org/10.18637/jss.v096.i01](https://doi.org/10.18637/jss.v096.i01) Zhu, J., Poulsen, C. J., Otto-Bliesner, B. L., Liu, Z., Brady, E. C., & Noone, D. C. (2020). Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction. *Earth and Planetary Science Letters*, *537*, 116164. [https://doi.org/10.1016/j.epsl.2020.116164](https://doi.org/10.1016/j.epsl.2020.116164) Eocene climate cooling, driven by the falling pCO2 and tectonic changes in the Southern Ocean, impacted marine ecosystems. Sharks in high-latitude oceans, sensitive to these changes, offer insights into both environmental shifts and biological responses, yet few paleoecological studies exist. The Middle-to-Late Eocene units on Seymour Island, Antarctica, provide a rich, diverse fossil record, including sharks. We analyzed the oxygen isotope composition of phosphate from shark tooth bioapatite (δ18Op) and compared our results to co-occurring bivalves and predictions from an isotope-enabled global climate model to investigate habitat use and environmental conditions. Bulk δ18Op values (mean 22.0 ± 1.3‰) show no significant changes through the Eocene. Furthermore, the variation in bulk δ18Op values often exceeds that in simulated seasonal and regional values. Pelagic and benthic sharks exhibit similar δ18Op values across units but are offset relative to bivalve and modeled values. Some taxa suggest movements into warmer or more brackish waters (e.g., Striatolamia, Carcharias) or deeper, colder waters (e.g., Pristiophorus). Taxa like Raja and Squalus display no shift, tracking local conditions in Seymour Island. The lack of difference in δ18Op values between pelagic and benthic sharks in the Late Eocene could suggest a poorly stratified water column, inconsistent with a fully opened Drake Passage. Our findings demonstrate that shark tooth bioapatite tracks the preferred habitat conditions for individual taxa rather than recording environmental conditions where they are found. A lack of secular variation in δ18Op values says more about species ecology than the absence of regional or global environmental changes. See methods in Larocca Conte, G., Aleksinski, A., Liao, A., Kriwet, J., Mörs, T., Trayler, R. B., Ivany, L. C., Huber, M., Kim, S. L. (2024). Eocene Shark Teeth From Peninsular Antarctica: Windows to Habitat Use and Paleoceanography. Paleoceanography and Paleoclimatology, 39, e2024PA004965.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qz612jmq2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qz612jmq2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 16 Jan 2024Publisher:Dryad Authors: Pérez-Navarro, María Ángeles;This repository contains a series of .csv files developed for the study titled "Plant canopies promote climatic disequilibrium in Mediterranean recruit communities", authored by: Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcántara JM and Verdú M. The author of these files is Perez-Navarro MA. These files are used to characterize species niches, estimate climatic disequilibrium for recruit communities growing under plant canopies and open spaces, and conduct statistical analyses. Variables description of each table is compiled in the METADATA.txt file. Please visit Github readme () to correctly place these files in the folder tree and check for the corresponding scripts where they are required. Please notice that although alternative approaches were calibrated to estimate species niche (accordingly producing multiple niche, distances and disequilibrium dataframes), only niche centroid calibrated discarding 95 percentile of lowest niche density was used for paper results and figures. Also, in case of univariate analyses only bio01, bio06 and bio12 were used in analyses, though species niche and further niche and community estimations were obtained for all 19 variables. This is version 2 (v2) and include extra intermediate .csv required to run all the R scripts included in the abovementioned Github repository. NAs or empty cells present in the .csv files of this repository means no data and do not contribute to the analyses. Visit METADATA.txt file for variables description. These data are under CC0 license. It is possible to share, copy and redistribute the material in any medium or format, and adapt, remix, transform, and build upon the material for any purpose. Studies using R scripts or any data files from these study should cite the abovementioned paper (Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcantara JM, Verdu M. (2024). Plant canopies promote climatic disequilibrium in Mediterranean recruit communities). Please contact m.angeles582@gmail.com in case of having doubts or problems with the existing files and scripts. Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyze differences in climatic disequilibrium between understory and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favor warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023 European UnionLes conditions géothermiques souterraines, quelle que soit la position des aquifères, sont montrées avec des cartes géothermiques appropriées. Cette carte représente les lignes de température attendues à une profondeur de 3 000 m de la carte de la distribution spatiale de la température attendue à une profondeur de 3 000 m (carte géothermique), qui est faite avec des données de 214 forages. Il est fabriqué sur la base des températures mesurées dans des puits accessibles dans tout le pays. Cependant, puisque le champ de température dépend de la composition géologique en profondeur et des caractéristiques tectoniques, le cours des isothermes est le résultat de nombreuses influences telles que la conductivité thermique des roches, la perméabilité et la fissuration des roches, qui se reflètent toutes dans les températures mesurées des puits. À cette profondeur, la chaleur radiogénique dans les roches a également une influence mineure. La répartition des puits, utiles pour les mesures de température, est très inégale et varie en profondeur. Après des températures à une profondeur de 3 000 m, il y a une anomalie positive plus forte dans la partie nord-est de la Slovénie, de la ligne Maribor-Rogatec à l’est, alors qu’il n’y a pas d’anomalie dans la partie orientale du bassin de Krško. Dans la partie nord-est du pays, cela est dû à la croûte terrestre plus mince et au flux de chaleur conductif plus élevé du manteau terrestre. Ailleurs, les températures sont beaucoup plus basses. Las condiciones geotérmicas subterráneas, independientemente de la posición de los acuíferos, se muestran con mapas geotérmicos adecuados. Este mapa representa las líneas de temperatura esperadas a una profundidad de 3 000 m del mapa de la distribución espacial de la temperatura esperada a una profundidad de 3 000 m (Mapa Geotérmico), que se realiza con datos de 214 pozos. Se realiza sobre la base de temperaturas medidas en pozos accesibles en todo el país. Sin embargo, dado que el campo de temperatura depende de la composición geológica en profundidades y características tectónicas, el curso de las isotermas es el resultado de numerosas influencias, como la conductividad térmica de las rocas, la permeabilidad y el agrietamiento de las rocas, todas las cuales se reflejan en temperaturas bien medidas. A esta profundidad, el calor radiogénico en las rocas también tiene una influencia menor. La distribución de los pozos, que fueron útiles para las mediciones de temperatura, es muy desigual y varía en profundidad. Después de temperaturas a una profundidad de 3 000 m, hay una anomalía positiva más fuerte en la parte noreste de Eslovenia, desde la línea Maribor-Rogatec hacia el este, mientras que no hay anomalía en la parte oriental de la cuenca de Krško. En la parte noreste del país, esto se debe a la corteza terrestre más delgada y al mayor flujo de calor conductor del manto de la Tierra. En otros lugares, las temperaturas son mucho más bajas. Die unterirdischen Geothermiebedingungen, unabhängig von der Lage der Grundwasserleiter, werden mit geeigneten geothermischen Karten dargestellt. Diese Karte stellt die erwarteten Temperaturlinien in einer Tiefe von 3 000 m von der Karte der räumlichen Verteilung der erwarteten Temperatur in einer Tiefe von 3 000 m (Geothermiekarte) dar, die mit Daten aus 214 Bohrlöchern erstellt wird. Es wird auf der Grundlage der gemessenen Temperaturen in zugänglichen Brunnen im ganzen Land gemacht. Da das Temperaturfeld jedoch von der geologischen Zusammensetzung in Tiefen und tektonischen Eigenschaften abhängt, ist der Verlauf der Isothermen das Ergebnis zahlreicher Einflüsse wie Wärmeleitfähigkeit von Gesteinen, Durchlässigkeit und Rissbildung von Gesteinen, die alle in gemessenen Brunnentemperaturen reflektiert werden. In dieser Tiefe hat auch radiogene Hitze in Gesteinen einen geringen Einfluss. Die Verteilung der Brunnen, die für Temperaturmessungen nützlich waren, ist sehr ungleichmäßig und variiert in der Tiefe. Nach Temperaturen in einer Tiefe von 3 000 m gibt es eine stärkere positive Anomalie im nordöstlichen Teil Sloweniens, von der Linie Maribor-Rogatec nach Osten, während es im östlichen Teil des Krško-Beckens keine Anomalie gibt. Im Nordosten des Landes ist dies auf die dünnere Erdkruste und die höhere leitfähige Wärmeströmung aus dem Erdmantel zurückzuführen. Anderswo sind die Temperaturen viel niedriger. Le condizioni geotermiche sotterranee, indipendentemente dalla posizione delle falde acquifere, sono mostrate con adeguate mappe geotermiche. Questa mappa rappresenta le linee di temperatura previste ad una profondità di 3 000 m dalla mappa della distribuzione spaziale della temperatura prevista ad una profondità di 3 000 m (Carta geotermica), che è fatta con i dati di 214 pozzi. È realizzato sulla base delle temperature misurate in pozzi accessibili in tutto il paese. Tuttavia, poiché il campo di temperatura dipende dalla composizione geologica in profondità e caratteristiche tettoniche, il decorso delle isoterme è il risultato di numerose influenze come la conducibilità termica delle rocce, la permeabilità e la fessura delle rocce, che si riflettono tutte in temperature misurate bene. A questa profondità, anche il calore radiogenico nelle rocce ha un'influenza minore. La distribuzione dei pozzi, utili per le misurazioni della temperatura, è molto irregolare e varia in profondità. Dopo temperature a una profondità di 3 000 m, c'è un'anomalia positiva più forte nella parte nord-orientale della Slovenia, dalla linea Maribor-Rogatec a est, mentre non vi è alcuna anomalia nella parte orientale del bacino di Krško. Nella parte nord-orientale del paese, questo è dovuto alla crosta terrestre più sottile e al più alto flusso di calore conduttivo dal mantello terrestre. Altrove, le temperature sono molto più basse. De ondergrondse geothermische omstandigheden, ongeacht de positie van de watervoerende lagen, worden weergegeven met geschikte geothermische kaarten. Deze kaart geeft de verwachte temperatuurlijnen weer op een diepte van 3 000 m van de kaart van de ruimtelijke verdeling van de verwachte temperatuur op een diepte van 3 000 m (Geothermiekaart), die wordt gemaakt met gegevens van 214 boorgaten. Het wordt gemaakt op basis van gemeten temperaturen in toegankelijke putten in het hele land. Aangezien het temperatuurveld echter afhankelijk is van de geologische samenstelling in diepten en tektonische kenmerken, is het verloop van isothermen het resultaat van talrijke invloeden zoals thermische geleidbaarheid van gesteenten, doorlaatbaarheid en kraken van gesteenten, die allemaal worden weerspiegeld in gemeten goedtemperaturen. Op deze diepte heeft radiogene warmte in rotsen ook een kleine invloed. De verdeling van putten, die nuttig waren voor temperatuurmetingen, is zeer ongelijk en varieert in diepte. Na temperaturen op een diepte van 3 000 m is er een sterkere positieve anomalie in het noordoosten van Slovenië, van de lijn Maribor-Rogatec naar het oosten, terwijl er geen anomalie is in het oostelijke deel van het Krško-bekken. In het noordoosten van het land is dit te wijten aan de dunnere aardkorst en de hogere geleidende warmtestroom uit de mantel van de aarde. Elders zijn de temperaturen veel lager. Οι υπόγειες γεωθερμικές συνθήκες, ανεξάρτητα από τη θέση των υδροφόρων οριζόντων, παρουσιάζονται με κατάλληλους γεωθερμικούς χάρτες. Ο χάρτης αυτός αναπαριστά τις αναμενόμενες γραμμές θερμοκρασίας σε βάθος 3 000 m από τον χάρτη της χωρικής κατανομής της αναμενόμενης θερμοκρασίας σε βάθος 3 000 m (Γεωθερμικός Χάρτης), ο οποίος γίνεται με δεδομένα από 214 γεωτρήσεις. Γίνεται με βάση τις μετρούμενες θερμοκρασίες σε προσβάσιμα πηγάδια σε όλη τη χώρα. Ωστόσο, δεδομένου ότι το πεδίο θερμοκρασίας εξαρτάται από τη γεωλογική σύνθεση σε βάθη και τεκτονικά χαρακτηριστικά, η πορεία των ισοθερμικών είναι το αποτέλεσμα πολυάριθμων επιδράσεων όπως η θερμική αγωγιμότητα των πετρωμάτων, η διαπερατότητα και η ρωγμή των πετρωμάτων, οι οποίες αντανακλώνται σε μετρημένες θερμοκρασίες φρεατίων. Σε αυτό το βάθος, η ραδιογενής θερμότητα στους βράχους έχει επίσης μια μικρή επιρροή. Η κατανομή των φρεάτων, τα οποία ήταν χρήσιμα για μετρήσεις θερμοκρασίας, είναι πολύ άνιση και ποικίλλει σε βάθος. Μετά από θερμοκρασίες σε βάθος 3000 μέτρων, υπάρχει μια ισχυρότερη θετική ανωμαλία στο βορειοανατολικό τμήμα της Σλοβενίας, από τη γραμμή Maribor-Rogatec προς τα ανατολικά, ενώ δεν υπάρχει ανωμαλία στο ανατολικό τμήμα της λεκάνης Krško. Στο βορειοανατολικό τμήμα της χώρας, αυτό οφείλεται στον λεπτότερο φλοιό της Γης και την υψηλότερη αγώγιμη ροή θερμότητας από τον μανδύα της Γης. Αλλού, οι θερμοκρασίες είναι πολύ χαμηλότερες. The underground geothermal conditions can be presented, irrespective of the aquifers' position, with the appropriate geothermal maps. This map represents the expected temperature lines at a depth of 3000 m and is derived from Geothermal map - Expected temperatures at a depth of 3000 m, which is made with data from 214 boreholes. It is made on the basis of measured temperatures in accessible boreholes throughout the country. However, since the temperature field depends on the geological structure in the depths and tectonic characteristics, the course of the isotherms is a result of many influences, such as thermal conductivity of rocks, permeability and fracturing of rocks, all of which are reflected in the measured temperatures in boreholes. In this depth also a radiogenic heat production in the rocks has smaller influence. The distribution of boreholes, which were useful for the measurement of temperature, is very uneven and different as regard the depths. Following the expected temperatures at a depth of 3000 m a stronger positive anomaly is in the northeastern part of Slovenia, from the line Maribor-Rogatec to the east, while in the eastern part of the Krka basin there is no anomaly any more. In the northeastern part of the country the anomaly is the result of the thinning of the Earth's crust and greater conductive heat flow from the Earth's mantle. Elsewhere temperatures are much lower. Condițiile geotermale subterane, indiferent de poziția acviferelor, sunt afișate cu hărți geotermale adecvate. Această hartă reprezintă liniile de temperatură așteptate la o adâncime de 3 000 m de la harta distribuției spațiale a temperaturii așteptate la o adâncime de 3 000 m (Harta geotermală), care este realizată cu date de la 214 găuri de foraj. Se face pe baza temperaturilor măsurate în puțuri accesibile din întreaga țară. Cu toate acestea, deoarece câmpul de temperatură depinde de compoziția geologică în adâncimi și caracteristici tectonice, cursul izotermelor este rezultatul a numeroase influențe, cum ar fi conductivitatea termică a rocilor, permeabilitatea și fisurarea rocilor, toate acestea fiind reflectate în temperaturile sondei măsurate. La această adâncime, căldura radiogenică din roci are, de asemenea, o influență minoră. Distribuția puțurilor, care au fost utile pentru măsurarea temperaturii, este foarte inegală și variază în profunzime. După temperaturi la o adâncime de 3 000 m, există o anomalie pozitivă mai puternică în partea de nord-est a Sloveniei, de la linia Maribor-Rogatec la est, în timp ce nu există nicio anomalie în partea estică a bazinului Krško. În partea de nord-est a țării, acest lucru se datorează scoarței mai subțiri a Pământului și fluxului de căldură mai mare din mantaua Pământului. În alte părți, temperaturile sunt mult mai scăzute. Il-kundizzjonijiet ġeotermali taħt l-art, irrispettivament mill-pożizzjoni tal-akwiferi, huma murija b’mapep ġeotermali adattati. Din il-mappa tirrappreżenta l-linji tat-temperatura mistennija f’fond ta’ 3 000 m mill-mappa tad-distribuzzjoni spazjali tat-temperatura mistennija f’fond ta’ 3 000 m (Mappa Ġeotermali), li hija magħmula b’data minn 214 boreholes. Dan isir fuq il-bażi ta’ temperaturi mkejla fi bjar aċċessibbli fil-pajjiż kollu. Madankollu, peress li l-kamp tat-temperatura jiddependi fuq il-kompożizzjoni ġeoloġika fil-fond u l-karatteristiċi tettoniċi, il-kors tal-isotermi huwa r-riżultat ta’ bosta influwenzi bħall-konduttività termali tal-blat, il-permeabilità u l-qsim tal-blat, li kollha huma riflessi f’temperaturi mkejla tal-bjar. F’dan il-fond, sħana radjoġenika fil-blat għandha wkoll influwenza minuri. Id-distribuzzjoni tal-bjar, li kienu utli għall-kejl tat-temperatura, hija irregolari ħafna u tvarja fil-fond. Wara temperaturi f’fond ta’ 3 000 m, hemm anomalija pożittiva aktar qawwija fil-parti tal-Grigal tas-Slovenja, mil-linja Maribor-Rogatec lejn il-Lvant, filwaqt li ma hemm l-ebda anomalija fil-parti tal-Lvant tal-baċir ta’ Krško. Fil-parti tal-grigal tal-pajjiż, dan huwa dovut għall-qoxra tad-Dinja irqaq u l-fluss tas-sħana konduttiv ogħla mill-mantell tad-Dinja. Band’oħra, it-temperaturi huma ħafna aktar baxxi. As condições geotérmicas subterrâneas, independentemente da posição dos aquíferos, são mostradas com mapas geotérmicos adequados. Este mapa representa as linhas de temperatura esperadas a uma profundidade de 3 000 m do mapa da distribuição espacial da temperatura esperada a uma profundidade de 3 000 m (Mapa geotérmico), que é feita com dados de 214 furos. É feita com base nas temperaturas medidas em poços acessíveis em todo o país. No entanto, uma vez que o campo de temperatura depende da composição geológica em profundidades e características tectónicas, o curso das isotérmicas é o resultado de inúmeras influências, tais como condutividade térmica das rochas, permeabilidade e rachadura de rochas, todas elas refletidas em temperaturas medidas. A esta profundidade, o calor radiogénico nas rochas também tem uma pequena influência. A distribuição dos poços, que foram úteis para medições de temperatura, é muito desigual e varia em profundidade. Depois de temperaturas a uma profundidade de 3 000 m, há uma anomalia positiva mais forte na parte nordeste da Eslovénia, da linha Maribor-Rogatec ao leste, enquanto não há anomalia na parte oriental da bacia de Krško. Na parte nordeste do país, isto é devido à crosta mais fina da Terra e ao maior fluxo de calor condutor do manto da Terra. Em outros locais, as temperaturas são muito mais baixas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::bd4d5e05a1bf0a84c839ae71ca1b9f7f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::bd4d5e05a1bf0a84c839ae71ca1b9f7f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | PARIS REINFORCEEC| PARIS REINFORCEDoukas, Haris; Spiliotis, Evangelos; Jafari, Mohsen A.; Giarola, Sara; Nikas, Alexandros;This dataset contains the underlying data for the following publication: Doukas, H., Spiliotis, E., Jafari, M. A., Giarola, S. & Nikas, A. (2021). Low-cost emissions cuts in container shipping: Thinking inside the box. Transportation Research Part D: Transport and Environment, 94, 102815, https://doi.org/10.1016/j.trd.2021.102815.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Ferreira, Igor José Malfetoni; Campanharo, Wesley Augusto; Fonseca, Marisa Gesteira; Escada, Maria Isabel Sobral; +7 AuthorsFerreira, Igor José Malfetoni; Campanharo, Wesley Augusto; Fonseca, Marisa Gesteira; Escada, Maria Isabel Sobral; Nascimento, Marcelo Trindade; Villela, Dora M.; Brancalion, Pedro; Magnago, Luiz Fernando Silva; Anderson, Liana O.; Nagy, Laszlo; Aragão, Luiz E. O. C;This file collection contains the estimated spatial distribution of the above-ground biomass density (AGB) by the end of the 21st century across the Brazilian Atlantic Forest domain and the respective uncertanty. To develop the models, we used the maximum entropy method with projected climate data to 2100, based on the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) 4.5 from the fifth Assessment Report (AR5). The dataset is composed of four files in GeoTIFF format: calibrated-AGB-distribution.tif: raster file representing the present spatial distribution of the above-ground biomass density in the Atlantic Forest from the calibrated model. Unit: Mg/ha estimated-uncertanty-for-calibrated-agb-distribution.tif: raster file representing the estimated spatial uncertanty distribution of the calibrated above-ground biomass density. Unit: percentage. projected-AGB-distribution-under-rcp45.tif: raster file representing the projected spatial distribution of the above-ground biomass density in the Atlantic Forest by the end of 2100 under RCP 4.5 scenario. Unit: Mg/ha estimated-uncertanty-for-projected-agb-distribution.tif: raster file representing the estimated spatial uncertanty distribution of the projected above-ground biomass density. Unit: percentage. Spatial resolution: 0.0083 degree (ca. 1 km) Coordinate reference system: Geographic Coordinate System - Datum WGS84
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7684744&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7684744&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 European UnionPublisher:kanton-thurgau Το σύνολο δεδομένων περιλαμβάνει την τελική κατανάλωση ενέργειας στον κτιριακό τομέα για τη θερμότητα δωματίου και το ζεστό νερό σύμφωνα με τις πηγές ενέργειας στο καντόνι του Thurgau από το 2015.Η τελική ενέργεια είναι η ενέργεια που φτάνει στον τελικό καταναλωτή. Η τελική κατανάλωση ενέργειας στον κτιριακό τομέα περιλαμβάνει την κατανάλωση κατοικιών και κτιρίων παροχής υπηρεσιών — εξαιρουμένων των βιομηχανικών και γεωργικών κτιρίων — στο έδαφος του καντόνι Thurgau.Πηγή δεδομένων: Γραφείο Ενέργειας Το σύνολο δεδομένων περιλαμβάνει την τελική κατανάλωση ενέργειας στον κτιριακό τομέα για τη θερμότητα δωματίου και το ζεστό νερό σύμφωνα με τις πηγές ενέργειας στο καντόνι του Thurgau από το 2015.Η τελική ενέργεια είναι η ενέργεια που φτάνει στον τελικό καταναλωτή. Η τελική κατανάλωση ενέργειας στον κτιριακό τομέα περιλαμβάνει την κατανάλωση κατοικιών και κτιρίων παροχής υπηρεσιών — εξαιρουμένων των βιομηχανικών και γεωργικών κτιρίων — στο έδαφος του καντόνι Thurgau.Πηγή δεδομένων: Γραφείο Ενέργειας Το σύνολο δεδομένων περιλαμβάνει την τελική κατανάλωση ενέργειας στον κτιριακό τομέα για τη θερμότητα δωματίου και το ζεστό νερό σύμφωνα με τις πηγές ενέργειας στο καντόνι του Thurgau από το 2015.Η τελική ενέργεια είναι η ενέργεια που φτάνει στον τελικό καταναλωτή. Η τελική κατανάλωση ενέργειας στον κτιριακό τομέα περιλαμβάνει την κατανάλωση κατοικιών και κτιρίων παροχής υπηρεσιών — εξαιρουμένων των βιομηχανικών και γεωργικών κτιρίων — στο έδαφος του καντόνι Thurgau.Πηγή δεδομένων: Γραφείο Ενέργειας Το σύνολο δεδομένων περιλαμβάνει την τελική κατανάλωση ενέργειας στον κτιριακό τομέα για τη θερμότητα δωματίου και το ζεστό νερό σύμφωνα με τις πηγές ενέργειας στο καντόνι του Thurgau από το 2015.Η τελική ενέργεια είναι η ενέργεια που φτάνει στον τελικό καταναλωτή. Η τελική κατανάλωση ενέργειας στον κτιριακό τομέα περιλαμβάνει την κατανάλωση κατοικιών και κτιρίων παροχής υπηρεσιών — εξαιρουμένων των βιομηχανικών και γεωργικών κτιρίων — στο έδαφος του καντόνι Thurgau.Πηγή δεδομένων: Γραφείο Ενέργειας Il set di dati include il consumo di energia finale nel settore edilizio per il calore ambiente e l'acqua calda secondo fonti energetiche nel Canton Turgovia dal 2015.L'energia finale è l'energia che raggiunge il consumatore finale. Il consumo di energia finale nel settore edilizio comprende il consumo di edifici residenziali e di servizi — esclusi gli edifici industriali e agricoli — sul territorio del cantone di Thurgau. Ufficio dell'energia Il set di dati include il consumo di energia finale nel settore edilizio per il calore ambiente e l'acqua calda secondo fonti energetiche nel Canton Turgovia dal 2015.L'energia finale è l'energia che raggiunge il consumatore finale. Il consumo di energia finale nel settore edilizio comprende il consumo di edifici residenziali e di servizi — esclusi gli edifici industriali e agricoli — sul territorio del cantone di Thurgau. Ufficio dell'energia Il set di dati include il consumo di energia finale nel settore edilizio per il calore ambiente e l'acqua calda secondo fonti energetiche nel Canton Turgovia dal 2015.L'energia finale è l'energia che raggiunge il consumatore finale. Il consumo di energia finale nel settore edilizio comprende il consumo di edifici residenziali e di servizi — esclusi gli edifici industriali e agricoli — sul territorio del cantone di Thurgau. Ufficio dell'energia Il set di dati include il consumo di energia finale nel settore edilizio per il calore ambiente e l'acqua calda secondo fonti energetiche nel Canton Turgovia dal 2015.L'energia finale è l'energia che raggiunge il consumatore finale. Il consumo di energia finale nel settore edilizio comprende il consumo di edifici residenziali e di servizi — esclusi gli edifici industriali e agricoli — sul territorio del cantone di Thurgau. Ufficio dell'energia Zbiór danych obejmuje końcowe zużycie energii w sektorze budowlanym do ogrzewania pomieszczeń i ciepłej wody zgodnie ze źródłami energii w kantonie Thurgau od 2015 r. Energia końcowa to energia, która dociera do konsumenta końcowego. Końcowe zużycie energii w sektorze budowlanym obejmuje zużycie budynków mieszkalnych i usługowych – z wyłączeniem budynków przemysłowych i rolniczych – na terytorium kantonu Thurgau.Źródło danych: Urząd Energetyki Zbiór danych obejmuje końcowe zużycie energii w sektorze budowlanym do ogrzewania pomieszczeń i ciepłej wody zgodnie ze źródłami energii w kantonie Thurgau od 2015 r. Energia końcowa to energia, która dociera do konsumenta końcowego. Końcowe zużycie energii w sektorze budowlanym obejmuje zużycie budynków mieszkalnych i usługowych – z wyłączeniem budynków przemysłowych i rolniczych – na terytorium kantonu Thurgau.Źródło danych: Urząd Energetyki Zbiór danych obejmuje końcowe zużycie energii w sektorze budowlanym do ogrzewania pomieszczeń i ciepłej wody zgodnie ze źródłami energii w kantonie Thurgau od 2015 r. Energia końcowa to energia, która dociera do konsumenta końcowego. Końcowe zużycie energii w sektorze budowlanym obejmuje zużycie budynków mieszkalnych i usługowych – z wyłączeniem budynków przemysłowych i rolniczych – na terytorium kantonu Thurgau.Źródło danych: Urząd Energetyki Zbiór danych obejmuje końcowe zużycie energii w sektorze budowlanym do ogrzewania pomieszczeń i ciepłej wody zgodnie ze źródłami energii w kantonie Thurgau od 2015 r. Energia końcowa to energia, która dociera do konsumenta końcowego. Końcowe zużycie energii w sektorze budowlanym obejmuje zużycie budynków mieszkalnych i usługowych – z wyłączeniem budynków przemysłowych i rolniczych – na terytorium kantonu Thurgau.Źródło danych: Urząd Energetyki Набір даних включає в себе кінцеве споживання енергії в будівельному секторі для кімнатного тепла і гарячої води відповідно до джерел енергії в кантоні Тургау з 2015 року. Кінцеве споживання енергії в будівельному секторі включає споживання житлових і службових будівель — без урахування промислових і сільськогосподарських будівель — на території кантону Тургау. Офіс енергетики Набір даних включає в себе кінцеве споживання енергії в будівельному секторі для кімнатного тепла і гарячої води відповідно до джерел енергії в кантоні Тургау з 2015 року. Кінцеве споживання енергії в будівельному секторі включає споживання житлових і службових будівель — без урахування промислових і сільськогосподарських будівель — на території кантону Тургау. Офіс енергетики Набір даних включає в себе кінцеве споживання енергії в будівельному секторі для кімнатного тепла і гарячої води відповідно до джерел енергії в кантоні Тургау з 2015 року. Кінцеве споживання енергії в будівельному секторі включає споживання житлових і службових будівель — без урахування промислових і сільськогосподарських будівель — на території кантону Тургау. Офіс енергетики Набір даних включає в себе кінцеве споживання енергії в будівельному секторі для кімнатного тепла і гарячої води відповідно до джерел енергії в кантоні Тургау з 2015 року. Кінцеве споживання енергії в будівельному секторі включає споживання житлових і службових будівель — без урахування промислових і сільськогосподарських будівель — на території кантону Тургау. Офіс енергетики O conjunto de dados inclui o consumo final de energia no setor da construção para calor ambiente e água quente de acordo com as fontes de energia no cantão de Thurgau a partir de 2015. A energia final é a energia que chega ao consumidor final. O consumo final de energia no setor da construção inclui o consumo de edifícios residenciais e de serviços — excluindo edifícios industriais e agrícolas — no território do cantão de Thurgau.Fonte de dados: Escritório de Energia O conjunto de dados inclui o consumo final de energia no setor da construção para calor ambiente e água quente de acordo com as fontes de energia no cantão de Thurgau a partir de 2015. A energia final é a energia que chega ao consumidor final. O consumo final de energia no setor da construção inclui o consumo de edifícios residenciais e de serviços — excluindo edifícios industriais e agrícolas — no território do cantão de Thurgau.Fonte de dados: Escritório de Energia Súbor údajov zahŕňa konečnú spotrebu energie v stavebníctve na vykurovanie miestností a teplú vodu podľa zdrojov energie v kantóne Thurgau od roku 2015. Konečná energia je energia, ktorá sa dostáva ku konečnému spotrebiteľovi. Konečná spotreba energie v stavebníctve zahŕňa spotrebu bytových a servisných budov – okrem priemyselných a poľnohospodárskych budov – na území kantónu Thurgau.Zdroj údajov: Úrad pre energetiku Súbor údajov zahŕňa konečnú spotrebu energie v stavebníctve na vykurovanie miestností a teplú vodu podľa zdrojov energie v kantóne Thurgau od roku 2015. Konečná energia je energia, ktorá sa dostáva ku konečnému spotrebiteľovi. Konečná spotreba energie v stavebníctve zahŕňa spotrebu bytových a servisných budov – okrem priemyselných a poľnohospodárskych budov – na území kantónu Thurgau.Zdroj údajov: Úrad pre energetiku Datasetet omfattar den slutliga energianvändningen inom byggsektorn för rumsvärme och varmvatten enligt energikällor i Thurgaus kanton från 2015. Den slutliga energin är den energi som når slutkonsumenten. Den slutliga energianvändningen inom byggsektorn omfattar förbrukningen av bostads- och servicebyggnader – utom industri- och jordbruksbyggnader – i kantonen Thurgau.Datakälla: Energikontoret Datasetet omfattar den slutliga energianvändningen inom byggsektorn för rumsvärme och varmvatten enligt energikällor i Thurgaus kanton från 2015. Den slutliga energin är den energi som når slutkonsumenten. Den slutliga energianvändningen inom byggsektorn omfattar förbrukningen av bostads- och servicebyggnader – utom industri- och jordbruksbyggnader – i kantonen Thurgau.Datakälla: Energikontoret L’ensemble de données comprend la consommation finale d’énergie dans le secteur des bâtiments pour la chaleur ambiante et l’eau chaude par source d’énergie dans le canton de Thurgovie à partir de 2015.L’énergie finale est l’énergie qui arrive au consommateur final. La consommation finale d’énergie dans le secteur du bâtiment comprend la consommation des bâtiments résidentiels et de services, à l’exclusion des bâtiments industriels et agricoles, sur le territoire du canton de Thurgovie.Source de données: Office de l’énergie El conjunto de datos incluye el consumo final de energía en el sector de la construcción para el calor ambiente y el agua caliente según fuentes de energía en el cantón de Thurgau a partir de 2015.La energía final es la energía que llega al consumidor final. El consumo final de energía en el sector de la construcción incluye el consumo de edificios residenciales y de servicio, excluidos los edificios industriales y agrícolas, en el territorio del cantón de Thurgau.Fuente de datos: Oficina de Energía Áirítear sa tacar sonraí tomhaltas deiridh fuinnimh in earnáil na bhfoirgneamh le haghaidh teas seomra agus uisce te de réir foinsí fuinnimh i gcantún Thurgau ó 2015. Is é an fuinneamh deiridh an fuinneamh a shroicheann an tomhaltóir deiridh. Áirítear leis an tomhaltas deiridh fuinnimh san earnáil tógála tomhaltas foirgneamh cónaithe agus foirgneamh seirbhíse — gan foirgnimh thionsclaíocha agus talmhaíochta a áireamh — ar chríoch chantún Thurgau.Foinse sonraí: Oifig an Fhuinnimh
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::3acc71dfb8a9887f039f8887ca6a6cf8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::3acc71dfb8a9887f039f8887ca6a6cf8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 European UnionPublisher:Environmental Information Data Centre Cet ensemble de données présente un recueil de sources de données sur les vers de terre sur le terrain et de métadonnées associées provenant de l’ensemble du Royaume-Uni et de l’Irlande («source Worm»). Celles-ci ont été compilées jusqu’en 2021 et comprennent 257 sources de données, la plus ancienne datant de 1891. Les métadonnées sources couvrent le type de données quantitatives sur les vers de terre (c.-à-d. l’incidence, l’abondance, la biomasse, les taxons), les détails méthodologiques (par exemple, méthode/s d’échantillonnage, localisation/s, si les parcelles échantillonnées étaient naturelles ou expérimentales, année(s) d’échantillonnage) et des informations environnementales (p. ex. habitat/utilisation des terres, inclusion de données climatiques et propriétés fondamentales du sol). Les sources de données ont été recueillies par le biais de recherches documentaires sur Web of Science et Google Scholar, ainsi que directement auprès d’auteurs/détenteurs de données originaux dans la mesure du possible.Les sources de données ont été compilées dans le but de recueillir des données quantitatives sur les espèces et les populations de vers de terre pour développer l’abondance des vers de terre et des modèles de niche, et vers un cadre de modélisation des impacts des vers de terre sur les processus du sol. Ce travail s’inscrit dans le cadre du projet Soil Organic Carbon Dynamics (SOC-D) financé par le programme NERC UK-SCAPE (Grant référence NE/R016429/1). Vous trouverez tous les détails sur cet ensemble de données à l’adresse suivante: https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Cet ensemble de données présente un recueil de sources de données sur les vers de terre sur le terrain et de métadonnées associées provenant de l’ensemble du Royaume-Uni et de l’Irlande («source Worm»). Celles-ci ont été compilées jusqu’en 2021 et comprennent 257 sources de données, la plus ancienne datant de 1891. Les métadonnées sources couvrent le type de données quantitatives sur les vers de terre (c.-à-d. l’incidence, l’abondance, la biomasse, les taxons), les détails méthodologiques (par exemple, méthode/s d’échantillonnage, localisation/s, si les parcelles échantillonnées étaient naturelles ou expérimentales, année(s) d’échantillonnage) et des informations environnementales (p. ex. habitat/utilisation des terres, inclusion de données climatiques et propriétés fondamentales du sol). Les sources de données ont été recueillies par le biais de recherches documentaires sur Web of Science et Google Scholar, ainsi que directement auprès d’auteurs/détenteurs de données originaux dans la mesure du possible. Les sources de données ont été compilées dans le but de recueillir des données quantitatives sur les espèces et les populations de vers de terre pour développer l’abondance des vers de terre et des modèles de niche, et vers un cadre de modélisation des impacts des vers de terre sur les processus du sol. Ce travail s’inscrit dans le cadre du projet Soil Organic Carbon Dynamics (SOC-D) financé par le programme NERC UK-SCAPE (Grant référence NE/R016429/1). Vous trouverez tous les détails sur cet ensemble de données à l’adresse suivante: https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Is éard atá sa tacar sonraí seo coimre d’fhoinsí sonraí péisteanna talún allamuigh agus de mheiteashonraí gaolmhara ar fud na Ríochta Aontaithe agus na hÉireann (‘foinse Worm’). Tiomsaíodh iad sin go dtí 2021 lena n-áirítear 257 foinse sonraí, an ceann is luaithe ó 1891. Cumhdaítear le meiteashonraí foinseacha na cineálacha sonraí cainníochtúla péisteanna (i.e. minicíocht, flúirse, bithmhais, tacsóin), sonraí modheolaíochta (e.g. modh/modhanna samplála, suíomh/suíomhanna, cibé an raibh na ceapacha sampláilte nádúrtha nó turgnamhach, bliain/bhlianta samplála), agus faisnéis faoin gcomhshaol (e.g. gnáthóg/úsáid talún, sonraí aeráide agus airíonna bunúsacha ithreach a chur san áireamh). Bailíodh foinsí sonraí trí chuardaigh litríochta ar Web of Science agus Google Scoláire, chomh maith le go díreach ó bhunúdair/sealbhóirí sonraí nuair ab fhéidir.Tiomsaíodh na foinsí sonraí d’fhonn sonraí cainníochtúla a bhailiú ar speicis agus ar dhaonraí péisteanna talún chun raidhse péisteanna talún agus samhlacha nideoige a fhorbairt, agus i dtreo creata samhaltaithe do thionchair péisteanna talún ar phróisis ithreach. Tá an obair seo mar chuid den tionscadal Dynamics Carbóin Orgánach Ithreach (SOC-D) atá á mhaoiniú ag clár NERC UK-SCAPE (Tagairt deontais NE/R016429/1). Tá sonraí iomlána faoin tacar sonraí seo ar fáil ag https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Is éard atá sa tacar sonraí seo coimre d’fhoinsí sonraí péisteanna talún allamuigh agus de mheiteashonraí gaolmhara ar fud na Ríochta Aontaithe agus na hÉireann (‘foinse Worm’). Tiomsaíodh iad sin go dtí 2021 lena n-áirítear 257 foinse sonraí, an ceann is luaithe ó 1891. Cumhdaítear le meiteashonraí foinseacha na cineálacha sonraí cainníochtúla péisteanna (i.e. minicíocht, flúirse, bithmhais, tacsóin), sonraí modheolaíochta (e.g. modh/modhanna samplála, suíomh/suíomhanna, cibé an raibh na ceapacha sampláilte nádúrtha nó turgnamhach, bliain/bhlianta samplála), agus faisnéis faoin gcomhshaol (e.g. gnáthóg/úsáid talún, sonraí aeráide agus airíonna bunúsacha ithreach a chur san áireamh). Bailíodh foinsí sonraí trí chuardaigh litríochta ar Web of Science agus Google Scoláire, chomh maith le go díreach ó bhunúdair/sealbhóirí sonraí nuair ab fhéidir. Tiomsaíodh na foinsí sonraí d’fhonn sonraí cainníochtúla a bhailiú ar speicis agus ar dhaonraí péisteanna talún chun raidhse péisteanna talún agus samhlacha nideoige a fhorbairt, agus i dtreo creata samhaltaithe do thionchair péisteanna talún ar phróisis ithreach. Tá an obair seo mar chuid den tionscadal Dynamics Carbóin Orgánach Ithreach (SOC-D) atá á mhaoiniú ag clár NERC UK-SCAPE (Tagairt deontais NE/R016429/1). Tá sonraí iomlána faoin tacar sonraí seo ar fáil ag https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Ovaj skup podataka predstavlja zbirku izvora podataka o gujavicama na terenu i povezanih metapodataka iz cijele Ujedinjene Kraljevine i Irske („izvor crva”). Oni su sastavljeni do 2021. godine i uključuju 257 izvora podataka, najranije 1891. godine. Metapodaci o izvorima obuhvaćaju vrstu kvantitativnih podataka o gujavicama (tj. učestalost, brojnost, biomasa, taksona), metodološke pojedinosti (npr. metode uzorkovanja, lokacije/lokacije, jesu li uzorkovane plohe bile prirodne ili eksperimentalne, godina uzorkovanja) i informacije o okolišu (npr. stanište/korištenje zemljišta, uključivanje klimatskih podataka i osnovnih svojstava tla). Izvori podataka prikupljeni su pretraživanjem literature na Web of Science i Google Scholar, kao i izravno od izvornih autora/nositelja podataka gdje je to moguće.Izvori podataka prikupljeni su s ciljem prikupljanja kvantitativnih podataka o vrstama i populacijama gujavica radi razvoja brojnosti gujavica i modela niša, te prema modeliranju okvira za modeliranje utjecaja gujavica na procese u tlu. Ovaj rad je dio projekta Soil Organic Carbon Dynamics (SOC-D) financiranog iz NERC UK-SCAPE programa (Grant reference NE/R016429/1). Sve pojedinosti o ovom skupu podataka možete pronaći na https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Ovaj skup podataka predstavlja zbirku izvora podataka o gujavicama na terenu i povezanih metapodataka iz cijele Ujedinjene Kraljevine i Irske („izvor crva”). Oni su sastavljeni do 2021. godine i uključuju 257 izvora podataka, najranije 1891. godine. Metapodaci o izvorima obuhvaćaju vrstu kvantitativnih podataka o gujavicama (tj. učestalost, brojnost, biomasa, taksona), metodološke pojedinosti (npr. metode uzorkovanja, lokacije/lokacije, jesu li uzorkovane plohe bile prirodne ili eksperimentalne, godina uzorkovanja) i informacije o okolišu (npr. stanište/korištenje zemljišta, uključivanje klimatskih podataka i osnovnih svojstava tla). Izvori podataka prikupljeni su pretraživanjem literature na Web of Science i Google Scholar, kao i izravno od izvornih autora/nositelja podataka gdje je to moguće. Izvori podataka prikupljeni su s ciljem prikupljanja kvantitativnih podataka o vrstama i populacijama gujavica radi razvoja brojnosti gujavica i modela niša, te prema modeliranju okvira za modeliranje utjecaja gujavica na procese u tlu. Ovaj rad je dio projekta Soil Organic Carbon Dynamics (SOC-D) financiranog iz NERC UK-SCAPE programa (Grant reference NE/R016429/1). Sve pojedinosti o ovom skupu podataka možete pronaći na https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Šajā datu kopā ir apkopoti lauka slieku datu avoti un saistītie metadati no visas Apvienotās Karalistes un Īrijas (“Worm avots”). Tie tika apkopoti līdz 2021. gadam un ietver 257 datu avotus, kas agrāk bija 1891. gadā. Avota metadati ietver kvantitatīvos datus par sliekām (t. i., sastopamību, sastopamību, biomasu, taksonus), metodoloģiskos datus (piemēram, paraugu ņemšanas metodi(-es), atrašanās vietu(-as), to, vai parauglaukumi ir dabiski vai eksperimentāli, paraugu ņemšanas gads(-i)) un vides informāciju (piemēram, dzīvotne/zemes izmantošana, klimata datu un augsnes pamatīpašību iekļaušana). Datu avoti tika vākti, meklējot literatūru Web of Science un Google Scholar, kā arī, ja iespējams, tieši no autoriem/datu turētājiem.Datu avoti tika apkopoti ar mērķi apkopot kvantitatīvus datus par slieku sugām un populācijām, lai izstrādātu slieku daudzuma un nišas modeļus, un lai izstrādātu modelēšanas sistēmu slieku ietekmei uz augsnes procesiem. Šis darbs ir daļa no augsnes organiskā oglekļa dinamikas (SOC-D) projekta, ko finansē no NERC UK-SCAPE programmas (dotācijas atsauce NE/R016429/1). Pilnu informāciju par šo datu kopu var atrast https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Šajā datu kopā ir apkopoti lauka slieku datu avoti un saistītie metadati no visas Apvienotās Karalistes un Īrijas (“Worm avots”). Tie tika apkopoti līdz 2021. gadam un ietver 257 datu avotus, kas agrāk bija 1891. gadā. Avota metadati ietver kvantitatīvos datus par sliekām (t. i., sastopamību, sastopamību, biomasu, taksonus), metodoloģiskos datus (piemēram, paraugu ņemšanas metodi(-es), atrašanās vietu(-as), to, vai parauglaukumi ir dabiski vai eksperimentāli, paraugu ņemšanas gads(-i)) un vides informāciju (piemēram, dzīvotne/zemes izmantošana, klimata datu un augsnes pamatīpašību iekļaušana). Datu avoti tika vākti, meklējot literatūru Web of Science un Google Scholar, kā arī, ja iespējams, tieši no autoriem/datu turētājiem. Datu avoti tika apkopoti ar mērķi apkopot kvantitatīvus datus par slieku sugām un populācijām, lai izstrādātu slieku daudzuma un nišas modeļus, un lai izstrādātu modelēšanas sistēmu slieku ietekmei uz augsnes procesiem. Šis darbs ir daļa no augsnes organiskā oglekļa dinamikas (SOC-D) projekta, ko finansē no NERC UK-SCAPE programmas (dotācijas atsauce NE/R016429/1). Pilnu informāciju par šo datu kopu var atrast https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Αυτό το σύνολο δεδομένων παρουσιάζει μια σύνοψη των πηγών δεδομένων για τους γαιοσκώληκες που βασίζονται σε αγρούς και των συναφών μεταδεδομένων από ολόκληρο το Ηνωμένο Βασίλειο και την Ιρλανδία («πηγή Worm»). Αυτά καταρτίστηκαν μέχρι το 2021 και περιλαμβάνουν 257 πηγές δεδομένων, οι πρώτες που χρονολογούνται από το 1891.Τα μεταδεδομένα πηγής καλύπτουν το είδος των ποσοτικών δεδομένων για τους γαιοσκώληκες (π.χ. επίπτωση, αφθονία, βιομάζα, ταξινομικές κατηγορίες), μεθοδολογικές λεπτομέρειες (π.χ. μέθοδος/-ες δειγματοληψίας, θέση/-εις, εάν τα δειγματοληπτικά αγροτεμάχια ήταν φυσικά ή πειραματικά, έτος/-α δειγματοληψίας) και περιβαλλοντικές πληροφορίες (π.χ. ενδιαιτήματα/χρήση γης, συμπερίληψη κλιματικών δεδομένων και βασικών ιδιοτήτων του εδάφους). Οι πηγές δεδομένων συλλέχθηκαν μέσω αναζητήσεων βιβλιογραφίας στο Web of Science και στο Google Scholar, καθώς και απευθείας από τους αρχικούς συγγραφείς/κάτοχους δεδομένων, όπου ήταν δυνατόν. Οι πηγές δεδομένων συγκεντρώθηκαν με στόχο τη συλλογή ποσοτικών δεδομένων σχετικά με τα είδη και τους πληθυσμούς των γαιοσκωλήκων για την ανάπτυξη της αφθονίας των γαιοσκωλήκων και των εξειδικευμένων μοντέλων, καθώς και για ένα πλαίσιο μοντελοποίησης για τις επιπτώσεις των γαιοσκωλήκων στις διεργασίες του εδάφους. Το έργο αυτό αποτελεί μέρος του έργου Soil Organic Carbon Dynamics (SOC-D) που χρηματοδοτείται από το πρόγραμμα NERC UK-SCAPE (αναφορά επιχορήγησης NE/R016429/1). Πλήρεις λεπτομέρειες σχετικά με αυτό το σύνολο δεδομένων μπορείτε να βρείτε στη διεύθυνση https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Dan is-sett ta’ data jippreżenta kompendju ta’ sorsi ta’ data dwar il-ħniex ibbażati fuq il-post u metadata assoċjata minn madwar ir-Renju Unit u l-Irlanda (“sors Worm”). Dawn ġew ikkumpilati sal-2021 u jinkludu 257 sors ta’ data, bl-aktar data bikrija tmur lura għall-1891.Il-metadata tas-sors tkopri t-tip ta’ data kwantitattiva dwar il-ħniex (jiġifieri l-inċidenza, l-abbundanza, il-bijomassa, il-gruppi tassonomiċi), id-dettalji metodoloġiċi (eż. il-metodu/i tat-teħid tal-kampjuni, il-post/ijiet, jekk l-irqajja’ tal-art kinux naturali jew sperimentali, is-sena/snin tat-teħid tal-kampjuni), u l-informazzjoni ambjentali (eż. il-ħabitat/l-użu tal-art, l-inklużjoni tad-data dwar il-klima u l-proprjetajiet bażiċi tal-ħamrija). Is-sorsi tad-data nġabru permezz ta’ tfittxijiet fil-letteratura fuq il-Web of Science u Google Scholar, kif ukoll direttament mill-awturi oriġinali/id-detenturi tad-data fejn possibbli. Is-sorsi tad-data ġew ikkumpilati bil-għan li tinġabar data kwantitattiva dwar l-ispeċijiet u l-popolazzjonijiet tal-ħniex biex jiġu żviluppati abbundanza ta’ ħniex u mudelli speċjalizzati, u lejn qafas ta’ mmudellar għall-impatti tal-ħniex fuq il-proċessi tal-ħamrija. Din il-ħidma hija parti mill-proġett Dynamics Organic Carbon Dynamics tal-Ħamrija (SOC-D) iffinanzjat mill-programm NERC UK-SCAPE (Referenza tal-għotja NE/R016429/1). Id-dettalji kollha dwar dan is-sett ta’ data jinsabu fuq https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Este conjunto de datos presenta un compendio de fuentes de datos de lombrices de tierra y metadatos asociados de todo el Reino Unido e Irlanda («fuente de Worm»). Estos se compilaron hasta 2021 e incluyen 257 fuentes de datos, las primeras que datan de 1891.Los metadatos fuente abarcan el tipo de datos cuantitativos de lombrices de tierra (es decir, incidencia, abundancia, biomasa, taxones), detalles metodológicos (por ejemplo, métodos de muestreo, ubicación/s, si las parcelas muestreadas eran naturales o experimentales, año/s de muestreo) e información ambiental (por ejemplo, hábitat/uso de la tierra, inclusión de datos climáticos y propiedades básicas del suelo). Las fuentes de datos se recopilaron a través de búsquedas bibliográficas en Web of Science y Google Scholar, así como directamente de autores/poseedores de datos originales siempre que sea posible. Las fuentes de datos se compilaron con el objetivo de recopilar datos cuantitativos sobre especies y poblaciones de lombrices de tierra para desarrollar modelos de abundancia y nicho de lombrices de tierra, y hacia un marco de modelado para los impactos de lombrices de tierra en los procesos del suelo. Este trabajo forma parte del proyecto Soil Organic Carbon Dynamics (SOC-D) financiado por el programa NERC UK-SCAPE (referencia de la subvención NE/R016429/1). Los detalles completos sobre este conjunto de datos se pueden encontrar en https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Acest set de date prezintă un compendiu de surse de date privind râmele bazate pe câmpuri și metadate asociate din Regatul Unit și Irlanda („sursa viermilor”). Acestea au fost compilate până în 2021 și includ 257 de surse de date, cele mai vechi date datând din 1891. Metadatele sursă acoperă tipul de date cantitative privind râmele (de exemplu, incidența, abundența, biomasa, taxonii), detaliile metodologice (de exemplu, metoda/metodele de eșantionare, localizarea/locurile, dacă parcelele eșantionate au fost naturale sau experimentale, anul/anii de eșantionare) și informațiile despre mediu (de exemplu, utilizarea habitatului/terenurilor, includerea datelor climatice și a proprietăților de bază ale solului). Sursele de date au fost colectate prin căutări în literatura de specialitate pe Web of Science și Google Scholar, precum și direct de la autorii originali/deținătorii de date, acolo unde a fost posibil. Sursele de date au fost compilate cu scopul de a colecta date cantitative privind speciile de râme și populațiile de râme pentru a dezvolta abundența râmelor și modele de nișă, precum și spre un cadru de modelare pentru impactul râmelor asupra proceselor solului. Această activitate face parte din proiectul Soil Organic Carbon Dynamics (SOC-D) finanțat prin programul NERC UK-SCAPE (referința grant NE/R016429/1). Detalii complete despre acest set de date pot fi găsite la adresa https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Questo insieme di dati presenta un compendio di fonti di dati sui lombrichi basati sul campo e di metadati associati provenienti da tutto il Regno Unito e dall'Irlanda ("fonte delle parole"). Questi sono stati compilati fino al 2021 e comprendono 257 fonti di dati, le prime risalenti al 1891.I metadati della fonte riguardano il tipo di dati quantitativi di lombrichi (incidenza, abbondanza, biomassa, taxa), i dettagli metodologici (ad esempio il metodo/i di campionamento, l'ubicazione/i, se le parcelle campionate erano naturali o sperimentali, gli anni/i di campionamento) e le informazioni ambientali (ad esempio habitat/uso del suolo, inclusione dei dati climatici e proprietà del suolo di base). Le fonti di dati sono state raccolte attraverso ricerche di letteratura su Web of Science e Google Scholar, nonché direttamente da autori/detentori di dati originali, ove possibile. Le fonti di dati sono state compilate con l'obiettivo di raccogliere dati quantitativi sulle specie e sulle popolazioni di lombrichi per sviluppare l'abbondanza di lombrichi e modelli di nicchia e verso un quadro di modellazione per gli impatti dei lombrichi sui processi del suolo. Questo lavoro fa parte del progetto Soil Organic Carbon Dynamics (SOC-D) finanziato dal programma NERC UK-SCAPE (Grant reference NE/R016429/1). Tutti i dettagli su questo set di dati possono essere trovati all'indirizzo https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f Този набор от данни представя сборник от полеви източници на данни за земни червеи и свързани метаданни от Обединеното кралство и Ирландия („източник на червеи“). Те са събрани до 2021 г. и включват 257 източника на данни, най-ранните датиращи от 1891 г. Метаданните от източника обхващат вида на количествените данни за земни червеи (т.е. заболеваемост, изобилие, биомаса, таксони), методологични подробности (напр. метод/и за вземане на проби, местоположение/места, дали от които са взети проби парцелите са естествени или експериментални, година/и на вземане на проби) и информация за околната среда (напр. местообитание/употреба на земята, включване на данни за климата и основни почвени свойства). Източниците на данни са събрани чрез търсене на литература в Web of Science и Google Scholar, както и директно от оригинални автори/притежатели на данни, когато е възможно. Източниците на данни са събрани с цел събиране на количествени данни за видовете и популациите на земни червеи, за да се развият изобилието на земни червеи и нишовите модели, както и да се постигне рамка за моделиране на въздействието на земните червеи върху почвените процеси. Тази работа е част от проекта Soil Organic Carbon Dynamics (SOC-D), финансиран от програмата NERC UK-SCAPE (Grant reference NE/R016429/1). Пълни подробности за този набор от данни можете да намерите на https://doi.org/10.5285/1a1000a8-4e7e-4851-8784-94c7ba3e164f
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::91844a97989c63be945aa653eb82fa6d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::91844a97989c63be945aa653eb82fa6d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | REINFORCEEC| REINFORCEAuthors: Mina, Marco;Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu