- home
- Advanced Search
- Energy Research
- other engineering and technologies
- EU
- Energies
- Energy Research
- other engineering and technologies
- EU
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:MDPI AG Funded by:EC | HeLLo, EC | 20-20 3D MEDIAEC| HeLLo ,EC| 20-20 3D MEDIAAuthors: Mirco Andreotti;Dario Bottino-Leone;
Dario Bottino-Leone
Dario Bottino-Leone in OpenAIREMarta Calzolari;
Marta Calzolari
Marta Calzolari in OpenAIREPietromaria Davoli;
+3 AuthorsPietromaria Davoli
Pietromaria Davoli in OpenAIREMirco Andreotti;Dario Bottino-Leone;
Dario Bottino-Leone
Dario Bottino-Leone in OpenAIREMarta Calzolari;
Marta Calzolari
Marta Calzolari in OpenAIREPietromaria Davoli;
Pietromaria Davoli
Pietromaria Davoli in OpenAIRELuisa Dias Pereira;
Luisa Dias Pereira
Luisa Dias Pereira in OpenAIREElena Lucchi;
Elena Lucchi
Elena Lucchi in OpenAIREAlexandra Troi;
Alexandra Troi
Alexandra Troi in OpenAIREdoi: 10.3390/en13133362
handle: 11381/2883000
The hygrothermal behaviour of an internally insulated historic wall is still hard to predict, mainly because the physical characteristics of the materials composing the historic wall are unknown. In this study, the hygrothermal assessment of an internally thermal insulated masonry wall of an historic palace located in Ferrara, in Italy, is shown. In situ non-destructive monitoring method is combined with a hygrothermal simulation tool, aiming to better analyse and discuss future refurbishment scenarios. In this context, the original U-value of the wall (not refurbished) is decreased from 1.44 W/m2K to 0.26 W/m2K (10 cm stone wool). Under the site specific conditions of this wall, not reached by the sun or rain, it was verified that even in the absence of vapour barrier, no frost damage is likely to occur and the condensation risk is very limited. Authors proposed further discussion based on simulation. The results showed that the introduction of a second gypsum board to the studied technology compensated such absence, while the reduction of the insulation material thickness provides a reduction of RH peaks in the interstitial area by 1%; this second solution proved to be more efficient, providing a 3% RH reduction and the avoidance of further thermal losses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | TRANSIT, EC | PROMISE, EC | JUMP2ExcelEC| TRANSIT ,EC| PROMISE ,EC| JUMP2ExcelAuthors: Sakshi Sharma;Vibhu Jately;
Vibhu Jately
Vibhu Jately in OpenAIREPiyush Kuchhal;
Peeyush Kala; +1 AuthorsPiyush Kuchhal
Piyush Kuchhal in OpenAIRESakshi Sharma;Vibhu Jately;
Vibhu Jately
Vibhu Jately in OpenAIREPiyush Kuchhal;
Peeyush Kala; Brian Azzopardi;Piyush Kuchhal
Piyush Kuchhal in OpenAIREdoi: 10.3390/en16155679
The rapid increase in the penetration of photovoltaic (PV) power plants results in an increased risk of grid failure, primarily due to the intermittent nature of the plant. To overcome this problem, the flexible power point tracking (FPPT) algorithm has been proposed in the literature over the maximum power point tracking (MPPT) algorithm. These algorithms regulate the PV power to a certain value instead of continuously monitoring the maximum power point (MPP). The proposed work carries out a detailed comparative study of various constant power generation (CPG) control strategies. The control strategies are categorized in terms of current-, voltage-, and power-based tracking capabilities. The comparative analysis of various reported CPG/FPPT techniques was carried out. This analysis was based on some key performance indices, such as the type of control strategy, irradiance pattern, variation in G, region of operation, speed of tracking, steady-state power oscillations, drift severity scenario, partial shading scenario, implementation complexity, stability, fast dynamic response, robustness, reactive power, cost, and tracking efficiency. Among existing FPPT algorithms, model-based control has a superior performance in terms of tracking speed and low steady-state power oscillations, with a maximum tracking efficiency of 98.57%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:MDPI AG Funded by:EC | FEEdBACkEC| FEEdBACkAuthors:Fernando Cassola;
Fernando Cassola
Fernando Cassola in OpenAIRELeonel Morgado;
Leonel Morgado
Leonel Morgado in OpenAIREAntónio Coelho;
António Coelho
António Coelho in OpenAIREHugo Paredes;
+3 AuthorsHugo Paredes
Hugo Paredes in OpenAIREFernando Cassola;
Fernando Cassola
Fernando Cassola in OpenAIRELeonel Morgado;
Leonel Morgado
Leonel Morgado in OpenAIREAntónio Coelho;
António Coelho
António Coelho in OpenAIREHugo Paredes;
Hugo Paredes
Hugo Paredes in OpenAIREAntónio Barbosa;
Helga Tavares;António Barbosa
António Barbosa in OpenAIREFilipe Soares;
Filipe Soares
Filipe Soares in OpenAIREdoi: 10.3390/en15124354
Reducing office buildings’ energy consumption can contribute significantly towards carbon reduction commitments since it represents ∼40% of total energy consumption. Major components of this are lighting, electrical equipment, heating, and central cooling systems. Solid evidence demonstrates that individual occupants’ behaviors impact these energy consumption components. In this work, we propose the methodology of using virtual choreographies to identify and prioritize behavior-change interventions for office users based on the potential impact of specific behaviors on energy consumption. We studied the energy-related office behaviors of individuals by combining three sources of data: direct observations, electricity meters, and computer logs. Data show that there are behaviors with significant consumption impact but with little potential for behavioral change, while other behaviors have substantial potential for lowering energy consumption via behavioral change.
Energies arrow_drop_down Repositório Aberto da Universidade AbertaArticle . 2022Data sources: Repositório Aberto da Universidade Abertaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 70visibility views 70 download downloads 48 Powered bymore_vert Energies arrow_drop_down Repositório Aberto da Universidade AbertaArticle . 2022Data sources: Repositório Aberto da Universidade Abertaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:EC | DIAPREPPEC| DIAPREPPAuthors: Stergios Statharas;Pantelis Capros;
Yannis Moysoglou; Georgios Zazias; +1 AuthorsPantelis Capros
Pantelis Capros in OpenAIREStergios Statharas;Pantelis Capros;
Yannis Moysoglou; Georgios Zazias; Pelopidas Siskos;Pantelis Capros
Pantelis Capros in OpenAIREdoi: 10.3390/en12142739
The European Commission (EC) has set ambitious CO2 emission reduction objectives for the transport sector by 2050. In this context, most decarbonisation scenarios for transport foresee large market penetration of electric vehicles in 2030 and 2050. The emergence of electrified car mobility is, however, uncertain due to various barriers such as battery costs, range anxiety and dependence on battery recharging networks. Those barriers need to be addressed in the 2020–2030 decade, as this is key to achieving electrification at a large scale in the longer term. The paper explores the uncertainties prevailing in the first decade and the mix of policies to overcome the barriers by quantifying a series of sensitivity analysis scenarios of the evolution of the car markets in the EU Member States and the impacts of each barrier individually. The model used is PRIMES-TREMOVE, which has been developed by E3MLab and constitutes a detailed energy-economic model for the transport sector. Based on model results, the paper assesses the market, energy, emission and cost impacts of various CO2 car standards, infrastructure development plans with different geographic coverage and a range of battery cost reductions driven by learning and mass industrial production. The assessment draws on the comparison of 29 sensitivity scenarios for the EU, which show that removing the barriers in the decade 2020–2030 is important for electrification emergence. The results show that difficult policy dilemmas exist between adopting stringent standards and infrastructure of wide coverage to push technology and market development and adverse effects on costs, in case the high cost of batteries persists. However, if the pace of battery cost reductions is fast, a weak policy for standards and infrastructure is not cost-effective and sub-optimal. These policies are shown to have impacts on the competition between pure electric and plug-in hybrid vehicles. Drivers that facilitate electrification also favour the uptake of the former technology, the latter being a reasonable choice only in case the barriers persist and obstruct electrification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2019Publisher:MDPI AG Funded by:EC | CONNECTEC| CONNECTAluisio, Benedetto; Dicorato, Maria; Ferrini, Imma; Forte, Giuseppe; Sbrizzai, Roberto; Trovato, Michele;doi: 10.3390/en12101901
The diffusion of electric vehicles (EVs) can be sustained by the presence of integrated solutions offering parking and clean power supply. The recourse to DC systems allows better integration of EV bidirectional energy exchange, photovoltaic panels, and energy storage. In this paper, a methodology for optimal techno-economic sizing of a DC-microgrid for covering EV mobility needs is carried out. It is based on the definition of different scenarios of operation, according to typical EV usage outlooks and environmental conditions. In each scenario, optimal operation is carried out by means of a specific approach for EV commitment on different stations. The sizing procedure is able to handle the modular structure of microgrid devices. The proposed approach is applied to a case study of an envisaged EV service fleet for the Bari port authority.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 China (People's Republic of), United Kingdom, China (People's Republic of), China (People's Republic of)Publisher:MDPI AG Funded by:EC | DATASOUNDEC| DATASOUNDAuthors:R. Rueda;
R. Rueda
R. Rueda in OpenAIREM. P. Cuéllar;
M. P. Cuéllar
M. P. Cuéllar in OpenAIREM. Molina-Solana;
Y. Guo; +1 AuthorsM. Molina-Solana
M. Molina-Solana in OpenAIRER. Rueda;
R. Rueda
R. Rueda in OpenAIREM. P. Cuéllar;
M. P. Cuéllar
M. P. Cuéllar in OpenAIREM. Molina-Solana;
Y. Guo;M. Molina-Solana
M. Molina-Solana in OpenAIREM. C. Pegalajar;
M. C. Pegalajar
M. C. Pegalajar in OpenAIREdoi: 10.3390/en12061069
handle: 10044/1/67867
This work addresses the problem of energy consumption time series forecasting. In our approach, a set of time series containing energy consumption data is used to train a single, parameterised prediction model that can be used to predict future values for all the input time series. As a result, the proposed method is able to learn the common behaviour of all time series in the set (i.e., a fingerprint) and use this knowledge to perform the prediction task, and to explain this common behaviour as an algebraic formula. To that end, we use symbolic regression methods trained with both single- and multi-objective algorithms. Experimental results validate this approach to learn and model shared properties of different time series, which can then be used to obtain a generalised regression model encapsulating the global behaviour of different energy consumption time series.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/67867Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 download downloads 35 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/67867Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | FEVEREC| FEVERAuthors:Aikaterini Forouli;
Aikaterini Forouli
Aikaterini Forouli in OpenAIREEmmanouil A. Bakirtzis;
Emmanouil A. Bakirtzis
Emmanouil A. Bakirtzis in OpenAIREGeorgios Papazoglou;
Konstantinos Oureilidis; +4 AuthorsGeorgios Papazoglou
Georgios Papazoglou in OpenAIREAikaterini Forouli;
Aikaterini Forouli
Aikaterini Forouli in OpenAIREEmmanouil A. Bakirtzis;
Emmanouil A. Bakirtzis
Emmanouil A. Bakirtzis in OpenAIREGeorgios Papazoglou;
Konstantinos Oureilidis; Vasileios Gkountis; Luisa Candido; Eloi Delgado Ferrer;Georgios Papazoglou
Georgios Papazoglou in OpenAIREPandelis Biskas;
Pandelis Biskas
Pandelis Biskas in OpenAIREdoi: 10.3390/en14082324
Power systems in many countries have recently undergone a significant transition towards renewable and carbon-free generation sources. Those sources pose new challenges to the grid operation due to their intermittency and uncertainty. Consequently, advanced policy strategies and technologies offering new flexibility solutions on the inelastic demand side are required to maintain the reliability of power systems. Given the diversity of situations, legislation and needs across European countries and the varying nature of distribution system operators, this article reviews the deployment of demand side flexibility at national level to identify best practices and main barriers. The analysis concerns European countries of different progress in solutions that leverage flexibility towards offering electricity grid services. The scope is to explore the operation principles of European electricity markets, to assess the participation of emerging flexible resources, and to propose new approaches that facilitate the integration of flexible assets in the distribution grid. The countries reviewed are the United Kingdom, Belgium, Italy and Greece. These countries were selected owing to their diversity in terms of generation mix and market design. Barriers for market access of flexibility resources are also identified in order to form relevant country-specific recommendations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 40 citations 40 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 19 Jan 2023 GermanyPublisher:MDPI AG Funded by:EC | FLEDGEDEC| FLEDGEDAuthors:Selina Hafner;
Max Schmid;Selina Hafner
Selina Hafner in OpenAIREGünter Scheffknecht;
Günter Scheffknecht
Günter Scheffknecht in OpenAIREFinding a way for mitigating climate change is one of the main challenges of our generation. Sorption-enhanced gasification (SEG) is a process by which syngas as an important intermediate for the synthesis of e.g., dimethyl ether (DME), bio-synthetic natural gas (SNG) and Fischer–Tropsch (FT) products or hydrogen can be produced by using biomass as feedstock. It can, therefore, contribute to a replacement for fossil fuels to reduce greenhouse gas (GHG) emissions. SEG is an indirect gasification process that is operated in a dual-fluidized bed (DFB) reactor. By the use of a CO2-active sorbent as bed material, CO2 that is produced during gasification is directly captured. The resulting enhancement of the water–gas shift reaction enables the production of a syngas with high hydrogen content and adjustable H2/CO/CO2-ratio. Tests were conducted in a 200 kW DFB pilot-scale facility under industrially relevant conditions to analyze the influence of gasification temperature, steam to carbon (S/C) ratio and weight hourly space velocity (WHSV) on the syngas production, using wood pellets as feedstock and limestone as bed material. Results revealed a strong dependency of the syngas composition on the gasification temperature in terms of permanent gases, light hydrocarbons and tars. Also, S/C ratio and WHSV are parameters that can contribute to adjusting the syngas properties in such a way that it is optimized for a specific downstream synthesis process.
OPUS - Publication ... arrow_drop_down OPUS - Publication Server of the University of StuttgartArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OPUS - Publication ... arrow_drop_down OPUS - Publication Server of the University of StuttgartArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:EC | ECO-QubeEC| ECO-QubeAuthors: Aras Dogan;Sibel Yilmaz;
Sibel Yilmaz
Sibel Yilmaz in OpenAIREMustafa Kuzay;
Mustafa Kuzay
Mustafa Kuzay in OpenAIRECagatay Yilmaz;
+1 AuthorsCagatay Yilmaz
Cagatay Yilmaz in OpenAIREAras Dogan;Sibel Yilmaz;
Sibel Yilmaz
Sibel Yilmaz in OpenAIREMustafa Kuzay;
Mustafa Kuzay
Mustafa Kuzay in OpenAIRECagatay Yilmaz;
Cagatay Yilmaz
Cagatay Yilmaz in OpenAIREEnder Demirel;
Ender Demirel
Ender Demirel in OpenAIREdoi: 10.3390/en15176438
Modeling IT equipment is of critical importance for the simulations of flow and thermal structures in air cooled data centers. Turbulent flow undergoes a significant pressure drop through the server due to the energy losses originating from the internal components. Therefore, there is an urgent need to develop a fast and an accurate method for the calculation of pressure losses inside server components for data center applications. In this study, high resolution numerical simulations were performed on an OCP (Open Compute Project) server under various inlet flow rates for inactive and active conditions. Meanwhile, one key challenge of modeling complete geometry of the server results from using an intense mesh even for a single server. To address this challenge, the server was modeled as a porous zone to mimic inertia and viscous resistance in a realistic way. Comparison of the results of porous and complete models showed that the proposed model could calculate pressure drop accurately even when the number of cells in the server was reduced to 0.3% of the complete model. Porosity coefficients were determined from the numerical simulations conducted in a broad range of air discharge for both active and inactive conditions. Errors in the calculation of pressure drop may result in a significant deviation in the prediction of the temperature rise over the server. Thus, the present model can effectively be used for the fast and accurate prediction of pressure drop inside a server component rather than solving internal flow on an intense mesh, while simulating airflow inside an air-cooled data center, which is crucial for the design safety of data centers. Finally, calculated porosity coefficients can be used for the prediction of the pressure drop in a server, while designing data centers based on numerical simulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 18 May 2020Publisher:MDPI AG Funded by:EC | COTOFLEXIEC| COTOFLEXIAuthors: Bo He;Brahmanandam Javvaji;
Brahmanandam Javvaji
Brahmanandam Javvaji in OpenAIREXiaoying Zhuang;
Xiaoying Zhuang
Xiaoying Zhuang in OpenAIREdoi: 10.3390/en12020271 , 10.15488/9821
This study employs the Element-Free Galerkin method (EFG) to characterize flexoelectricity in a composite material. The presence of the strain gradient term in the Partial Differential Equations (PDEs) requires C 1 continuity to describe the electromechanical coupling. The use of quartic weight functions in the developed model fulfills this prerequisite. We report the generation of electric polarization in a non-piezoelectric composite material through the inclusion-induced strain gradient field. The level set technique associated with the model supervises the weak discontinuity between the inclusion and matrix. The increased area ratio between the inclusion and matrix is found to improve the conversion of mechanical energy to electrical energy. The electromechanical coupling is enhanced when using softer materials for the embedding inclusions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12020271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12020271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu