- home
- Advanced Search
- Energy Research
- Restricted
- Embargo
- 7. Clean energy
- EU
- Energy Research
- Restricted
- Embargo
- 7. Clean energy
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:EC | DiePeREC| DiePeRBarbara Apicella; Carmela Russo; A. Tregrossi; Maria Maddalena Oliano; Ezio Mancaruso; Anna Ciajolo; Bianca Maria Vaglieco;Diesel engine exhausts from a common rail 3.0 L F1C diesel engine were analyzed at two different load conditions of the WLTC testing cycle downstream of both the diesel particulate filter (DPF) and selective catalytic reactor (SCR) to verify their effect on the characteristics of carbon particulate matter. An array of chemical, physical and spectroscopic techniques (gas chromatography coupled with mass spectrometry (GC-MS), mobility analyzer, UV-Visible absorption and fluorescence spectroscopy) was applied for characterizing polycyclic aromatic hydrocarbons (PAH), heavy aromatic compounds and soot, constituting the particulate matter (PM) sampled from the exhaust. The engine was operated in half load (HL) (188 Nm, representing the more common condition for engine in urban traffic) and full load (FL) (452 Nm, representing the best performance of the engine operation) conditions, at the same engine speed (2000 rpm). Soot formation was enhanced in HL condition, with respect to FL, but, just because of the much lower soot amount, the after-treatment systems in this last condition resulted to be less efficient in the soot abatement. Indeed, the abatement through DPF was about 40% lower in the FL condition with respect to HL condition, and any significant further concentration decrease was found after SCR, in both conditions. By contrast, PAH concentration after DPF abatement was found to be higher in the HL with respect to FL condition. A further PAH concentration decrease of about 30% was found after the SCR in the HL condition whereas in FL the reduction was only about 5-6%. Also the heavy aromatic compounds having molecular weight above the GC-MS detection limit (300 u), were mitigated by SCR. Therefore, SCR did not cause a further soot reduction, whereas it was effective in largely reducing PAH and heavy aromatics emissions, especially in the lower temperature condition featuring the half-load condition, when combustion efficiency is worse. Moreover, SCR system reduced the emission of small particles probably due to an enhanced agglomeration of particles, with beneficial effect on the harmfulness to human health.
CNR ExploRA arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2020.110107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2020.110107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Royal Society of Chemistry (RSC) Funded by:EC | LILO, SNSF | Fundamental Aspects of Ph...EC| LILO ,SNSF| Fundamental Aspects of Photocatalysis and Photoelectrochemistry / Basic Research Instrumentation for Functional CharacterizationArtur Braun; Debajeet K. Bora; Debajeet K. Bora; Debajeet K. Bora; Edwin C. Constable;doi: 10.1039/c2ee23668k
The search for affordable high performance electrode materials in photoelectrochemical hydrogen production by solar water splitting is an ongoing quest. Hematite is a photoanode material with an electronic band gap suitable for efficient absorption of visible light in a photoelectrochemical cell (PEC). Although its poor electronic structure makes hematite a controversial candidate for PEC, it remains promising because it is an earth abundant, chemically stable and low cost material – necessary prerequisites for PEC to become a competitive cost-efficient solar fuel economy. In addition to reviewing some recent PEC research on hematite and its relevant physical and chemical characteristics, we show how hematite obtained by a low cost synthesis can be refined by hydrothermal treatment and further functionalized by coating with phycocyanin, a light harvesting protein known for photosynthesis in blue-green algae.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23668k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 206 citations 206 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23668k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Switzerland, SwedenPublisher:Royal Society of Chemistry (RSC) Funded by:EC | SANSEC| SANSHaining Tian; Peter W. Lohse; Licheng Sun; Licheng Sun; Erik Gabrielsson; Anders Hagfeldt; Lars Kloo; Nikolaos Vlachopoulos;doi: 10.1039/c2ee23263d
A water-soluble organic redox couple (TT−/DTT) and new organic dyes (D45 and D51) have been developed for aqueous dye-sensitized solar cells (DSCs). An optimal efficiency of 3.5% was obtained using the D51 dye and an optimized electrolyte composition. The highest IPCE value obtained was 68% at 460 nm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23263d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23263d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Funded by:EC | INFRESEC| INFRESAuthors: Carla Nati; Natascia Magagnotti; Raffaele Spinelli;The study tested the use of a trommel screen originally designed for compost materials to reject oversize particles from hog fuel, processed from several sources and by two different comminution devices. The experiment consisted in screening material previously comminuted by a convertible crusher, designed to use both hammers and knives. Three different feedstock types were used, and namely: discarded pallets, logs and branches from park maintenance. Each feedstock type came in two different qualities, depending on the tool used for comminution, i.e. hammers or knives. Trommel screen productivity varied between 4.2 t h-1, and 5.2 t h-1 of oven dry material. Screening hog fuel derived from pallets was 30% and 40% less productive than screening fuel derived from logs and branches, respectively. Screening cost varied from 16.2 EUR t-1 dry material in the case of branches, to 19.9 EUR t-1 oven dry material for pallets. Screening allowed an increase of fuel quality only when applied to pallet-derived hog fuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.02.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.02.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Royal Society of Chemistry (RSC) Funded by:EC | MIMESISEC| MIMESISAuthors: Alessandro Troisi; Natalia Martsinovich;doi: 10.1039/c1ee01906f
A full understanding of the elementary processes taking place in dye-sensitised solar cells requires an accurate description of the electronic structure of the dyes, the semiconductor surface, the electrolyte and their interactions. This review describes how electronic structure calculations have contributed to the field since its first steps and what methodologies have been adopted to study the charge transfer processes at the interface. Not all properties are equally predictable with electronic structure methods, and this work highlights the main success areas (e.g. the rationalization of the optical properties of the dyes), the recent developments (e.g. the improved description of the dye–semiconductor interaction) and the key challenges for the future (e.g. the calculation of charge recombination rate).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01906f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 195 citations 195 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01906f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:NWO | Harvesting the rainbow: E..., EC | SE2BNWO| Harvesting the rainbow: Engineering light-harvesting complexes for a better coverage of the solar spectrum ,EC| SE2BAuthors: Vincenzo Mascoli; Luca Bersanini; Roberta Croce;Plants and cyanobacteria use the chlorophylls embedded in their photosystems to absorb photons and perform charge separation, the first step of converting solar energy to chemical energy. While oxygenic photosynthesis is primarily based on chlorophyll a photochemistry, which is powered by red light, a few cyanobacterial species can harness less energetic photons when growing in far-red light. Acclimatization to far-red light involves the incorporation of a small number of molecules of red-shifted chlorophyll f in the photosystems, whereas the most abundant pigment remains chlorophyll a. Due to its different energetics, chlorophyll f is expected to alter the excited-state dynamics of the photosynthetic units and, ultimately, their performances. Here we combined time-resolved fluorescence measurements on intact cells and isolated complexes to show that chlorophyll f insertion slows down the overall energy trapping in both photosystems. While this marginally affects the efficiency of photosystem I, it substantially decreases that of photosystem II. Nevertheless, we show that despite the lower energy output, the insertion of red-shifted chlorophylls in the photosystems remains advantageous in environments that are enriched in far-red light and therefore represents a viable strategy for extending the photosynthetically active spectrum in other organisms, including plants. However, careful design of the new photosynthetic units will be required to preserve their efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-020-0718-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-020-0718-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:American Chemical Society (ACS) Funded by:EC | BioELCellEC| BioELCellFilpponen, Ilari; Saharinen, Erkki; Lappalainen, Timo; Salminen, Kristian; Rojas; Orlando, J.; Xiang, Wenchao;Wet-laying is a mature technology that is applied in large scale for the manufacture of nonwovens, including paper products. However, it usually uses large volumes of water and is energy-intensive. Here we used foam-laying to substantially diminish the volume of water consumed in the formation of fiber networks (5-fold reduction) and to reduce the water content of the nonwovens produced before drying, achieving a reduced energy demand. The prospects of foam-laying were evaluated by comparing foam-laid and wet-laid webs of two types of wood fibers: stiff (lignin-containing) or flexible (lignin-free). Also, the effect of foaming agent type (anionic, cationic, nonionic, and amphoteric) was elucidated. Reference webs were produced by conventional wet-laying, with or without surfactants. Foam-laying was effective in producing a more uniform areal mass distribution (better formation) after wet-pressing. This effect was more evident for the webs synthesized with the flexible fibers. Unlike the layered network structures that were obtained by wet-laying, foam-laid webs exhibited a more felted network, with fibers positioned in the out-of-plane direction. As a result, higher air permeability, web porosity, and light scattering coefficients were measured for the foam-laid webs. The enhanced porosity (lower density) was related to the effect of bubbles during foam-laying and the reduction in surface tension of the foamed-fiber dispersion. The resistance to delamination of low-density webs obtained by foam-laying in the out-of-plane direction was preserved. However, the reduction in tensile strength and modulus of foam-laid webs were determined, owing to the reduced density of the formed structures. Notably, the type of foaming agent used played a minor role as far as the resultant properties of the webs, making the process flexible in terms of the selection of environmentally friendly alternatives. Overall, we compared the physico-mechanical properties of fiber networks formed by web- and foam-laying, depending on fiber type and foaming agent, yielding a property space that is useful in the design of lightweight structures (nonwovens, including paper). The prospects of water and energy savings by foam-laying are the major benefits in the sustainable use of fibers for the assembly of porous materials, such as lightweight nonwoven and paper products.
Aaltodoc Publication... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.8b03102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aaltodoc Publication... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.8b03102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwedenPublisher:Elsevier BV Funded by:EC | HPMCEC| HPMCAuthors: Dufek, Jan; Anglart, Henryk;Numerically stable Monte Carlo burnup calculations of nuclear fuel cycles are now possible with the previously derived Stochastic Implicit Euler method based coupling scheme. In this paper, we show that this scheme can be easily extended to include the thermal–hydraulic feedback during the Monte Carlo burnup simulations, while preserving its unconditional stability property. At each time step, the implicit solution (for the end-of-step neutron flux, fuel nuclide densities and thermal–hydraulic conditions) is calculated iteratively by the stochastic approximation; the fuel nuclide densities and thermal–hydraulic conditions are iterated simultaneously. This coupling scheme is derived as stable in theory; i.e., its stability is not conditioned by the choice of time steps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2013.06.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Average influence Top 10% impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2013.06.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | SUAVEC| SUAVGiosuè Giacoppo; Orazio Barbera; Nicola Briguglio; Francesco Cipitì; Marco Ferraro; Giovanni Brunaccini; Eric Erdle; Vincenzo Antonucci;In this paper, the integration of a small SOFC commercial system into the fuselage of a mini Unmanned Aerial Vehicle (UAV) is presented. As a design constrain, the SOFC system has to be installed inside the UAV fuselage with the lowest possible offset, to reduce the volume and mass of the UAV. Due to the high operating temperature of the SOFC (800-1000 °C), the external temperature of the system is always about few hundred Celsius degrees. Due to this, malfunctioning of the SOFC system and hot spots on the fuselage shell can occur. For this reason, it is important to ensure a proper ventilation of the air volume inside the UAV fuselage. To deal with these issues, experimental and Computational Fluid dynamic studies were carried out to investigate for a correct SOFC system integration and operation in a confined environment. As a result, the optimal airflow for a safe operation of the SOFC system was determined and the behaviour of the temperature and air stream inside the fuselage was highlighted. In addition, NACA air intakes were designed on the basis on the experimental and numerical evidences, to provide a proper cooling of the SOFC system installed into the fuselage.
CNR ExploRA arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 PortugalPublisher:Elsevier BV Funded by:EC | BI-DSCEC| BI-DSCAuthors: Afonso Lopes; Armando Araújo; Adélio Mendes; Luísa Andrade;Abstract The main goal of the present work is to provide a mathematical model of Dye-Sensitized Solar Cells (DSCs) that can be implemented in electrical engineering circuit simulation software, such as PSIM, for using in electronic power converter design. Consequently, a new circuit modeling approach is presented, able to solve the standard continuity and transport governing equations defined for the involved mobile species: electrons in the TiO2 conduction band and ions in the electrolyte. Starting from the partial differential continuity equations of the phenomenological DSC model, it was developed a one-dimensional spatial discretization using Finite Difference Methods (FD) followed by a solution using an electrical circuit analogy. The resulting circuits were then implemented in PSIM software and simulated. Simulation results using this new electrical analog approach showed excellent matching when compared to FORTRAN numerical solutions, as well as when compared to experimental data. Moreover, the electrical analog can be used for transient and steady state cases, giving information about the main factors and the relevant kinetic parameters that influence DSCs’ performance. Finally, it enables to relate the phenomenological behavior with other electrical approaches, such as Electrochemical Impedance Spectroscopy (EIS) and diode based models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.08.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.08.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:EC | DiePeREC| DiePeRBarbara Apicella; Carmela Russo; A. Tregrossi; Maria Maddalena Oliano; Ezio Mancaruso; Anna Ciajolo; Bianca Maria Vaglieco;Diesel engine exhausts from a common rail 3.0 L F1C diesel engine were analyzed at two different load conditions of the WLTC testing cycle downstream of both the diesel particulate filter (DPF) and selective catalytic reactor (SCR) to verify their effect on the characteristics of carbon particulate matter. An array of chemical, physical and spectroscopic techniques (gas chromatography coupled with mass spectrometry (GC-MS), mobility analyzer, UV-Visible absorption and fluorescence spectroscopy) was applied for characterizing polycyclic aromatic hydrocarbons (PAH), heavy aromatic compounds and soot, constituting the particulate matter (PM) sampled from the exhaust. The engine was operated in half load (HL) (188 Nm, representing the more common condition for engine in urban traffic) and full load (FL) (452 Nm, representing the best performance of the engine operation) conditions, at the same engine speed (2000 rpm). Soot formation was enhanced in HL condition, with respect to FL, but, just because of the much lower soot amount, the after-treatment systems in this last condition resulted to be less efficient in the soot abatement. Indeed, the abatement through DPF was about 40% lower in the FL condition with respect to HL condition, and any significant further concentration decrease was found after SCR, in both conditions. By contrast, PAH concentration after DPF abatement was found to be higher in the HL with respect to FL condition. A further PAH concentration decrease of about 30% was found after the SCR in the HL condition whereas in FL the reduction was only about 5-6%. Also the heavy aromatic compounds having molecular weight above the GC-MS detection limit (300 u), were mitigated by SCR. Therefore, SCR did not cause a further soot reduction, whereas it was effective in largely reducing PAH and heavy aromatics emissions, especially in the lower temperature condition featuring the half-load condition, when combustion efficiency is worse. Moreover, SCR system reduced the emission of small particles probably due to an enhanced agglomeration of particles, with beneficial effect on the harmfulness to human health.
CNR ExploRA arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2020.110107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2020.110107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Royal Society of Chemistry (RSC) Funded by:EC | LILO, SNSF | Fundamental Aspects of Ph...EC| LILO ,SNSF| Fundamental Aspects of Photocatalysis and Photoelectrochemistry / Basic Research Instrumentation for Functional CharacterizationArtur Braun; Debajeet K. Bora; Debajeet K. Bora; Debajeet K. Bora; Edwin C. Constable;doi: 10.1039/c2ee23668k
The search for affordable high performance electrode materials in photoelectrochemical hydrogen production by solar water splitting is an ongoing quest. Hematite is a photoanode material with an electronic band gap suitable for efficient absorption of visible light in a photoelectrochemical cell (PEC). Although its poor electronic structure makes hematite a controversial candidate for PEC, it remains promising because it is an earth abundant, chemically stable and low cost material – necessary prerequisites for PEC to become a competitive cost-efficient solar fuel economy. In addition to reviewing some recent PEC research on hematite and its relevant physical and chemical characteristics, we show how hematite obtained by a low cost synthesis can be refined by hydrothermal treatment and further functionalized by coating with phycocyanin, a light harvesting protein known for photosynthesis in blue-green algae.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23668k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 206 citations 206 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23668k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Switzerland, SwedenPublisher:Royal Society of Chemistry (RSC) Funded by:EC | SANSEC| SANSHaining Tian; Peter W. Lohse; Licheng Sun; Licheng Sun; Erik Gabrielsson; Anders Hagfeldt; Lars Kloo; Nikolaos Vlachopoulos;doi: 10.1039/c2ee23263d
A water-soluble organic redox couple (TT−/DTT) and new organic dyes (D45 and D51) have been developed for aqueous dye-sensitized solar cells (DSCs). An optimal efficiency of 3.5% was obtained using the D51 dye and an optimized electrolyte composition. The highest IPCE value obtained was 68% at 460 nm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23263d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23263d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Funded by:EC | INFRESEC| INFRESAuthors: Carla Nati; Natascia Magagnotti; Raffaele Spinelli;The study tested the use of a trommel screen originally designed for compost materials to reject oversize particles from hog fuel, processed from several sources and by two different comminution devices. The experiment consisted in screening material previously comminuted by a convertible crusher, designed to use both hammers and knives. Three different feedstock types were used, and namely: discarded pallets, logs and branches from park maintenance. Each feedstock type came in two different qualities, depending on the tool used for comminution, i.e. hammers or knives. Trommel screen productivity varied between 4.2 t h-1, and 5.2 t h-1 of oven dry material. Screening hog fuel derived from pallets was 30% and 40% less productive than screening fuel derived from logs and branches, respectively. Screening cost varied from 16.2 EUR t-1 dry material in the case of branches, to 19.9 EUR t-1 oven dry material for pallets. Screening allowed an increase of fuel quality only when applied to pallet-derived hog fuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.02.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.02.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Royal Society of Chemistry (RSC) Funded by:EC | MIMESISEC| MIMESISAuthors: Alessandro Troisi; Natalia Martsinovich;doi: 10.1039/c1ee01906f
A full understanding of the elementary processes taking place in dye-sensitised solar cells requires an accurate description of the electronic structure of the dyes, the semiconductor surface, the electrolyte and their interactions. This review describes how electronic structure calculations have contributed to the field since its first steps and what methodologies have been adopted to study the charge transfer processes at the interface. Not all properties are equally predictable with electronic structure methods, and this work highlights the main success areas (e.g. the rationalization of the optical properties of the dyes), the recent developments (e.g. the improved description of the dye–semiconductor interaction) and the key challenges for the future (e.g. the calculation of charge recombination rate).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01906f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 195 citations 195 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01906f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:NWO | Harvesting the rainbow: E..., EC | SE2BNWO| Harvesting the rainbow: Engineering light-harvesting complexes for a better coverage of the solar spectrum ,EC| SE2BAuthors: Vincenzo Mascoli; Luca Bersanini; Roberta Croce;Plants and cyanobacteria use the chlorophylls embedded in their photosystems to absorb photons and perform charge separation, the first step of converting solar energy to chemical energy. While oxygenic photosynthesis is primarily based on chlorophyll a photochemistry, which is powered by red light, a few cyanobacterial species can harness less energetic photons when growing in far-red light. Acclimatization to far-red light involves the incorporation of a small number of molecules of red-shifted chlorophyll f in the photosystems, whereas the most abundant pigment remains chlorophyll a. Due to its different energetics, chlorophyll f is expected to alter the excited-state dynamics of the photosynthetic units and, ultimately, their performances. Here we combined time-resolved fluorescence measurements on intact cells and isolated complexes to show that chlorophyll f insertion slows down the overall energy trapping in both photosystems. While this marginally affects the efficiency of photosystem I, it substantially decreases that of photosystem II. Nevertheless, we show that despite the lower energy output, the insertion of red-shifted chlorophylls in the photosystems remains advantageous in environments that are enriched in far-red light and therefore represents a viable strategy for extending the photosynthetically active spectrum in other organisms, including plants. However, careful design of the new photosynthetic units will be required to preserve their efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-020-0718-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-020-0718-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:American Chemical Society (ACS) Funded by:EC | BioELCellEC| BioELCellFilpponen, Ilari; Saharinen, Erkki; Lappalainen, Timo; Salminen, Kristian; Rojas; Orlando, J.; Xiang, Wenchao;Wet-laying is a mature technology that is applied in large scale for the manufacture of nonwovens, including paper products. However, it usually uses large volumes of water and is energy-intensive. Here we used foam-laying to substantially diminish the volume of water consumed in the formation of fiber networks (5-fold reduction) and to reduce the water content of the nonwovens produced before drying, achieving a reduced energy demand. The prospects of foam-laying were evaluated by comparing foam-laid and wet-laid webs of two types of wood fibers: stiff (lignin-containing) or flexible (lignin-free). Also, the effect of foaming agent type (anionic, cationic, nonionic, and amphoteric) was elucidated. Reference webs were produced by conventional wet-laying, with or without surfactants. Foam-laying was effective in producing a more uniform areal mass distribution (better formation) after wet-pressing. This effect was more evident for the webs synthesized with the flexible fibers. Unlike the layered network structures that were obtained by wet-laying, foam-laid webs exhibited a more felted network, with fibers positioned in the out-of-plane direction. As a result, higher air permeability, web porosity, and light scattering coefficients were measured for the foam-laid webs. The enhanced porosity (lower density) was related to the effect of bubbles during foam-laying and the reduction in surface tension of the foamed-fiber dispersion. The resistance to delamination of low-density webs obtained by foam-laying in the out-of-plane direction was preserved. However, the reduction in tensile strength and modulus of foam-laid webs were determined, owing to the reduced density of the formed structures. Notably, the type of foaming agent used played a minor role as far as the resultant properties of the webs, making the process flexible in terms of the selection of environmentally friendly alternatives. Overall, we compared the physico-mechanical properties of fiber networks formed by web- and foam-laying, depending on fiber type and foaming agent, yielding a property space that is useful in the design of lightweight structures (nonwovens, including paper). The prospects of water and energy savings by foam-laying are the major benefits in the sustainable use of fibers for the assembly of porous materials, such as lightweight nonwoven and paper products.
Aaltodoc Publication... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.8b03102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aaltodoc Publication... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.8b03102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwedenPublisher:Elsevier BV Funded by:EC | HPMCEC| HPMCAuthors: Dufek, Jan; Anglart, Henryk;Numerically stable Monte Carlo burnup calculations of nuclear fuel cycles are now possible with the previously derived Stochastic Implicit Euler method based coupling scheme. In this paper, we show that this scheme can be easily extended to include the thermal–hydraulic feedback during the Monte Carlo burnup simulations, while preserving its unconditional stability property. At each time step, the implicit solution (for the end-of-step neutron flux, fuel nuclide densities and thermal–hydraulic conditions) is calculated iteratively by the stochastic approximation; the fuel nuclide densities and thermal–hydraulic conditions are iterated simultaneously. This coupling scheme is derived as stable in theory; i.e., its stability is not conditioned by the choice of time steps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2013.06.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Average influence Top 10% impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2013.06.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | SUAVEC| SUAVGiosuè Giacoppo; Orazio Barbera; Nicola Briguglio; Francesco Cipitì; Marco Ferraro; Giovanni Brunaccini; Eric Erdle; Vincenzo Antonucci;In this paper, the integration of a small SOFC commercial system into the fuselage of a mini Unmanned Aerial Vehicle (UAV) is presented. As a design constrain, the SOFC system has to be installed inside the UAV fuselage with the lowest possible offset, to reduce the volume and mass of the UAV. Due to the high operating temperature of the SOFC (800-1000 °C), the external temperature of the system is always about few hundred Celsius degrees. Due to this, malfunctioning of the SOFC system and hot spots on the fuselage shell can occur. For this reason, it is important to ensure a proper ventilation of the air volume inside the UAV fuselage. To deal with these issues, experimental and Computational Fluid dynamic studies were carried out to investigate for a correct SOFC system integration and operation in a confined environment. As a result, the optimal airflow for a safe operation of the SOFC system was determined and the behaviour of the temperature and air stream inside the fuselage was highlighted. In addition, NACA air intakes were designed on the basis on the experimental and numerical evidences, to provide a proper cooling of the SOFC system installed into the fuselage.
CNR ExploRA arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 PortugalPublisher:Elsevier BV Funded by:EC | BI-DSCEC| BI-DSCAuthors: Afonso Lopes; Armando Araújo; Adélio Mendes; Luísa Andrade;Abstract The main goal of the present work is to provide a mathematical model of Dye-Sensitized Solar Cells (DSCs) that can be implemented in electrical engineering circuit simulation software, such as PSIM, for using in electronic power converter design. Consequently, a new circuit modeling approach is presented, able to solve the standard continuity and transport governing equations defined for the involved mobile species: electrons in the TiO2 conduction band and ions in the electrolyte. Starting from the partial differential continuity equations of the phenomenological DSC model, it was developed a one-dimensional spatial discretization using Finite Difference Methods (FD) followed by a solution using an electrical circuit analogy. The resulting circuits were then implemented in PSIM software and simulated. Simulation results using this new electrical analog approach showed excellent matching when compared to FORTRAN numerical solutions, as well as when compared to experimental data. Moreover, the electrical analog can be used for transient and steady state cases, giving information about the main factors and the relevant kinetic parameters that influence DSCs’ performance. Finally, it enables to relate the phenomenological behavior with other electrical approaches, such as Electrochemical Impedance Spectroscopy (EIS) and diode based models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.08.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.08.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu