- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- Open Source
- Embargo
- 7. Clean energy
- 11. Sustainability
- 12. Responsible consumption
- EU
- Energy Research
- Open Access
- Restricted
- Open Source
- Embargo
- 7. Clean energy
- 11. Sustainability
- 12. Responsible consumption
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:EC | VULKANOEC| VULKANOAuthors:Royo, Patricia;
Royo, Patricia
Royo, Patricia in OpenAIREAcevedo, Luis;
Acevedo, Luis
Acevedo, Luis in OpenAIREFerreira, Victor J.;
García-Armingol, Tatiana; +2 AuthorsFerreira, Victor J.
Ferreira, Victor J. in OpenAIRERoyo, Patricia;
Royo, Patricia
Royo, Patricia in OpenAIREAcevedo, Luis;
Acevedo, Luis
Acevedo, Luis in OpenAIREFerreira, Victor J.;
García-Armingol, Tatiana;Ferreira, Victor J.
Ferreira, Victor J. in OpenAIRELópez-Sabirón, Ana M.;
López-Sabirón, Ana M.
López-Sabirón, Ana M. in OpenAIREFerreira, Germán;
Ferreira, Germán
Ferreira, Germán in OpenAIREThe energy considered as waste heat in industrial furnaces owing to inefficiencies represents a substantial opportunity for recovery by means of thermal energy storage (TES) implementation. Although conventional systems based on sensible heat are used extensively, these systems involve technical limitations. Latent heat storage based on phase change materials (PCMs) results in a promising alternative for storing and recovering waste heat. Within this scope, the proposed PCM-TES allows for demonstrating its implementation feasibility in energy-intensive industries at high temperature range. The stored energy is meant to preheat the air temperature entering the furnace by using a PCM whose melting point is 885 °C. In this sense, a heat transfer model simulation is established to determine an appropriate design based on mass and energy conservation equations. The thermal performance is analysed for the melting and solidification processes, the phase transition and its influence on heat transference. Moreover, the temperature profile is illustrated for the PCM and combustion air stream. The obtained results prove the achievability of very high temperature levels (from 700 to 865 °C) in the combustion air preheating in a ceramic furnace; so corroborating an energy and environmental efficiency enhancement, compared to the initial condition presenting an air outlet at 650 °C.
Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2019License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/87807Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2019License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/87807Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:EC | VULKANOEC| VULKANOAuthors:Royo, Patricia;
Royo, Patricia
Royo, Patricia in OpenAIREAcevedo, Luis;
Acevedo, Luis
Acevedo, Luis in OpenAIREFerreira, Victor J.;
García-Armingol, Tatiana; +2 AuthorsFerreira, Victor J.
Ferreira, Victor J. in OpenAIRERoyo, Patricia;
Royo, Patricia
Royo, Patricia in OpenAIREAcevedo, Luis;
Acevedo, Luis
Acevedo, Luis in OpenAIREFerreira, Victor J.;
García-Armingol, Tatiana;Ferreira, Victor J.
Ferreira, Victor J. in OpenAIRELópez-Sabirón, Ana M.;
López-Sabirón, Ana M.
López-Sabirón, Ana M. in OpenAIREFerreira, Germán;
Ferreira, Germán
Ferreira, Germán in OpenAIREThe energy considered as waste heat in industrial furnaces owing to inefficiencies represents a substantial opportunity for recovery by means of thermal energy storage (TES) implementation. Although conventional systems based on sensible heat are used extensively, these systems involve technical limitations. Latent heat storage based on phase change materials (PCMs) results in a promising alternative for storing and recovering waste heat. Within this scope, the proposed PCM-TES allows for demonstrating its implementation feasibility in energy-intensive industries at high temperature range. The stored energy is meant to preheat the air temperature entering the furnace by using a PCM whose melting point is 885 °C. In this sense, a heat transfer model simulation is established to determine an appropriate design based on mass and energy conservation equations. The thermal performance is analysed for the melting and solidification processes, the phase transition and its influence on heat transference. Moreover, the temperature profile is illustrated for the PCM and combustion air stream. The obtained results prove the achievability of very high temperature levels (from 700 to 865 °C) in the combustion air preheating in a ceramic furnace; so corroborating an energy and environmental efficiency enhancement, compared to the initial condition presenting an air outlet at 650 °C.
Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2019License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/87807Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2019License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/87807Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 ItalyPublisher:MDPI AG Funded by:EC | NoAWEC| NoAWAuthors:Vannini M.;
Vannini M.
Vannini M. in OpenAIREMarchese P.;
Marchese P.
Marchese P. in OpenAIRESisti L.;
Sisti L.
Sisti L. in OpenAIRESaccani A.;
+3 AuthorsSaccani A.
Saccani A. in OpenAIREVannini M.;
Vannini M.
Vannini M. in OpenAIREMarchese P.;
Marchese P.
Marchese P. in OpenAIRESisti L.;
Sisti L.
Sisti L. in OpenAIRESaccani A.;
Mu T.;Saccani A.
Saccani A. in OpenAIRESun H.;
Celli A.;
Celli A.
Celli A. in OpenAIREWith the aim to fully exploit the by-products obtained after the industrial extraction of starch from sweet potatoes, a cascading approach was developed to extract high-value molecules, such as proteins and pectins, and to valorize the solid fraction, rich in starch and fibrous components. This fraction was used to prepare new biocomposites designed for food packaging applications. The sweet potato residue was added to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in various amounts up to 40 wt % by melt mixing, without any previous treatment. The composites are semicrystalline materials, characterized by thermal stability up to 260 °C. For the composites containing up to 10 wt % of residue, the tensile strength remains over 30 MPa and the strain stays over 3.2%. A homogeneous dispersion of the sweet potato waste into the bio-polymeric matrix was achieved but, despite the presence of hydrogen bond interactions between the components, a poor interfacial adhesion was detected. Considering the significant percentage of sweet potato waste used, the biocomposites obtained show a low economic and environmental impact, resulting in an interesting bio-alternative to the materials commonly used in the packaging industry. Thus, according to the principles of a circular economy, the preparation of the biocomposites closes the loop of the complete valorization of sweet potato products and by-products.
Polymers arrow_drop_down PolymersOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4360/13/7/1048/pdfData sources: Multidisciplinary Digital Publishing InstitutePolymersArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4360/13/7/1048/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym13071048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Polymers arrow_drop_down PolymersOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4360/13/7/1048/pdfData sources: Multidisciplinary Digital Publishing InstitutePolymersArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4360/13/7/1048/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym13071048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 ItalyPublisher:MDPI AG Funded by:EC | NoAWEC| NoAWAuthors:Vannini M.;
Vannini M.
Vannini M. in OpenAIREMarchese P.;
Marchese P.
Marchese P. in OpenAIRESisti L.;
Sisti L.
Sisti L. in OpenAIRESaccani A.;
+3 AuthorsSaccani A.
Saccani A. in OpenAIREVannini M.;
Vannini M.
Vannini M. in OpenAIREMarchese P.;
Marchese P.
Marchese P. in OpenAIRESisti L.;
Sisti L.
Sisti L. in OpenAIRESaccani A.;
Mu T.;Saccani A.
Saccani A. in OpenAIRESun H.;
Celli A.;
Celli A.
Celli A. in OpenAIREWith the aim to fully exploit the by-products obtained after the industrial extraction of starch from sweet potatoes, a cascading approach was developed to extract high-value molecules, such as proteins and pectins, and to valorize the solid fraction, rich in starch and fibrous components. This fraction was used to prepare new biocomposites designed for food packaging applications. The sweet potato residue was added to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in various amounts up to 40 wt % by melt mixing, without any previous treatment. The composites are semicrystalline materials, characterized by thermal stability up to 260 °C. For the composites containing up to 10 wt % of residue, the tensile strength remains over 30 MPa and the strain stays over 3.2%. A homogeneous dispersion of the sweet potato waste into the bio-polymeric matrix was achieved but, despite the presence of hydrogen bond interactions between the components, a poor interfacial adhesion was detected. Considering the significant percentage of sweet potato waste used, the biocomposites obtained show a low economic and environmental impact, resulting in an interesting bio-alternative to the materials commonly used in the packaging industry. Thus, according to the principles of a circular economy, the preparation of the biocomposites closes the loop of the complete valorization of sweet potato products and by-products.
Polymers arrow_drop_down PolymersOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4360/13/7/1048/pdfData sources: Multidisciplinary Digital Publishing InstitutePolymersArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4360/13/7/1048/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym13071048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Polymers arrow_drop_down PolymersOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4360/13/7/1048/pdfData sources: Multidisciplinary Digital Publishing InstitutePolymersArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4360/13/7/1048/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym13071048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:EC | ICOMFLUID, UKRI | Development of fast pyrol...EC| ICOMFLUID ,UKRI| Development of fast pyrolysis based advanced biofuel technologies for biofuelsAuthors:Beatriz Fidalgo;
Sai Gu; Mobolaji Shemfe; Mobolaji Shemfe;Beatriz Fidalgo
Beatriz Fidalgo in OpenAIREBiofuels have been identified as a mid-term GHG emission abatement solution for decarbonising the transport sector. This study examines the techno-economic analysis of biofuel production via biomass fast pyrolysis and subsequent bio-oil upgrading via zeolite cracking. The aim of this study is to compare the techno-economic feasibility of two conceptual catalyst regeneration configurations for the zeolite cracking process: (i) a two-stage regenerator operating sequentially in partial and complete combustion modes (P-2RG) and (ii) a single stage regenerator operating in complete combustion mode coupled with a catalyst cooler (P-1RGC). The designs were implemented in Aspen Plus® based on a hypothetical 72 t/day pine wood fast pyrolysis and zeolite cracking plant and compared in terms of energy efficiency and profitability. The energy efficiencies of P-2RG and P-1RGC were estimated at 54% and 52%, respectively with corresponding minimum fuel selling prices (MFSPs) of £7.48/GGE and £7.20/GGE. Sensitivity analysis revealed that the MFSPs of both designs are mainly sensitive to variations in fuel yield, operating cost and income tax. Furthermore, uncertainty analysis indicated that the likely range of the MFSPs of P-1RGC (£5.81/GGE £11.63/GGE) at 95% probability was more economically favourable compared with P-2RG, along with a penalty of 2% reduction in energy efficiency. The results provide evidence to support the economic viability of biofuel production via zeolite cracking of pyrolysis-derived bio-oil.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2017License: CC BYFull-Text: http://epubs.surrey.ac.uk/813454/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2017License: CC BYFull-Text: http://epubs.surrey.ac.uk/813454/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:EC | ICOMFLUID, UKRI | Development of fast pyrol...EC| ICOMFLUID ,UKRI| Development of fast pyrolysis based advanced biofuel technologies for biofuelsAuthors:Beatriz Fidalgo;
Sai Gu; Mobolaji Shemfe; Mobolaji Shemfe;Beatriz Fidalgo
Beatriz Fidalgo in OpenAIREBiofuels have been identified as a mid-term GHG emission abatement solution for decarbonising the transport sector. This study examines the techno-economic analysis of biofuel production via biomass fast pyrolysis and subsequent bio-oil upgrading via zeolite cracking. The aim of this study is to compare the techno-economic feasibility of two conceptual catalyst regeneration configurations for the zeolite cracking process: (i) a two-stage regenerator operating sequentially in partial and complete combustion modes (P-2RG) and (ii) a single stage regenerator operating in complete combustion mode coupled with a catalyst cooler (P-1RGC). The designs were implemented in Aspen Plus® based on a hypothetical 72 t/day pine wood fast pyrolysis and zeolite cracking plant and compared in terms of energy efficiency and profitability. The energy efficiencies of P-2RG and P-1RGC were estimated at 54% and 52%, respectively with corresponding minimum fuel selling prices (MFSPs) of £7.48/GGE and £7.20/GGE. Sensitivity analysis revealed that the MFSPs of both designs are mainly sensitive to variations in fuel yield, operating cost and income tax. Furthermore, uncertainty analysis indicated that the likely range of the MFSPs of P-1RGC (£5.81/GGE £11.63/GGE) at 95% probability was more economically favourable compared with P-2RG, along with a penalty of 2% reduction in energy efficiency. The results provide evidence to support the economic viability of biofuel production via zeolite cracking of pyrolysis-derived bio-oil.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2017License: CC BYFull-Text: http://epubs.surrey.ac.uk/813454/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2017License: CC BYFull-Text: http://epubs.surrey.ac.uk/813454/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019 Portugal Funded by:EC | BAMBEC| BAMBAuthors: Bragança, L.;handle: 1822/59319
The SBE19 Brussels - BAMB-CIRCPATH "Building as Material Banks - A Pathway for a Circular held in Brussels on 5 to 7 of February 2019, is an initiative of the Consortium of the H2020 BAMB Project together with the Sustainable Built Environment (SBE) series of conferences. Being within the SBE series, this event gathers the support of CIB International Council for Research and Innovation in Building and Construction, iiSBE International Initiative for a Sustainable Built Environment, the United Nations Environment Programme, and FIDIC International Federation of Consulting Engineers. The goal of this series of regional and international conferences is to disseminate innovative policies and developments in the field of sustainable urban environment to a broad international audience of specialists in policy, design, construction and operation of buildings and related infrastructure. info:eu-repo/semantics/publishedVersion
Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMConference object . 2019Data sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2019Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1822/59319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 61visibility views 61 download downloads 19 Powered bymore_vert Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMConference object . 2019Data sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2019Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1822/59319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019 Portugal Funded by:EC | BAMBEC| BAMBAuthors: Bragança, L.;handle: 1822/59319
The SBE19 Brussels - BAMB-CIRCPATH "Building as Material Banks - A Pathway for a Circular held in Brussels on 5 to 7 of February 2019, is an initiative of the Consortium of the H2020 BAMB Project together with the Sustainable Built Environment (SBE) series of conferences. Being within the SBE series, this event gathers the support of CIB International Council for Research and Innovation in Building and Construction, iiSBE International Initiative for a Sustainable Built Environment, the United Nations Environment Programme, and FIDIC International Federation of Consulting Engineers. The goal of this series of regional and international conferences is to disseminate innovative policies and developments in the field of sustainable urban environment to a broad international audience of specialists in policy, design, construction and operation of buildings and related infrastructure. info:eu-repo/semantics/publishedVersion
Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMConference object . 2019Data sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2019Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1822/59319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 61visibility views 61 download downloads 19 Powered bymore_vert Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMConference object . 2019Data sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2019Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1822/59319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Sweden, BelgiumPublisher:The Electrochemical Society Funded by:RCN | The Norwegian Centre for ..., EC | Hydra, RCN | Norwegian Micro- and Nano...RCN| The Norwegian Centre for Transmission Electron Microscopy - NORTEM ,EC| Hydra ,RCN| Norwegian Micro- and Nanofabrication Facility IIAuthors: Xuelian Liu; Marion Maffre;Da Tie;
Nils Peter Wagner;
+12 AuthorsNils Peter Wagner
Nils Peter Wagner in OpenAIREXuelian Liu; Marion Maffre;Da Tie;
Nils Peter Wagner;
Noelia Cortés Félix;Nils Peter Wagner
Nils Peter Wagner in OpenAIRERaheleh Azmi;
Raheleh Azmi
Raheleh Azmi in OpenAIREKillian Stokes;
Killian Stokes
Killian Stokes in OpenAIREPer Erik Vullum;
Jérome Bailly;Per Erik Vullum
Per Erik Vullum in OpenAIREShubhadeep Pal;
Gary Evans;Shubhadeep Pal
Shubhadeep Pal in OpenAIREMihaela Buga;
Mihaela Buga
Mihaela Buga in OpenAIREMaria Hahlin;
Maria Hahlin
Maria Hahlin in OpenAIREKristina Edström;
Kristina Edström
Kristina Edström in OpenAIRESimon Clark;
Simon Clark
Simon Clark in OpenAIREAlexandru Vlad;
Alexandru Vlad
Alexandru Vlad in OpenAIREhandle: 2078.1/281630
Spinel LiNi0.5Mn1.5O4 as one of the high-energy positive electrode materials for next generation Li-ion batteries has attracted significant interest due to its economic and environmental advantages. However, the sensitivity of this type of material upon short to long term ambient storage conditions and the impact on the electrochemical performances remains poorly explored. Nevertheless, this remains an important aspect for practical large-scale synthesis, storage and utilization. Herein, we study and compare the evolution of surface chemistry, bulk crystal structure and elemental content evolution and distribution of LiNi0.5Mn1.5O4 using a variety of characterization techniques including XPS and STEM-EDS-EELS, as well as electrochemical analysis. We show that Mn species dominate the outer surface (0–5 nm), while Ni and Li are preferentially located further away and in the bulk. The studied LiNi0.5Mn1.5O4 material is found to be stable, with minor changes in surface or bulk characteristics detected, even after 12 months of storage under ambient air conditions. The low surface reactivity to air also accounts for the minor changes to the electrochemical performance of the air-exposed LiNi0.5Mn1.5O4, compared to the pristine material. This study provides guidance for the appropriate storage, handling and processing of this high-performance cathode material.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Sweden, BelgiumPublisher:The Electrochemical Society Funded by:RCN | The Norwegian Centre for ..., EC | Hydra, RCN | Norwegian Micro- and Nano...RCN| The Norwegian Centre for Transmission Electron Microscopy - NORTEM ,EC| Hydra ,RCN| Norwegian Micro- and Nanofabrication Facility IIAuthors: Xuelian Liu; Marion Maffre;Da Tie;
Nils Peter Wagner;
+12 AuthorsNils Peter Wagner
Nils Peter Wagner in OpenAIREXuelian Liu; Marion Maffre;Da Tie;
Nils Peter Wagner;
Noelia Cortés Félix;Nils Peter Wagner
Nils Peter Wagner in OpenAIRERaheleh Azmi;
Raheleh Azmi
Raheleh Azmi in OpenAIREKillian Stokes;
Killian Stokes
Killian Stokes in OpenAIREPer Erik Vullum;
Jérome Bailly;Per Erik Vullum
Per Erik Vullum in OpenAIREShubhadeep Pal;
Gary Evans;Shubhadeep Pal
Shubhadeep Pal in OpenAIREMihaela Buga;
Mihaela Buga
Mihaela Buga in OpenAIREMaria Hahlin;
Maria Hahlin
Maria Hahlin in OpenAIREKristina Edström;
Kristina Edström
Kristina Edström in OpenAIRESimon Clark;
Simon Clark
Simon Clark in OpenAIREAlexandru Vlad;
Alexandru Vlad
Alexandru Vlad in OpenAIREhandle: 2078.1/281630
Spinel LiNi0.5Mn1.5O4 as one of the high-energy positive electrode materials for next generation Li-ion batteries has attracted significant interest due to its economic and environmental advantages. However, the sensitivity of this type of material upon short to long term ambient storage conditions and the impact on the electrochemical performances remains poorly explored. Nevertheless, this remains an important aspect for practical large-scale synthesis, storage and utilization. Herein, we study and compare the evolution of surface chemistry, bulk crystal structure and elemental content evolution and distribution of LiNi0.5Mn1.5O4 using a variety of characterization techniques including XPS and STEM-EDS-EELS, as well as electrochemical analysis. We show that Mn species dominate the outer surface (0–5 nm), while Ni and Li are preferentially located further away and in the bulk. The studied LiNi0.5Mn1.5O4 material is found to be stable, with minor changes in surface or bulk characteristics detected, even after 12 months of storage under ambient air conditions. The low surface reactivity to air also accounts for the minor changes to the electrochemical performance of the air-exposed LiNi0.5Mn1.5O4, compared to the pristine material. This study provides guidance for the appropriate storage, handling and processing of this high-performance cathode material.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Project deliverable 2017Publisher:Zenodo Funded by:EC | EoCoEEC| EoCoEAuthors: Deutsch, T.;Optimization of all numerical codes ported in the infrastructure and used for supercapacitors, PV and batteries. The scope of deliverable D3.2 is to report the new advances in the field of materials for energy that comes from the search of new methodologies and models that could be more efficient on the new generation of computer hardware for exascale. In this respect, deliverable D3.2 is a transversal deliverable that report the new advances related to activities described in task T3.2, T3.3 and T3.4. H2020
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1286897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1286897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Project deliverable 2017Publisher:Zenodo Funded by:EC | EoCoEEC| EoCoEAuthors: Deutsch, T.;Optimization of all numerical codes ported in the infrastructure and used for supercapacitors, PV and batteries. The scope of deliverable D3.2 is to report the new advances in the field of materials for energy that comes from the search of new methodologies and models that could be more efficient on the new generation of computer hardware for exascale. In this respect, deliverable D3.2 is a transversal deliverable that report the new advances related to activities described in task T3.2, T3.3 and T3.4. H2020
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1286897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1286897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Funded by:EC | PROMECAEC| PROMECAAuthors: Solomon Assefa Wassie; Michele Colozzi;Fausto Gallucci;
Emma Palo; +4 AuthorsFausto Gallucci
Fausto Gallucci in OpenAIRESolomon Assefa Wassie; Michele Colozzi;Fausto Gallucci;
Emma Palo; Lorena Mosca; Jose Antonio Medrano Jimenez; Stefania Taraschi; Giulio Galdieri;Fausto Gallucci
Fausto Gallucci in OpenAIREA membrane assisted process for green hydrogen production from a bioethanol derived feedstock is here developed and evaluated, starting from the conventional Steam Methane Reforming (SMR) process. Such a process is suitable for centralized hydrogen production, and is here analyzed for a large-scale H2 production unit with the capacity of 40.000 Nm3/h. The basic Steam Ethanol Reforming (SER) process scheme is modified in a membrane assisted process by integrating the Pd-membrane separation steps in the most suitable reaction steps. The membrane assisted process, configured in three alternative architectures (Open architecture, Membrane Reactor and Hybrid architecture) was evaluated in terms of efficiencies and hydrogen yields, obtaining a clear indication of improved process performance. The alternative membrane assisted process architectures are compared to the basic SER process and to the benchmark SMR process fed by natural gas, for an overall comparative assessment of the efficiency and specific CO2 emissions and for an economic analysis based on the operating expenditures.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Funded by:EC | PROMECAEC| PROMECAAuthors: Solomon Assefa Wassie; Michele Colozzi;Fausto Gallucci;
Emma Palo; +4 AuthorsFausto Gallucci
Fausto Gallucci in OpenAIRESolomon Assefa Wassie; Michele Colozzi;Fausto Gallucci;
Emma Palo; Lorena Mosca; Jose Antonio Medrano Jimenez; Stefania Taraschi; Giulio Galdieri;Fausto Gallucci
Fausto Gallucci in OpenAIREA membrane assisted process for green hydrogen production from a bioethanol derived feedstock is here developed and evaluated, starting from the conventional Steam Methane Reforming (SMR) process. Such a process is suitable for centralized hydrogen production, and is here analyzed for a large-scale H2 production unit with the capacity of 40.000 Nm3/h. The basic Steam Ethanol Reforming (SER) process scheme is modified in a membrane assisted process by integrating the Pd-membrane separation steps in the most suitable reaction steps. The membrane assisted process, configured in three alternative architectures (Open architecture, Membrane Reactor and Hybrid architecture) was evaluated in terms of efficiencies and hydrogen yields, obtaining a clear indication of improved process performance. The alternative membrane assisted process architectures are compared to the basic SER process and to the benchmark SMR process fed by natural gas, for an overall comparative assessment of the efficiency and specific CO2 emissions and for an economic analysis based on the operating expenditures.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | EASY-RESEC| EASY-RESAuthors:Stocker, Armin;
Alshawish, Ali; Bor, Martin; Vidler, John; +5 AuthorsStocker, Armin
Stocker, Armin in OpenAIREStocker, Armin;
Alshawish, Ali; Bor, Martin; Vidler, John; Gouglidis, Antonios; Scott, Andrew;Stocker, Armin
Stocker, Armin in OpenAIREMarnerides, Angelos;
De Meer, Hermann; Hutchison, David;Marnerides, Angelos
Marnerides, Angelos in OpenAIREAbstractSmart Grids are electrical grids that require a decentralised way of controlling electric power conditioning and thereby control the production and distribution of energy. Yet, the integration of Distributed Renewable Energy Sources (DRESs) in the Smart Grid introduces new challenges with regards to electrical grid balancing and storing of electrical energy, as well as additional monetary costs. Furthermore, the future smart grid also has to take over the provision of Ancillary Services (ASs). In this paper, a distributed ICT infrastructure to solve such challenges, specifically related to ASs in future Smart Grids, is described. The proposed infrastructure is developed on the basis of the Smart Grid Architecture Model (SGAM) framework, which is defined by the European Commission in Smart Grid Mandate M/490. A testbed that provides a flexible, secure, and low-cost version of this architecture, illustrating the separation of systems and responsibilities, and supporting both emulated DRESs and real hardware has been developed. The resulting system supports the integration of a variety of DRESs with a secure two-way communication channel between the monitoring and controlling components. It assists in the analysis of various inter-operabilities and in the verification of eventual system designs. To validate the system design, the mapping of the proposed architecture to the testbed is presented. Further work will help improve the architecture in two directions; first, by investigating specific-purpose use cases, instantiated using this more generic framework; and second, by investigating the effects a realistic number and variety of connected devices within different grid configurations has on the testbed infrastructure.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | EASY-RESEC| EASY-RESAuthors:Stocker, Armin;
Alshawish, Ali; Bor, Martin; Vidler, John; +5 AuthorsStocker, Armin
Stocker, Armin in OpenAIREStocker, Armin;
Alshawish, Ali; Bor, Martin; Vidler, John; Gouglidis, Antonios; Scott, Andrew;Stocker, Armin
Stocker, Armin in OpenAIREMarnerides, Angelos;
De Meer, Hermann; Hutchison, David;Marnerides, Angelos
Marnerides, Angelos in OpenAIREAbstractSmart Grids are electrical grids that require a decentralised way of controlling electric power conditioning and thereby control the production and distribution of energy. Yet, the integration of Distributed Renewable Energy Sources (DRESs) in the Smart Grid introduces new challenges with regards to electrical grid balancing and storing of electrical energy, as well as additional monetary costs. Furthermore, the future smart grid also has to take over the provision of Ancillary Services (ASs). In this paper, a distributed ICT infrastructure to solve such challenges, specifically related to ASs in future Smart Grids, is described. The proposed infrastructure is developed on the basis of the Smart Grid Architecture Model (SGAM) framework, which is defined by the European Commission in Smart Grid Mandate M/490. A testbed that provides a flexible, secure, and low-cost version of this architecture, illustrating the separation of systems and responsibilities, and supporting both emulated DRESs and real hardware has been developed. The resulting system supports the integration of a variety of DRESs with a secure two-way communication channel between the monitoring and controlling components. It assists in the analysis of various inter-operabilities and in the verification of eventual system designs. To validate the system design, the mapping of the proposed architecture to the testbed is presented. Further work will help improve the architecture in two directions; first, by investigating specific-purpose use cases, instantiated using this more generic framework; and second, by investigating the effects a realistic number and variety of connected devices within different grid configurations has on the testbed infrastructure.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:EC | CryoHubEC| CryoHubAuthors: Murrant, Daniel; Radcliffe, Jonathan;Abstract The need to increase energy system flexibility, alongside the need to lower fossil fuel use in the food sector, and the importance of refrigeration infrastructure presents an opportunity for Liquid Air Energy Storage (LAES) integrated with refrigerated warehouses. To quantify this opportunity in Europe we analyse energy scenarios and existing refrigeration infrastructure for four countries with diverse energy systems (UK, Spain, Bulgaria and Germany). We find that with growing levels of electricity generation from variable renewable sources and numerous refrigerated warehouses, LAES has the potential to provide value in many areas of the EU through the 2020s. However, LAES is still pre-commercial, and with the proportion of electricity from variable renewable sources still low in many countries it is likely that LAES will not be deployed widely alongside refrigerated warehouses under current market conditions. Countries such as the UK and Spain, which have the greatest need for additional energy system flexibility and the most refrigerated warehouses are likely to gain the most value initially.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:EC | CryoHubEC| CryoHubAuthors: Murrant, Daniel; Radcliffe, Jonathan;Abstract The need to increase energy system flexibility, alongside the need to lower fossil fuel use in the food sector, and the importance of refrigeration infrastructure presents an opportunity for Liquid Air Energy Storage (LAES) integrated with refrigerated warehouses. To quantify this opportunity in Europe we analyse energy scenarios and existing refrigeration infrastructure for four countries with diverse energy systems (UK, Spain, Bulgaria and Germany). We find that with growing levels of electricity generation from variable renewable sources and numerous refrigerated warehouses, LAES has the potential to provide value in many areas of the EU through the 2020s. However, LAES is still pre-commercial, and with the proportion of electricity from variable renewable sources still low in many countries it is likely that LAES will not be deployed widely alongside refrigerated warehouses under current market conditions. Countries such as the UK and Spain, which have the greatest need for additional energy system flexibility and the most refrigerated warehouses are likely to gain the most value initially.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable Funded by:EC | EnerMapsEC| EnerMapsSummary of modifications delivered to the shemaorg standard for energy M18
European Commission ... arrow_drop_down European Commission Participant PortalProject deliverableData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::2a3efdf72919b690579ed0c046c33c0e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert European Commission ... arrow_drop_down European Commission Participant PortalProject deliverableData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::2a3efdf72919b690579ed0c046c33c0e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable Funded by:EC | EnerMapsEC| EnerMapsSummary of modifications delivered to the shemaorg standard for energy M18
European Commission ... arrow_drop_down European Commission Participant PortalProject deliverableData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::2a3efdf72919b690579ed0c046c33c0e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert European Commission ... arrow_drop_down European Commission Participant PortalProject deliverableData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::2a3efdf72919b690579ed0c046c33c0e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu